Convergence of multiple ergodic averages for totally ergodic systems

Andreas Koutsogiannis
(Aristotle University of Thessaloniki) Joint work with Wenbo Sun (Virginia Tech)

Nilpotent structures in topological dynamics, ergodic theory and combinatorics, June 5-10 2023

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation, \mathcal{B} a σ-algebra of subsets of X,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation, \mathcal{B} a σ-algebra of subsets of X, μ is a probability measure,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation, \mathcal{B} a σ-algebra of subsets of X, μ is a probability measure, and $\mu(T A)=\mu(A) \forall A \in \mathcal{B})$,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation, \mathcal{B} a σ-algebra of subsets of X, μ is a probability measure, and $\mu(T A)=\mu(A) \forall A \in \mathcal{B})$, $f_{i} \in L^{\infty}$,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation, \mathcal{B} a σ-algebra of subsets of X, μ is a probability measure, and $\mu(T A)=\mu(A) \forall A \in \mathcal{B})$, $f_{i} \in L^{\infty}, T^{n}=\underbrace{T \circ \ldots \circ T}_{n-\text { times }}$,

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation, \mathcal{B} a σ-algebra of subsets of X, μ is a probability measure, and $\mu(T A)=\mu(A) \forall A \in \mathcal{B})$, $f_{i} \in L^{\infty}, T^{n}=\underbrace{T \circ \ldots \circ T}_{n \text {-times }}$, and $T f(x)=f(T x) \forall x \in X$ and function f.

Setting - problem

We will study the $\left(L^{2}\right)$ limiting behavior of expressions of the form:

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}
$$

as $N \rightarrow \infty$, where (X, \mathcal{B}, μ, T) is an invertible measure preserving system (i.e., X is a set, $T: X \rightarrow X$ invertible transformation, \mathcal{B} a σ-algebra of subsets of X, μ is a probability measure, and $\mu(T A)=\mu(A) \forall A \in \mathcal{B})$, $f_{i} \in L^{\infty}, T^{n}=\underbrace{T \circ \ldots \circ T}_{n-\text { times }}$, and $T f(x)=f(T x) \forall x \in X$ and function f. $\left(a_{i}(n)\right)_{n \in \mathbb{N}} \subseteq \mathbb{Z}$ are "appropriate" integer-valued sequences.

Ergodicity, total ergodicity, and weak mixing

Let (X, \mathcal{B}, μ, T) be a system. We call T (and the system as well)

Ergodicity, total ergodicity, and weak mixing

Let (X, \mathcal{B}, μ, T) be a system. We call T (and the system as well)

- ergodic if whenever $T A=A$ for $A \in \mathcal{B}$, we have that $\mu(A) \in\{0,1\}$;

Ergodicity, total ergodicity, and weak mixing

Let (X, \mathcal{B}, μ, T) be a system. We call T (and the system as well)

- ergodic if whenever $T A=A$ for $A \in \mathcal{B}$, we have that $\mu(A) \in\{0,1\}$;
- totally ergodic if for all $n \in \mathbb{N}, T^{n}$ is ergodic;

Ergodicity, total ergodicity, and weak mixing

Let (X, \mathcal{B}, μ, T) be a system. We call T (and the system as well)

- ergodic if whenever $T A=A$ for $A \in \mathcal{B}$, we have that $\mu(A) \in\{0,1\}$;
- totally ergodic if for all $n \in \mathbb{N}, T^{n}$ is ergodic;
- weak mixing (w.m.) if $T \times T$ is ergodic.

Ergodicity, total ergodicity, and weak mixing

Let (X, \mathcal{B}, μ, T) be a system. We call T (and the system as well)

- ergodic if whenever $T A=A$ for $A \in \mathcal{B}$, we have that $\mu(A) \in\{0,1\}$;
- totally ergodic if for all $n \in \mathbb{N}, T^{n}$ is ergodic;
- weak mixing (w.m.) if $T \times T$ is ergodic.

By the mean ergodic theorem (von Neumann, 1932) we have:

Ergodicity, total ergodicity, and weak mixing

Let (X, \mathcal{B}, μ, T) be a system. We call T (and the system as well)

- ergodic if whenever $T A=A$ for $A \in \mathcal{B}$, we have that $\mu(A) \in\{0,1\}$;
- totally ergodic if for all $n \in \mathbb{N}, T^{n}$ is ergodic;
- weak mixing (w.m.) if $T \times T$ is ergodic.

By the mean ergodic theorem (von Neumann, 1932) we have:

- T is ergodic iff for every $f \in L^{2}$ we have (in L^{2}-norm) that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f=\int_{X} f d \mu
$$

Ergodicity, total ergodicity, and weak mixing

Let (X, \mathcal{B}, μ, T) be a system. We call T (and the system as well)

- ergodic if whenever $T A=A$ for $A \in \mathcal{B}$, we have that $\mu(A) \in\{0,1\}$;
- totally ergodic if for all $n \in \mathbb{N}, T^{n}$ is ergodic;
- weak mixing (w.m.) if $T \times T$ is ergodic.

By the mean ergodic theorem (von Neumann, 1932) we have:

- T is ergodic iff for every $f \in L^{2}$ we have (in L^{2}-norm) that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f=\int_{X} f d \mu
$$

- T is totally ergodic iff for all $W \in \mathbb{N}, r \in \mathbb{Z}$ and $f \in L^{2}$ we have (in L^{2}-norm) that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{W n+r} f=\int_{X} f d \mu
$$

A convergence result

Theorem (Furstenberg, 1977)

If (X, \mathcal{B}, μ, T) is a w.m. system, then for every $k \in \mathbb{N}$ and $f_{1}, \ldots, f_{k} \in L^{\infty}$ we have

$$
\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{k n} f_{k} \rightarrow \prod_{i=1}^{k} \int_{X} f_{i} d \mu
$$

as $N \rightarrow \infty$, where the convergence takes place in L^{2}.

A convergence result

Theorem (Furstenberg, 1977)

If (X, \mathcal{B}, μ, T) is a w.m. system, then for every $k \in \mathbb{N}$ and $f_{1}, \ldots, f_{k} \in L^{\infty}$ we have

$$
\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{k n} f_{k} \rightarrow \prod_{i=1}^{k} \int_{X} f_{i} d \mu
$$

as $N \rightarrow \infty$, where the convergence takes place in L^{2}.
By studying the aforementioned averages, Furstenberg showed (and generalized) Szemerédi's theorem on arithmetic progressions in subsets of natural numbers of positive upper density, stating it as a recurrence problem.

A suitable class of functions: Polynomials

The non-constant integer polynomials $\left\{p_{1}, \ldots, p_{k}\right\}$ (i.e., $p_{i} \in \mathbb{Q}[x]$ with $\left.p_{i}(\mathbb{Z}) \subseteq \mathbb{Z}\right)$ are called essentially distinct if $p_{i}-p_{j} \not \equiv$ constant $\forall i \neq j$.

A suitable class of functions: Polynomials

The non-constant integer polynomials $\left\{p_{1}, \ldots, p_{k}\right\}$ (i.e., $p_{i} \in \mathbb{Q}[x]$ with $\left.p_{i}(\mathbb{Z}) \subseteq \mathbb{Z}\right)$ are called essentially distinct if $p_{i}-p_{j} \not \equiv$ constant $\forall i \neq j$.

