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Multiple ergodic averages with polynomial iterates

We will study L2 limits of averages

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk

where

1 (X ,X , µ) is a standard probability space;

2 T1, . . . ,Tk are commuting invertible measure-preserving
transformations acting on X
(I will refer to (X ,X , µ,T1, . . . ,Tk) simply as system);

3 p1, . . . , pk ∈ Z[n] are polynomials with pi (0) = 0 (we call such
polynomials integral);

4 f1, . . . , fk ∈ L∞(µ).
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Polynomial Szemerédi theorem (a special case)

Theorem (Bergelson & Leibman 1996)

Let p1, . . . , pk be integral polynomials and (X ,X , µ,T1, . . . ,Tk) be a system.
Suppose that µ(A) > 0. Then

lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T
−p1(n)
1 A ∩ · · · ∩ T

−pk (n)
k A) > 0.

Corollary

Let p1, . . . , pk be integral polynomials and v1, . . . , vk ∈ Zd . Then each dense
subset of Zd contains a polynomial progression of the form

x , x + v1p1(n), . . . , x + vkpk(n)

with n 6= 0.

For instance, each dense subset on Z2 contains

(x1, x2), (x1 + n, x2), (x1, x2 + n2)

for some n 6= 0.
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Norm convergence

Theorem (Walsh 2012)

Let (X ,X , µ,T1, . . . ,Tk) be a system, p1, . . . , pk be integral
polynomials and f1, . . . , fk ∈ L∞(µ). Then

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk

converges in L2.

What can we say about the limit?

Borys Kuca



A representative question: joint ergodicity

For instance, when are the polynomials jointly ergodic for the
system, i.e.

lim
N→∞

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk =

∫
f1 · · ·

∫
fk

for all functions f1, . . . , fk?
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Two ways to describe the limit

We want to find

1 a factor (T -invariant σ-algebra) Yj ;
2 or a seminorm ‖·‖j such that

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk → 0

if E(fj |Yj) = 0 or ‖fj‖j = 0.

If this happens, we say that Yj or ‖·‖j controls/is characteristic
for the average (at the index j).

The factor approach dates back to Furstenberg’s multiple
recurrence result.
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Host-Kra seminorms

There exist a family of seminorms ||| · |||s,T on L∞(µ) satisfying

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T nf1 · · ·T `nf`

∥∥∥∥∥
L2(µ)

≤ C` min
j=1,...,`

|||fj |||`,T

for all 1-bounded functions f1, . . . , f`.

Similarly, for pairwise distinct integral polynomials p1, . . . , p`, there
exists s such that

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T p1(n)f1 · · ·T p`(n)f`

∥∥∥∥∥
L2(µ)

= 0

whenever |||fj |||s,T = 0 for some s ∈ N.

These Host-Kra seminorms satisfy the monotonicity property

|||f |||1,T ≤ |||f |||2,T ≤ |||f |||3,T ≤ . . . .
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Host-Kra factors

There exist factors Zs(T ) such that

|||f |||s,T = 0 ⇐⇒ E(f |Zs−1(T )) = 0.

Properties of the factors:

The factor Z0(T ) is the invariant factor I(T );

In particular, if T ergodic, then E(f |Z0(T )) =
∫
f ;

If T is ergodic, then Z1(T ) is the Kronecker factor;

For s ∈ N and T ergodic, Zs(T ) is an inverse limit of s-step
nilsystems (Host-Kra structure theorem).

Borys Kuca



Rational Kronecker factor

We also need the rational Kronecker factor:

Krat(T ) = 〈A ∈ X : T−rA = A for some r > 0〉
= I(T ) ∨ I(T 2) ∨ I(T 3) ∨ · · · .

For instance,

1 For Tx = x +
√

2 on T, we have

E(f |Krat(T )) = E(f |I(T )) =

∫
f ;

2 For Tx = x + 1 on Z/NZ, we have

E(f |Krat(T )) = f whereas E(f |I(T )) =

∫
f .

Hence I(T ) = Z0(T ) ⊂ Krat(T ) ⊂ Z1(T ) ⊂ Z2(T ) ⊂ · · ·
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Single averages

If T is totally ergodic (i.e. T ,T 2, . . . are ergodic), then

1

N

N∑
n=1

T p(n)f →
∫

f ;

For general T , we have

1

N

N∑
n=1

T p(n)f → 0 if E(f |Krat(T )) = 0.