Theorem (Bergelson, 1986)
If (X, \mathcal{B}, μ, T) is a w.m. system, then for every $k \in \mathbb{N},\left\{p_{1}, \ldots, p_{k}\right\}$ essentially distinct polynomials and $f_{1}, \ldots, f_{k} \in L^{\infty}$ we have

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} f_{1} \cdot \ldots \cdot T^{p_{k}(n)} f_{k} \rightarrow \prod_{i=1}^{k} \int_{X} f_{i} d \mu
$$

as $N \rightarrow \infty$, where the convergence takes place in L^{2}.

A suitable class of functions: Polynomials

The non-constant integer polynomials $\left\{p_{1}, \ldots, p_{k}\right\}$ (i.e., $p_{i} \in \mathbb{Q}[x]$ with $\left.p_{i}(\mathbb{Z}) \subseteq \mathbb{Z}\right)$ are called essentially distinct if $p_{i}-p_{j} \not \equiv$ constant $\forall i \neq j$.

Theorem (Bergelson, 1986)

If (X, \mathcal{B}, μ, T) is a w.m. system, then for every $k \in \mathbb{N},\left\{p_{1}, \ldots, p_{k}\right\}$ essentially distinct polynomials and $f_{1}, \ldots, f_{k} \in L^{\infty}$ we have

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} f_{1} \cdot \ldots \cdot T^{p_{k}(n)} f_{k} \rightarrow \prod_{i=1}^{k} \int_{X} f_{i} d \mu
$$

as $N \rightarrow \infty$, where the convergence takes place in L^{2}.
The study along integer polynomial iterates led to (multidimensional) polynomial extensions of Szemerédi's theorem (Bergelson-Leibman, 1996).

Crucial tool - van der Corput trick

Lemma (van der Corput, 1931, Bergelson, 1986)

Suppose that $\left(x_{n}\right)_{n}$ is a bounded sequence in a Hilbert space and suppose that for any $h \geqslant h_{0}>0$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\langle x_{n}, x_{n+h}\right\rangle=0
$$

then

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} x_{n}\right\|=0
$$

Crucial tool - van der Corput trick

Lemma (van der Corput, 1931, Bergelson, 1986)

Suppose that $\left(x_{n}\right)_{n}$ is a bounded sequence in a Hilbert space and suppose that for any $h \geqslant h_{0}>0$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\langle x_{n}, x_{n+h}\right\rangle=0
$$

then

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} x_{n}\right\|=0
$$

The expression $\left\langle x_{n}, x_{n+h}\right\rangle$ leads to "derivatives" (differences) and reduction of the complexity of the sequences (PET induction).

Crucial tool - van der Corput trick

Lemma (van der Corput, 1931, Bergelson, 1986)

Suppose that $\left(x_{n}\right)_{n}$ is a bounded sequence in a Hilbert space and suppose that for any $h \geqslant h_{0}>0$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\langle x_{n}, x_{n+h}\right\rangle=0
$$

then

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} x_{n}\right\|=0
$$

The expression $\left\langle x_{n}, x_{n+h}\right\rangle$ leads to "derivatives" (differences) and reduction of the complexity of the sequences (PET induction). (This is the ONLY tool that we have for reduction of complexity in all cases.)

Convergence for polynomial iterates

Conjecture (Bergelson-Leibman, 1996)

Let $d, k \in \mathbb{N},\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a system with commuting T_{i} 's. Then, for every integer polynomials $p_{i, j}$ and $f_{j} \in L^{\infty}$, the expression

$$
\frac{1}{N} \sum_{n=1}^{N}\left(\prod_{i=1}^{d} T_{i}^{p_{i, 1}(n)}\right) f_{1} \cdot \ldots \cdot\left(\prod_{i=1}^{d} T_{i}^{p_{i, k}(n)}\right) f_{k}
$$

has a limit as $N \rightarrow \infty$ in L^{2}.

Convergence for polynomial iterates

Conjecture (Bergelson-Leibman, 1996)
Let $d, k \in \mathbb{N},\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a system with commuting T_{i} 's. Then, for every integer polynomials $p_{i, j}$ and $f_{j} \in L^{\infty}$, the expression

$$
\frac{1}{N} \sum_{n=1}^{N}\left(\prod_{i=1}^{d} T_{i}^{p_{i, 1}(n)}\right) f_{1} \cdot \ldots \cdot\left(\prod_{i=1}^{d} T_{i}^{p_{i, k}(n)}\right) f_{k}
$$

has a limit as $N \rightarrow \infty$ in L^{2}.
Theorem (Walsh, 2012)
The conjecture of Bergelson and Leibman holds true.

Convergence for polynomial iterates

Conjecture (Bergelson-Leibman, 1996)
Let $d, k \in \mathbb{N},\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a system with commuting T_{i} 's. Then, for every integer polynomials $p_{i, j}$ and $f_{j} \in L^{\infty}$, the expression

$$
\frac{1}{N} \sum_{n=1}^{N}\left(\prod_{i=1}^{d} T_{i}^{p_{i, 1}(n)}\right) f_{1} \cdot \ldots \cdot\left(\prod_{i=1}^{d} T_{i}^{p_{i, k}(n)}\right) f_{k}
$$

has a limit as $N \rightarrow \infty$ in L^{2}.
Theorem (Walsh, 2012)
The conjecture of Bergelson and Leibman holds true.

Theorem (K., 2016)
The conjecture of Bergelson and Leibman holds true for $\left[p_{i}(n)\right], p_{i} \in \mathbb{R}[x]$.

Convergence for polynomial iterates

Conjecture (Bergelson-Leibman, 1996)
Let $d, k \in \mathbb{N},\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a system with commuting T_{i} 's. Then, for every integer polynomials $p_{i, j}$ and $f_{j} \in L^{\infty}$, the expression

$$
\frac{1}{N} \sum_{n=1}^{N}\left(\prod_{i=1}^{d} T_{i}^{p_{i, 1}(n)}\right) f_{1} \cdot \ldots \cdot\left(\prod_{i=1}^{d} T_{i}^{p_{i, k}(n)}\right) f_{k}
$$

has a limit as $N \rightarrow \infty$ in L^{2}.
Theorem (Walsh, 2012)
The conjecture of Bergelson and Leibman holds true.

```
Theorem (K., 2016)
```

The conjecture of Bergelson and Leibman holds true for $\left[p_{i}(n)\right], p_{i} \in \mathbb{R}[x]$.
Problem: Find the limit! (The previous results provide no info on it.)

Joint ergodicity

For a collection of sequences $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, and a system (X, \mathcal{B}, μ, T), we say that $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are

Joint ergodicity

For a collection of sequences $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, and a system (X, \mathcal{B}, μ, T), we say that $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are

- jointly ergodic for (X, \mathcal{B}, μ, T), if for all functions $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ we have (in $L^{2}(\mu)$)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}=\int_{X} f_{1} d \mu \cdot \ldots \cdot \int_{X} f_{k} d \mu
$$

For $k=1$, we say that $\left(a_{1}(n)\right)_{n}$ is ergodic.

Joint ergodicity

For a collection of sequences $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, and a system (X, \mathcal{B}, μ, T), we say that $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are

- jointly ergodic for (X, \mathcal{B}, μ, T), if for all functions $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ we have (in $L^{2}(\mu)$)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}=\int_{X} f_{1} d \mu \cdot \ldots \cdot \int_{X} f_{k} d \mu
$$

For $k=1$, we say that $\left(a_{1}(n)\right)_{n}$ is ergodic.

- totally jointly ergodic for (X, \mathcal{B}, μ, T), if for all functions $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu), W \in \mathbb{N}$, and $r \in \mathbb{Z}$, we have (in $L^{2}(\mu)$)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(W n+r)} f_{1} \cdot \ldots \cdot T^{a_{k}(W n+r)} f_{k}=\int_{X} f_{1} d \mu \cdot \ldots \cdot \int_{X} f_{k} d \mu
$$

For $k=1$, we say that $\left(a_{1}(n)\right)_{n}$ is totally ergodic.

Joint ergodicity

For a collection of sequences $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, and a system (X, \mathcal{B}, μ, T), we say that $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are

- jointly ergodic for (X, \mathcal{B}, μ, T), if for all functions $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ we have (in $L^{2}(\mu)$)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{k}(n)} f_{k}=\int_{X} f_{1} d \mu \cdot \ldots \cdot \int_{X} f_{k} d \mu
$$

For $k=1$, we say that $\left(a_{1}(n)\right)_{n}$ is ergodic.

- totally jointly ergodic for (X, \mathcal{B}, μ, T), if for all functions $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu), W \in \mathbb{N}$, and $r \in \mathbb{Z}$, we have (in $L^{2}(\mu)$)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(W n+r)} f_{1} \cdot \ldots \cdot T^{a_{k}(W n+r)} f_{k}=\int_{X} f_{1} d \mu \cdot \ldots \cdot \int_{X} f_{k} d \mu
$$

For $k=1$, we say that $\left(a_{1}(n)\right)_{n}$ is totally ergodic. If we have it for $r=0$ and some $W \in \mathbb{N}$, we say that we have W-joint ergodicity.

Reformulation of the previous results

So, the results of Furstenberg and Bergelson, under these notions, can be stated as:

Reformulation of the previous results

So, the results of Furstenberg and Bergelson, under these notions, can be stated as:
(Furstenberg, 1977) For every $k \in \mathbb{N}$, the sequences $(n)_{n},(2 n)_{n}, \ldots,(k n)_{n}$ are (totally) jointly ergodic for every w.m. system.

Reformulation of the previous results

So, the results of Furstenberg and Bergelson, under these notions, can be stated as:
(Furstenberg, 1977) For every $k \in \mathbb{N}$, the sequences $(n)_{n},(2 n)_{n}, \ldots,(k n)_{n}$ are (totally) jointly ergodic for every w.m. system.
(Bergelson, 1986) For every $k \in \mathbb{N}$ and p_{1}, \ldots, p_{k} essentially distinct integer polynomials, the sequences $\left(p_{1}(n)\right)_{n}, \ldots,\left(p_{k}(n)\right)_{n}$ are (totally) jointly ergodic for every w.m. system.

Reformulation of the previous results

So, the results of Furstenberg and Bergelson, under these notions, can be stated as:
(Furstenberg, 1977) For every $k \in \mathbb{N}$, the sequences $(n)_{n},(2 n)_{n}, \ldots,(k n)_{n}$ are (totally) jointly ergodic for every w.m. system.
(Bergelson, 1986) For every $k \in \mathbb{N}$ and p_{1}, \ldots, p_{k} essentially distinct integer polynomials, the sequences $\left(p_{1}(n)\right)_{n}, \ldots,\left(p_{k}(n)\right)_{n}$ are (totally) jointly ergodic for every w.m. system.

Problem: Weaken the assumptions on the system, strengthening simultaneously the assumptions on the iterates (OR, do the opposite!), and get (total) joint ergodicity results.

Independent sequences of polynomials

Let $V \subseteq \mathbb{R}$ with $0 \in V$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. We say that p_{1}, \ldots, p_{k} are V-independent if $\lambda_{1} p_{1}+\cdots+\lambda_{k} p_{k} \in \mathbb{Q}[x]+\mathbb{R}, \lambda_{i} \in V, 1 \leqslant i \leqslant k$, implies that $\lambda_{1}=\cdots=\lambda_{k}=0$;

Independent sequences of polynomials

Let $V \subseteq \mathbb{R}$ with $0 \in V$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. We say that p_{1}, \ldots, p_{k} are V-independent if $\lambda_{1} p_{1}+\cdots+\lambda_{k} p_{k} \in \mathbb{Q}[x]+\mathbb{R}, \lambda_{i} \in V, 1 \leqslant i \leqslant k$, implies that $\lambda_{1}=\cdots=\lambda_{k}=0$; otherwise, we call the p_{i} 's V-dependent.

Independent sequences of polynomials

Let $V \subseteq \mathbb{R}$ with $0 \in V$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. We say that p_{1}, \ldots, p_{k} are V-independent if $\lambda_{1} p_{1}+\cdots+\lambda_{k} p_{k} \in \mathbb{Q}[x]+\mathbb{R}, \lambda_{i} \in V, 1 \leqslant i \leqslant k$, implies that $\lambda_{1}=\cdots=\lambda_{k}=0$; otherwise, we call the p_{i} 's V-dependent.
Note that for any finite family of real polynomials p_{1}, \ldots, p_{k}, we have that
p_{1}, \ldots, p_{k} are V-independent, iff
$p_{1}(W \cdot+r), \ldots, p_{k}(W \cdot+r)$ are V-independent for all $W \in \mathbb{N}$ and $r \in \mathbb{Z}$.

Independent sequences of polynomials

Let $V \subseteq \mathbb{R}$ with $0 \in V$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. We say that p_{1}, \ldots, p_{k} are V-independent if $\lambda_{1} p_{1}+\cdots+\lambda_{k} p_{k} \in \mathbb{Q}[x]+\mathbb{R}, \lambda_{i} \in V, 1 \leqslant i \leqslant k$, implies that $\lambda_{1}=\cdots=\lambda_{k}=0$; otherwise, we call the p_{i} 's V-dependent.

Note that for any finite family of real polynomials p_{1}, \ldots, p_{k}, we have that
p_{1}, \ldots, p_{k} are V-independent, iff
$p_{1}(W \cdot+r), \ldots, p_{k}(W \cdot+r)$ are V-independent for all $W \in \mathbb{N}$ and $r \in \mathbb{Z}$.
($p_{1}, \ldots, p_{k} V$-independent means that any non-trivial linear combination of the p_{i} 's with scalars from V has at least one non-constant irrational coefficient.)

More results

Theorem (Frantzikinakis-Kra, 2005)

For $k \in \mathbb{N}$ let $\left\{p_{1}, \ldots, p_{k}\right\}$ be an $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent family of integer polynomials. Then, $\left(p_{1}(n)\right)_{n}, \ldots,\left(p_{k}(n)\right)_{n}$ are (totally) jointly ergodic for all totally ergodic systems.

More results

Theorem (Frantzikinakis-Kra, 2005)

For $k \in \mathbb{N}$ let $\left\{p_{1}, \ldots, p_{k}\right\}$ be an $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent family of integer polynomials. Then, $\left(p_{1}(n)\right)_{n}, \ldots,\left(p_{k}(n)\right)_{n}$ are (totally) jointly ergodic for all totally ergodic systems.

Remark

The theorem is actually a characterization.

Convergence to the expected limit for a general system

Theorem (Frantzikinakis, 2015)

Let $p \in \mathbb{R}[x]$ with $p(x) \neq c q(x)+d$, where $c, d \in \mathbb{R}$ and $q \in \mathbb{Q}[x]$ (i.e., p is \mathbb{R}-independent). Then for every $k \in \mathbb{N}$, any system (X, \mathcal{B}, μ, T) and $f_{1}, \ldots, f_{k} \in L^{\infty}$, we have that the expression

$$
\frac{1}{N} \sum_{n=1}^{N} T^{[p(n)]} f_{1} \cdot T^{2[p(n)]} f_{2} \cdot \ldots \cdot T^{k[p(n)]} f_{k}
$$

has the same limit (in L^{2}) as $N \rightarrow \infty$ with

$$
\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{k n} f_{k}
$$

Convergence to the expected limit for a general system

Theorem (Frantzikinakis, 2015)

Let $p \in \mathbb{R}[x]$ with $p(x) \neq c q(x)+d$, where $c, d \in \mathbb{R}$ and $q \in \mathbb{Q}[x]$ (i.e., p is \mathbb{R}-independent). Then for every $k \in \mathbb{N}$, any system (X, \mathcal{B}, μ, T) and $f_{1}, \ldots, f_{k} \in L^{\infty}$, we have that the expression

$$
\frac{1}{N} \sum_{n=1}^{N} T^{[p(n)]} f_{1} \cdot T^{2[p(n)]} f_{2} \cdot \ldots \cdot T^{k[p(n)]} f_{k}
$$

has the same limit (in L^{2}) as $N \rightarrow \infty$ with

$$
\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{k n} f_{k}
$$

With this result we are getting a refinement of Szemerédi's theorem.

Convergence to the expected limit for a general system

Theorem (Karageorgos-K., 2017)
For $k \in \mathbb{N}$ let p_{1}, \ldots, p_{k} be \mathbb{R}-independent real polynomials. Then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for all ergodic systems.

Convergence to the expected limit for a general system

Theorem (Karageorgos-K., 2017)
For $k \in \mathbb{N}$ let p_{1}, \ldots, p_{k} be \mathbb{R}-independent real polynomials. Then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for all ergodic systems.

Applications: Ergodic theory, combinatorics, number theory, topological dynamics.

Convergence to the expected limit for a general system

Theorem (Karageorgos-K., 2017)
For $k \in \mathbb{N}$ let p_{1}, \ldots, p_{k} be \mathbb{R}-independent real polynomials. Then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for all ergodic systems.

Applications: Ergodic theory, combinatorics, number theory, topological dynamics.

Usual approach to these problems:

Convergence to the expected limit for a general system

Theorem (Karageorgos-K., 2017)
For $k \in \mathbb{N}$ let p_{1}, \ldots, p_{k} be \mathbb{R}-independent real polynomials. Then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for all ergodic systems.

Applications: Ergodic theory, combinatorics, number theory, topological dynamics.

Usual approach to these problems:

- Show that the nilfactor is characteristic (to use Host-Kra structure theory and restrict your study to nilmanifolds).

Convergence to the expected limit for a general system

Theorem (Karageorgos-K., 2017)
For $k \in \mathbb{N}$ let p_{1}, \ldots, p_{k} be \mathbb{R}-independent real polynomials. Then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for all ergodic systems.

Applications: Ergodic theory, combinatorics, number theory, topological dynamics.

Usual approach to these problems:

- Show that the nilfactor is characteristic (to use Host-Kra structure theory and restrict your study to nilmanifolds).
- Show an equidistribution property on nilmanifolds.

More details on the condition of the iterates

- (Similar to Frantzikinakis' result for Hardy field functions, 2009) Let $k \in \mathbb{N}$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ be $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent. Let $X=G / \Gamma$ be a nilmanifold with G connected and simply connected, and elements $b_{i} \in G$ acting ergodically on X. Then the sequence $\left(b_{1}^{p_{1}(n)} \Gamma, \ldots, b_{k}^{p_{k}(n)} \Gamma\right)_{n}$ is equidistributed in the nilmanifold X^{k}.

More details on the condition of the iterates

- (Similar to Frantzikinakis' result for Hardy field functions, 2009) Let $k \in \mathbb{N}$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ be $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent. Let $X=G / \Gamma$ be a nilmanifold with G connected and simply connected, and elements $b_{i} \in G$ acting ergodically on X. Then the sequence $\left(b_{1}^{p_{1}(n)} \Gamma, \ldots, b_{k}^{p_{k}(n)} \Gamma\right)_{n}$ is equidistributed in the nilmanifold X^{k}.
- (Frantzikinakis, 2009) Let $X=G / \Gamma$ be a nilmanifold with G connected and simply connected. Then, for every $b_{1}, \ldots, b_{k} \in G$ there exists an $s_{0} \in \mathbb{R}$ such that for all $1 \leqslant i \leqslant k$ the element $b_{i}^{s_{0}}$ acts ergodically on the nilmanifold ${\overline{\left(b_{i}^{S} \Gamma\right)}}_{s \in \mathbb{R}}$.

More details on the condition of the iterates

- (Similar to Frantzikinakis' result for Hardy field functions, 2009) Let $k \in \mathbb{N}$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ be $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent. Let $X=G / \Gamma$ be a nilmanifold with G connected and simply connected, and elements $b_{i} \in G$ acting ergodically on X. Then the sequence $\left(b_{1}^{p_{1}(n)} \Gamma, \ldots, b_{k}^{p_{k}(n)} \Gamma\right)_{n}$ is equidistributed in the nilmanifold X^{k}.
- (Frantzikinakis, 2009) Let $X=G / \Gamma$ be a nilmanifold with G connected and simply connected. Then, for every $b_{1}, \ldots, b_{k} \in G$ there exists an $s_{0} \in \mathbb{R}$ such that for all $1 \leqslant i \leqslant k$ the element $b_{i}^{s_{0}}$ acts ergodically on the nilmanifold ${\overline{\left(b_{i}^{S} \Gamma\right)}}_{s \in \mathbb{R}}$.
- So, we want to have that, for all $s \in \mathbb{R}_{*}, p_{1} / s, \ldots, p_{k} / s$ are $\mathbb{R} \backslash \mathbb{Q}_{\text {* }}$-independent,

More details on the condition of the iterates

- (Similar to Frantzikinakis' result for Hardy field functions, 2009) Let $k \in \mathbb{N}$ and $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ be $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent. Let $X=G / \Gamma$ be a nilmanifold with G connected and simply connected, and elements $b_{i} \in G$ acting ergodically on X. Then the sequence $\left(b_{1}^{p_{1}(n)} \Gamma, \ldots, b_{k}^{p_{k}(n)} \Gamma\right)_{n}$ is equidistributed in the nilmanifold X^{k}.
- (Frantzikinakis, 2009) Let $X=G / \Gamma$ be a nilmanifold with G connected and simply connected. Then, for every $b_{1}, \ldots, b_{k} \in G$ there exists an $s_{0} \in \mathbb{R}$ such that for all $1 \leqslant i \leqslant k$ the element $b_{i}^{s_{0}}$ acts ergodically on the nilmanifold ${\overline{\left(b_{i}^{s} \Gamma\right)}}_{s \in \mathbb{R}}$.
- So, we want to have that, for all $s \in \mathbb{R}_{*}, p_{1} / s, \ldots, p_{k} / s$ are $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent, or, equivalently, that p_{1}, \ldots, p_{k} are \mathbb{R}-independent.

Two conjectures for totally ergodic systems

Following the philosophy "weaken the assumptions of the iterates, strengthen the assumptions on the system", one may assume that with "a lot" of ergodicity we have the following.

Two conjectures for totally ergodic systems

Following the philosophy "weaken the assumptions of the iterates, strengthen the assumptions on the system", one may assume that with "a lot" of ergodicity we have the following.

Conjecture 1
For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ be $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent. Then $\left(\left[p_{1}(n)\right]\right)_{n}$, $\ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Two conjectures for totally ergodic systems

Following the philosophy "weaken the assumptions of the iterates, strengthen the assumptions on the system", one may assume that with "a lot" of ergodicity we have the following.

Conjecture 1
For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ be $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent. Then $\left(\left[p_{1}(n)\right]\right)_{n}$, $\ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

As in Frantzikinakis-Kra result, one may also expect the following.

Two conjectures for totally ergodic systems

Following the philosophy "weaken the assumptions of the iterates, strengthen the assumptions on the system", one may assume that with "a lot" of ergodicity we have the following.

Conjecture 1
For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ be $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent. Then $\left(\left[p_{1}(n)\right]\right)_{n}$, $\ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

As in Frantzikinakis-Kra result, one may also expect the following.
Conjecture 2
Conjecture 1 is a characterization.

Notions that characterize joint ergodicity

For $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, we say that $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is

Notions that characterize joint ergodicity

For $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, we say that $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is

- good for seminorm estimates for (X, \mathcal{B}, μ, T), if there exists $s \in \mathbb{N}$ such that if $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ and $\left\|f_{i_{0}}\right\|_{s}=0$ for some $1 \leqslant i_{0} \leqslant k$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{i_{0}}(n)} f_{i_{0}}=0 \text { in } L^{2}(\mu)
$$

Notions that characterize joint ergodicity

For $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, we say that $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is

- good for seminorm estimates for (X, \mathcal{B}, μ, T), if there exists $s \in \mathbb{N}$ such that if $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ and $\left\|f_{i_{0}}\right\|_{s}=0$ for some $1 \leqslant i_{0} \leqslant k$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{0}(n)} f_{i_{0}}=0 \text { in } L^{2}(\mu)
$$

- good for equidistribution for (X, \mathcal{B}, μ, T), if for all $t_{1}, \ldots, t_{k} \in \operatorname{Spec}(T)$, not all of them 0 , we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(t_{1} a_{1}(n)+\ldots+t_{k} a_{k}(n)\right)=0
$$

Notions that characterize joint ergodicity

For $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$, we say that $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is

- good for seminorm estimates for (X, \mathcal{B}, μ, T), if there exists $s \in \mathbb{N}$ such that if $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ and $\left\|f_{i_{0}}\right\|_{s}=0$ for some $1 \leqslant i_{0} \leqslant k$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{i 0}(n)} f_{i_{0}}=0 \text { in } L^{2}(\mu)
$$

- good for equidistribution for (X, \mathcal{B}, μ, T), if for all $t_{1}, \ldots, t_{k} \in \operatorname{Spec}(T)$, not all of them 0 , we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(t_{1} a_{1}(n)+\ldots+t_{k} a_{k}(n)\right)=0
$$

where $e(t):=e^{2 \pi i t}$, and

$$
\operatorname{Spec}(T):=\left\{t \in[0,1): T f=e(t) f \text { for some nonzero } f \in L^{2}(\mu)\right\}
$$

Frantzikinakis' results

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$ be sequences. $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are jointly ergodic for an ergodic system (X, \mathcal{B}, μ, T) iff $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is good for seminorm estimates and equidistribution for (X, \mathcal{B}, μ, T).

Frantzikinakis' results

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$ be sequences. $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are jointly ergodic for an ergodic system (X, \mathcal{B}, μ, T) iff $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is good for seminorm estimates and equidistribution for (X, \mathcal{B}, μ, T).

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. Suppose that every non-trivial linear combination of the p_{i} 's with at least one irrational scalar has at least one non-constant irrational coefficient. Then, the sequences $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots$, $\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Frantzikinakis' results

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$ be sequences. $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are jointly ergodic for an ergodic system (X, \mathcal{B}, μ, T) iff $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is good for seminorm estimates and equidistribution for (X, \mathcal{B}, μ, T).

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. Suppose that every non-trivial linear combination of the p_{i} 's with at least one irrational scalar has at least one non-constant irrational coefficient. Then, the sequences $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots$, $\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Consider $p_{1}(n)=n^{3}+a n^{2}+a^{2} n$, and $p_{2}(n)=n^{2}+a n$, for $a \in \mathbb{R} \backslash \mathbb{Q}$.

Frantzikinakis' results

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$ be sequences. $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are jointly ergodic for an ergodic system (X, \mathcal{B}, μ, T) iff $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is good for seminorm estimates and equidistribution for (X, \mathcal{B}, μ, T).

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. Suppose that every non-trivial linear combination of the p_{i} 's with at least one irrational scalar has at least one non-constant irrational coefficient. Then, the sequences $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots$, $\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Consider $p_{1}(n)=n^{3}+a n^{2}+a^{2} n$, and $p_{2}(n)=n^{2}+a n$, for $a \in \mathbb{R} \backslash \mathbb{Q}$. Then, $p_{1}(n)-a p_{2}(n)=n^{3} \in \mathbb{Q}[n]$, so the previous result does not provide any info on the joint ergodicity of the sequences $\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$.

Frantzikinakis' results

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$ be sequences. $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are jointly ergodic for an ergodic system (X, \mathcal{B}, μ, T) iff $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is good for seminorm estimates and equidistribution for (X, \mathcal{B}, μ, T).

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. Suppose that every non-trivial linear combination of the p_{i} 's with at least one irrational scalar has at least one non-constant irrational coefficient. Then, the sequences $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots$, $\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Consider $p_{1}(n)=n^{3}+a n^{2}+a^{2} n$, and $p_{2}(n)=n^{2}+a n$, for $a \in \mathbb{R} \backslash \mathbb{Q}$. Then, $p_{1}(n)-a p_{2}(n)=n^{3} \in \mathbb{Q}[n]$, so the previous result does not provide any info on the joint ergodicity of the sequences $\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$. They are totally jointly ergodic for every totally ergodic system though by Conjecture 1

Frantzikinakis' results

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}: \mathbb{N} \rightarrow \mathbb{Z}$ be sequences. $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{k}(n)\right)_{n}$ are jointly ergodic for an ergodic system (X, \mathcal{B}, μ, T) iff $\left(a_{1}(n), \ldots, a_{k}(n)\right)_{n}$ is good for seminorm estimates and equidistribution for (X, \mathcal{B}, μ, T).

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$. Suppose that every non-trivial linear combination of the p_{i} 's with at least one irrational scalar has at least one non-constant irrational coefficient. Then, the sequences $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots$, $\left(\left[p_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Consider $p_{1}(n)=n^{3}+a n^{2}+a^{2} n$, and $p_{2}(n)=n^{2}+a n$, for $a \in \mathbb{R} \backslash \mathbb{Q}$. Then, $p_{1}(n)-a p_{2}(n)=n^{3} \in \mathbb{Q}[n]$, so the previous result does not provide any info on the joint ergodicity of the sequences $\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$. They are totally jointly ergodic for every totally ergodic system though by Conjecture 1 (if $b_{1} p_{1}(n)+b_{2} p_{2}(n) \in \mathbb{Q}[n], b_{1}, b_{2} \in \mathbb{R} \backslash \mathbb{Q}_{*} \Rightarrow b_{1}=b_{2}=0$).

Results

Conjecture 1 holds in general.

Results

Conjecture 1 holds in general.
Theorem (K.-Sun, 2023)
If p_{1}, \ldots, p_{k} are $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent, then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are totally jointly ergodic for every totally ergodic system.

Results

Conjecture 1 holds in general.

```
Theorem (K.-Sun, 2023)
If p}\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\mathrm{ are }\mathbb{R}\\mp@subsup{\mathbb{Q}}{*}{}\mathrm{ -independent, then }([\mp@subsup{p}{1}{}(n)]\mp@subsup{)}{n}{},\ldots,([\mp@subsup{p}{k}{}(n)]\mp@subsup{)}{n}{}\mathrm{ are totally jointly ergodic for every totally ergodic system.
```

For two special classes of polynomials, Conjecture 2 holds as well.

Results

Conjecture 1 holds in general.

```
Theorem (K.-Sun, 2023)
```

If p_{1}, \ldots, p_{k} are $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent, then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are totally jointly ergodic for every totally ergodic system.

For two special classes of polynomials, Conjecture 2 holds as well.

```
Theorem (K.-Sun, 2023)
Let }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\in\mathbb{Q}[x]+\mathbb{R}.\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\mathrm{ are }\mathbb{R}\\mp@subsup{\mathbb{Q}}{*}{*}\mathrm{ -independent iff }([\mp@subsup{p}{1}{}(n)]\mp@subsup{)}{n}{}\mathrm{ ,
\ldots,([\mp@subsup{p}{k}{}(n)])n}\mp@subsup{)}{n}{}\mathrm{ are totally jointly ergodic for every totally ergodic system.
```


Results

Conjecture 1 holds in general.
Theorem (K.-Sun, 2023)
If p_{1}, \ldots, p_{k} are $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent, then $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are totally jointly ergodic for every totally ergodic system.

For two special classes of polynomials, Conjecture 2 holds as well.

```
Theorem (K.-Sun, 2023)
Let }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\in\mathbb{Q}[x]+\mathbb{R}.\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\mathrm{ are }\mathbb{R}\\mp@subsup{\mathbb{Q}}{*}{*}\mathrm{ -independent iff }([\mp@subsup{p}{1}{}(n)]\mp@subsup{)}{n}{}\mathrm{ ,
\ldots,([\mp@subsup{p}{k}{}(n)])n}\mp@subsup{)}{n}{}\mathrm{ are totally jointly ergodic for every totally ergodic system.
```


Theorem (K.-Sun, 2023)

Let $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ so that all the irrational polynomials in p_{1}, \ldots, p_{k}, if any, are \mathbb{Q}-independent. p_{1}, \ldots, p_{k} are $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent iff $\left(\left[p_{1}(n)\right]\right)_{n}$, $\ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are totally jointly ergodic for every totally ergodic system.

Results for fixed systems

Let $S(T):=\operatorname{Spec}(T)+\mathbb{Z}$.

Results for fixed systems

Let $S(T):=\operatorname{Spec}(T)+\mathbb{Z}$.
Notice that, for a totally ergodic transformation $T, \operatorname{Spec}(T) \subseteq[0,1) \backslash \mathbb{Q}_{*}$,

Results for fixed systems

Let $S(T):=\operatorname{Spec}(T)+\mathbb{Z}$.
Notice that, for a totally ergodic transformation $T, \operatorname{Spec}(T) \subseteq[0,1) \backslash \mathbb{Q}_{*}$, hence $S(T) \subseteq(\mathbb{R} \backslash \mathbb{Q}) \cup \mathbb{Z}$.

Results for fixed systems

Let $S(T):=\operatorname{Spec}(T)+\mathbb{Z}$.
Notice that, for a totally ergodic transformation $T, \operatorname{Spec}(T) \subseteq[0,1) \backslash \mathbb{Q}_{*}$, hence $S(T) \subseteq(\mathbb{R} \backslash \mathbb{Q}) \cup \mathbb{Z}$.

```
Theorem (K.-Sun, 2023)
Let }k\in\mathbb{N},(X,\mathcal{B},\mu,T)\mathrm{ be a totally ergodic system, and }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\in\mathbb{R}[x]\mathrm{ . If \(p_{1}, \ldots, p_{k}\) are \(S(T) \backslash \mathbb{Z}_{*}\)-independent, then \(\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}\) are totally jointly ergodic for \((X, \mathcal{B}, \mu, T)\).
```


Results for fixed systems

Let $S(T):=\operatorname{Spec}(T)+\mathbb{Z}$.
Notice that, for a totally ergodic transformation T, $\operatorname{Spec}(T) \subseteq[0,1) \backslash \mathbb{Q}_{*}$, hence $S(T) \subseteq(\mathbb{R} \backslash \mathbb{Q}) \cup \mathbb{Z}$.

```
Theorem (K.-Sun, 2023)
Let }k\in\mathbb{N},(X,\mathcal{B},\mu,T)\mathrm{ be a totally ergodic system, and }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\in\mathbb{R}[x]\mathrm{ .
If }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}\mathrm{ are S(T)\Z्Z totally jointly ergodic for \((X, \mathcal{B}, \mu, T)\).
```

Idea: Twisting the argument of Frantzikinakis.

Special cases

Theorem (K.-Sun, 2023)
Let $k \in \mathbb{N},(X, \mathcal{B}, \mu, T)$ be a totally ergodic system, and $p_{1}, \ldots, p_{k} \in \mathbb{Q}[x]+\mathbb{R}$ (resp. $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ so that all the irrational polynomials in p_{1}, \ldots, p_{k}, if any, are \mathbb{Q}-independent). Then the following are equivalent:
(i) $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are totally jointly ergodic for (X, \mathcal{B}, μ, T).
(ii) There exists $W_{0} \equiv W_{0}\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{N}$ such that $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are W !-jointly ergodic for (X, \mathcal{B}, μ, T) for all $W \geqslant W_{0}$.
(iii) There exists an infinite set $I \equiv I\left(p_{1}, \ldots, p_{k}\right) \subseteq \mathbb{N}$ such that $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are W !-jointly ergodic for (X, \mathcal{B}, μ, T) for all $W \in I$.
(iv) p_{1}, \ldots, p_{k} are $S(T)$-independent (resp. $S(T) \backslash \mathbb{Z}_{*}$-independent).

Special cases

Theorem (K.-Sun, 2023)
Let $k \in \mathbb{N},(X, \mathcal{B}, \mu, T)$ be a totally ergodic system, and $p_{1}, \ldots, p_{k} \in \mathbb{Q}[x]+\mathbb{R}$ (resp. $p_{1}, \ldots, p_{k} \in \mathbb{R}[x]$ so that all the irrational polynomials in p_{1}, \ldots, p_{k}, if any, are \mathbb{Q}-independent). Then the following are equivalent:
(i) $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are totally jointly ergodic for (X, \mathcal{B}, μ, T).
(ii) There exists $W_{0} \equiv W_{0}\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{N}$ such that $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are W !-jointly ergodic for (X, \mathcal{B}, μ, T) for all $W \geqslant W_{0}$.
(iii) There exists an infinite set $I \equiv I\left(p_{1}, \ldots, p_{k}\right) \subseteq \mathbb{N}$ such that $\left(\left[p_{1}(n)\right]\right)_{n}, \ldots,\left(\left[p_{k}(n)\right]\right)_{n}$ are W !-jointly ergodic for (X, \mathcal{B}, μ, T) for all $W \in I$.
(iv) p_{1}, \ldots, p_{k} are $S(T)$-independent (resp. $S(T) \backslash \mathbb{Z}_{*}$-independent).

This result gives that Conjecture 2 holds for $k=1$ in general.

The general case turns out to be much harder!

Minor changes in the polynomial iterates can essentially affect their joint ergodicity properties.

The general case turns out to be much harder!

Minor changes in the polynomial iterates can essentially affect their joint ergodicity properties.

- Let $W \in \mathbb{N}, r \in \mathbb{Z}, c \in \mathbb{R} \backslash \mathbb{Q}$, and

$$
p_{1}(n)=n^{2}+c n, \quad p_{2}(n)=n^{2}+(c+1) n .
$$

The general case turns out to be much harder!

Minor changes in the polynomial iterates can essentially affect their joint ergodicity properties.

- Let $W \in \mathbb{N}, r \in \mathbb{Z}, c \in \mathbb{R} \backslash \mathbb{Q}$, and

$$
p_{1}(n)=n^{2}+c n, \quad p_{2}(n)=n^{2}+(c+1) n .
$$

$\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are totally jointly ergodic for all totally ergodic systems, but $\left.\left(\left[p_{1}(W n+r)\right]\right)\right)_{n},\left(\left[p_{2}(W n+r)+1 / 4\right]\right)_{n}$ are not jointly ergodic for $(\mathbb{T}, \mathcal{B}, m, T)$, where m is the Haar measure and $T x=x+c$ mod 1.

The general case turns out to be much harder!

Minor changes in the polynomial iterates can essentially affect their joint ergodicity properties.

- Let $W \in \mathbb{N}, r \in \mathbb{Z}, c \in \mathbb{R} \backslash \mathbb{Q}$, and

$$
p_{1}(n)=n^{2}+c n, \quad p_{2}(n)=n^{2}+(c+1) n .
$$

$\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are totally jointly ergodic for all totally ergodic systems, but $\left(\left[p_{1}(W n+r)\right]\right)_{n},\left(\left[p_{2}(W n+r)+1 / 4\right]\right)_{n}$ are not jointly ergodic for $(\mathbb{T}, \mathcal{B}, m, T)$, where m is the Haar measure and $T x=x+c$ mod 1. (We will assume that the polynomials have 0 constant term.)

The general case turns out to be much harder!

Minor changes in the polynomial iterates can essentially affect their joint ergodicity properties.

- Let $W \in \mathbb{N}, r \in \mathbb{Z}, c \in \mathbb{R} \backslash \mathbb{Q}$, and

$$
p_{1}(n)=n^{2}+c n, \quad p_{2}(n)=n^{2}+(c+1) n .
$$

$\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are totally jointly ergodic for all totally ergodic systems, but $\left(\left[p_{1}(W n+r)\right]\right)_{n},\left(\left[p_{2}(W n+r)+1 / 4\right]\right)_{n}$ are not jointly ergodic for $(\mathbb{T}, \mathcal{B}, m, T)$, where m is the Haar measure and $T x=x+c$ $\bmod 1$. (We will assume that the polynomials have 0 constant term.)

- Let $c \in \mathbb{R} \backslash \mathbb{Q}, W \geqslant 2$, and

$$
p_{1}(n)=n^{3}+\frac{c n^{2}}{4}, \quad p_{2}(n)=n^{3}+\frac{(c+1) n^{2}}{4} .
$$

$\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are W !-jointly ergodic for all totally ergodic systems, but not jointly ergodic for ($\mathbb{T}, \mathcal{B}, m, T$).

Characterizing total joint ergodicity for 2 terms

Theorem (K.-Sun, 2023)

For all $p_{1}, p_{2} \in \mathbb{R}[x]$ with $p_{1}(0)=p_{2}(0)=0,\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are totally jointly ergodic for all totally ergodic systems iff, the following holds:
(i) p_{1}, p_{2} are $\mathbb{R} \backslash \mathbb{Q}_{*}$-independent; or
(ii) $p_{1}=f+c g, p_{2}= \pm(f+(c+1) g)$ for some $f, g \in \mathbb{Q}[x]$,
$f(0)=g(0)=0, f$ is not a multiple of $g,{ }^{a} g$ is an integer polynomial with $g \not \equiv 0$, and $c \in \mathbb{R} \backslash \mathbb{Q}$.
${ }^{a}$ By this we mean that there is no $s \in \mathbb{Q}$ such that $f=s g$.

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.
Let p_{1}, p_{2} are $S(T) \backslash \mathbb{Z}_{*}$-dependent with $p_{1}(0)=p_{2}(0)=0$.

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.
Let p_{1}, p_{2} are $S(T) \backslash \mathbb{Z}_{*}$-dependent with $p_{1}(0)=p_{2}(0)=0$.

- If $p_{1} \in \mathbb{Q}[x]$ and $p_{2} \notin \mathbb{Q}[x]$ (in which case p_{2} is \mathbb{Q}-independent; the case $p_{2} \in \mathbb{Q}[x]$ and $p_{1} \notin \mathbb{Q}[x]$ is analogous), or

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.
Let p_{1}, p_{2} are $S(T) \backslash \mathbb{Z}_{*}$-dependent with $p_{1}(0)=p_{2}(0)=0$.

- If $p_{1} \in \mathbb{Q}[x]$ and $p_{2} \notin \mathbb{Q}[x]$ (in which case p_{2} is \mathbb{Q}-independent; the case $p_{2} \in \mathbb{Q}[x]$ and $p_{1} \notin \mathbb{Q}[x]$ is analogous), or
- $p_{1}, p_{2} \in \mathbb{Q}[x]$, or

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.
Let p_{1}, p_{2} are $S(T) \backslash \mathbb{Z}_{*}$-dependent with $p_{1}(0)=p_{2}(0)=0$.

- If $p_{1} \in \mathbb{Q}[x]$ and $p_{2} \notin \mathbb{Q}[x]$ (in which case p_{2} is \mathbb{Q}-independent; the case $p_{2} \in \mathbb{Q}[x]$ and $p_{1} \notin \mathbb{Q}[x]$ is analogous), or
- $p_{1}, p_{2} \in \mathbb{Q}[x]$, or
- $p_{1}, p_{2} \notin \mathbb{Q}[x]$ and p_{1}, p_{2} are \mathbb{Q}-independent,

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.
Let p_{1}, p_{2} are $S(T) \backslash \mathbb{Z}_{*}$-dependent with $p_{1}(0)=p_{2}(0)=0$.

- If $p_{1} \in \mathbb{Q}[x]$ and $p_{2} \notin \mathbb{Q}[x]$ (in which case p_{2} is \mathbb{Q}-independent; the case $p_{2} \in \mathbb{Q}[x]$ and $p_{1} \notin \mathbb{Q}[x]$ is analogous), or
- $p_{1}, p_{2} \in \mathbb{Q}[x]$, or
- $p_{1}, p_{2} \notin \mathbb{Q}[x]$ and p_{1}, p_{2} are \mathbb{Q}-independent, then, there exists $W_{0} \equiv W_{0}\left(p_{1}, p_{2}\right) \in \mathbb{N}$ such that $\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are not W !-jointly ergodic for (X, \mathcal{B}, μ, T) for all $W \geqslant W_{0}$.

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.
Let p_{1}, p_{2} are $S(T) \backslash \mathbb{Z}_{*}$-dependent with $p_{1}(0)=p_{2}(0)=0$.

- If $p_{1} \in \mathbb{Q}[x]$ and $p_{2} \notin \mathbb{Q}[x]$ (in which case p_{2} is \mathbb{Q}-independent; the case $p_{2} \in \mathbb{Q}[x]$ and $p_{1} \notin \mathbb{Q}[x]$ is analogous), or
- $p_{1}, p_{2} \in \mathbb{Q}[x]$, or
- $p_{1}, p_{2} \notin \mathbb{Q}[x]$ and p_{1}, p_{2} are \mathbb{Q}-independent, then, there exists $W_{0} \equiv W_{0}\left(p_{1}, p_{2}\right) \in \mathbb{N}$ such that $\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are not W !-jointly ergodic for (X, \mathcal{B}, μ, T) for all $W \geqslant W_{0}$.

The remaining case is when $p_{1}, p_{2} \notin \mathbb{Q}[x]$ and p_{1}, p_{2} are \mathbb{Q}-dependent.

Approach and why we stop at $k=2$ terms

Let (X, \mathcal{B}, μ, T) be a totally ergodic system.
Let p_{1}, p_{2} are $S(T) \backslash \mathbb{Z}_{*}$-dependent with $p_{1}(0)=p_{2}(0)=0$.

- If $p_{1} \in \mathbb{Q}[x]$ and $p_{2} \notin \mathbb{Q}[x]$ (in which case p_{2} is \mathbb{Q}-independent; the case $p_{2} \in \mathbb{Q}[x]$ and $p_{1} \notin \mathbb{Q}[x]$ is analogous), or
- $p_{1}, p_{2} \in \mathbb{Q}[x]$, or
- $p_{1}, p_{2} \notin \mathbb{Q}[x]$ and p_{1}, p_{2} are \mathbb{Q}-independent,
then, there exists $W_{0} \equiv W_{0}\left(p_{1}, p_{2}\right) \in \mathbb{N}$ such that $\left(\left[p_{1}(n)\right]\right)_{n},\left(\left[p_{2}(n)\right]\right)_{n}$ are not W !-jointly ergodic for (X, \mathcal{B}, μ, T) for all $W \geqslant W_{0}$.

The remaining case is when $p_{1}, p_{2} \notin \mathbb{Q}[x]$ and p_{1}, p_{2} are \mathbb{Q}-dependent. Then, we have

$$
c_{1} p_{1}+c_{2} p_{2}=q_{1}, \quad d_{1} p_{1}+d_{2} p_{2}=q_{2}
$$

for some $q_{1}, q_{2} \in \mathbb{Q}[x], c_{1}, c_{2} \in S(T) \backslash \mathbb{Z}_{*}$ not both 0 , and $d_{1}, d_{2} \in \mathbb{Q}_{*}$.

More classes of suitable families of functions: Hardy field functions

- Hardy field functions

More classes of suitable families of functions: Hardy field functions

- Hardy field functions
(If B is a collection of equivalence classes of real valued functions defined on some $(c, \infty), c \geqslant 0$, where two functions that agree eventually are identified. A Hardy field is a subfield of the ring $(B,+, \cdot)$ that is closed under differentiation.)

More classes of suitable families of functions: Hardy field functions

- Hardy field functions
(If B is a collection of equivalence classes of real valued functions defined on some $(c, \infty), c \geqslant 0$, where two functions that agree eventually are identified. A Hardy field is a subfield of the ring $(B,+, \cdot)$ that is closed under differentiation.)
We care for functions a that satisfy $x^{d-1} \log x<a(x)<x^{d}$ for some $d \in \mathbb{N}$

More classes of suitable families of functions: Hardy field functions

- Hardy field functions
(If B is a collection of equivalence classes of real valued functions defined on some $(c, \infty), c \geqslant 0$, where two functions that agree eventually are identified. A Hardy field is a subfield of the ring $(B,+, \cdot)$ that is closed under differentiation.)
We care for functions a that satisfy $x^{d-1} \log x<a(x)<x^{d}$ for some $d \in \mathbb{N}$ (we write $a \in \mathcal{T}$; $a<b$ if $|b(x)| /|a(x)| \rightarrow \infty$ as $x \rightarrow \infty$).

More classes of suitable families of functions: Hardy

 field functions- Hardy field functions
(If B is a collection of equivalence classes of real valued functions defined on some $(c, \infty), c \geqslant 0$, where two functions that agree eventually are identified. A Hardy field is a subfield of the ring $(B,+, \cdot)$ that is closed under differentiation.)
We care for functions a that satisfy $x^{d-1} \log x<a(x)<x^{d}$ for some $d \in \mathbb{N}$ (we write $a \in \mathcal{T}$; $a<b$ if $|b(x)| /|a(x)| \rightarrow \infty$ as $x \rightarrow \infty$).
a stays logarithmically away from rational polynomials if $\log x<a(x)-p(x)$ for all $p \in \mathbb{Q}[x]+\mathbb{R}$.

More classes of suitable families of functions: Hardy

 field functions- Hardy field functions
(If B is a collection of equivalence classes of real valued functions defined on some $(c, \infty), c \geqslant 0$, where two functions that agree eventually are identified. A Hardy field is a subfield of the ring $(B,+, \cdot)$ that is closed under differentiation.)
We care for functions a that satisfy $x^{d-1} \log x<a(x)<x^{d}$ for some $d \in \mathbb{N}$ (we write $a \in \mathcal{T}$; $a<b$ if $|b(x)| /|a(x)| \rightarrow \infty$ as $x \rightarrow \infty$).
a stays logarithmically away from rational polynomials if $\log x<a(x)-p(x)$ for all $p \in \mathbb{Q}[x]+\mathbb{R}$.
(These are exactly the Hardy field functions a for which $(a(n))_{n}$ is equidistributed on \mathbb{T}, Boshernitzan, 1994.)

Combinations of Hardy and polynomial functions

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}:\left(x_{0},+\infty\right) \rightarrow \mathbb{R}$ be Hardy field functions. Suppose that the a_{i} 's and their differences are in $\mathcal{T}+\mathcal{P}$ and every non-trivial linear combination of them with at least one irrational coefficient, stays logarithmically away from rational polynomials. Then, the sequences $\left(\left[a_{1}(n)\right]\right)_{n}, \ldots,\left(\left[a_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Combinations of Hardy and polynomial functions

Theorem (Frantzikinakis, 2021)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}:\left(x_{0},+\infty\right) \rightarrow \mathbb{R}$ be Hardy field functions. Suppose that the a_{i} 's and their differences are in $\mathcal{T}+\mathcal{P}$ and every non-trivial linear combination of them with at least one irrational coefficient, stays logarithmically away from rational polynomials. Then, the sequences $\left(\left[a_{1}(n)\right]\right)_{n}, \ldots,\left(\left[a_{k}(n)\right]\right)_{n}$ are (totally) jointly ergodic for every totally ergodic system.

Theorem (K.-Sun, 2023)

For $k \in \mathbb{N}$, let $a_{1}, \ldots, a_{k}:\left(x_{0},+\infty\right) \rightarrow \mathbb{R}$ be Hardy field functions. Suppose that the a_{i} 's and their differences are in $\mathcal{T}+\mathcal{P}$ and every non-trivial linear combination of them with irrational or zero coefficients, stays logarithmically away from rational polynomials. Then, the sequences $\left(\left[a_{1}(n)\right]\right)_{n}, \ldots,\left(\left[a_{k}(n)\right]\right)_{n}$ are jointly ergodic for every totally ergodic system.

Thank you for your attention!