On the combinatorial side, this corresponds to the fact that if
f0, f1 : Z→ C are 1-bounded and compactly supported and

∑
x∈Z

1

N

N∑
n=1

f0(x)f1(x + p(n))

is “large”, then f1 has a large average on arithmetic progressions
of small common difference and length ∼ Ndeg p.
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Multiple ergodic averages of a single transformation

For distinct p1, . . . , pk , we know a lot about the L2 limits of

1

N

N∑
n=1

T p1(n)f1 · · ·T pk(n)fk :

1 They are always controlled by some Host-Kra seminorm (Host
& Kra 2005);

2 If p1, . . . , pk are linearly independent, then Krat(T ) is
characteristic (Frantzikinakis & Kra 2006);

3 If p1, . . . , pk are “quadratically independent”, then Z1(T )
is characteristic (K. 2022);

4 When T is weakly mixing, we have

lim
N→∞

1

N

N∑
n=1

T p1(n)f1 · · ·T pk(n)fk =

∫
f1 · · ·

∫
fk

for all distinct polynomials (Bergelson 1987).
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Summary of our results

For commuting T1, . . . ,Tk and integral p1, . . . , pk , we examine the
L2 limits of

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk ,

proving:

1 Limiting formulas when p1, . . . , pk are linearly independent or
T is weak mixing;

2 Optimal multiple recurrence results;

3 Control by Host-Kra seminorms in most cases of interest;

4 Nil + null decomposition for multicorrelation sequence.
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Linearly independent polynomials

Theorem (Frantzikinakis & K. 2022)

Let p1, . . . , pk be linearly independent integral polynomials.

1 If T1, . . . ,Tk are totally ergodic, then

lim
N→∞

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk =

∫
f1 · · ·

∫
fk .

2 For general commuting T1, . . . ,Tk , the factors Krat(Tj) are
characteristic.

Part (1) only known before for distinct degree polynomials (due
to Chu, Frantzikinakis & Host 2011).

Not even previously known for

lim
N→∞

1

N

N∑
n=1

T n2
1 f1 · T n2+n

2 f2.
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Optimal multiple recurrence

Corollary (Frantzikinakis & K. 2022)

1 If p1, . . . , pk are linearly independent integral polynomials,
then for every A ⊂ X and ε > 0, we have

µ(A ∩ T
−p1(n)
1 A ∩ · · · ∩ T

−pk (n)
k A) ≥ µ(A)k+1 − ε

for a syndetic set of n.

2 Likewise, for every B ⊂ Zd , directions v1, . . . , vk ∈ Zd and
ε > 0, we have

d(B ∩ (B − v1p1(n)) ∩ · · · ∩ (B − vkpk(n))) ≥ d(B)k+1 − ε

for a syndetic set of n.
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Proof components

Our proof uses two main properties of linearly independent
polynomials:

1 Equidistibution property: for every α1, . . . , αk ∈ R not all
rational and any linearly indepdendent integral polynomials
p1, . . . , pk ,

α1p1(n) + · · ·+ αkpk(n)

is equidistributed in T; in particular, we have

lim
N→∞

1

N

N∑
n=1

e(α1p1(n) + · · ·+ αkpk(n)) = 0.

2 Seminorm estimates for the limits

lim
N→∞

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk .
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Seminorm estimates for commuting transformations

Theorem (Frantzikinakis & K. 2022)

Let p1, . . . , pk be pairwise linearly independent. There exists
s ∈ N such that for every system, we have

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk

∥∥∥∥∥
L2(µ)

= 0

whenever |||fi |||s,Ti
= 0 for some i .

Previously, this was only known for distinct degree polynomials.

It was not even known for

lim
N→∞

1

N

N∑
n=1

T n2
1 f1 · T n2+n

2 f2.
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Corollary for weakly mixing transformations

Corollary (Frantzikinakis & K. 2022)

Let p1, . . . , pk be pairwise linearly independent. For every
system of weakly mixing transformations, we have

lim
N→∞

1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pk (n)

k fk =

∫
f1 · · ·

∫
fk ,

This is because for a weakly mixing transformation T , we have

|||f |||s,T =

∣∣∣∣∫ f

∣∣∣∣
for any s ∈ N and bounded f .
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Seminorm control for pairwise dependent polynomials

What about an average like

lim
N→∞

1

N

N∑
n=1

T n2
1 f1 · T n2

2 f2 · T n2+n
3 f3?

We get seminorm control whenever

I(T−11 T2) = I(T1) ∩ I(T2)

(so in particular when T−11 T2 is ergodic).
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We show that

lim
N→∞

1

N

N∑
n=1

T n2f · Sn2+ng =

∫
f ·
∫

g

whenever T , S are totally ergodic and commute.

1 Box seminorm control;

2 Host-Kra seminorm control;

3 Degree lowering.
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Box seminorms

For T ,S , we define

|||f |||4T ,S = lim
N→∞

1

N

N∑
n=1

lim
M→∞

1

M

M∑
m=1

∫
f · T nf · Smf · T nSmf .

We can similarly define |||f |||T1,...,Ts .
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From box seminorms to Host-Kra seminorms

Donoso, Ferré-Moragues, Koutsogiannis and Sun showed that

lim
N→∞

1

N

N∑
n=1

T n2f · Sn2+ng = 0 (1)

whenever |||g |||S ,...,S ,T−1S ,...,T−1S = 0.

Our input: (1) holds whenever |||g |||s,S = 0 for some s ∈ N via a
new seminorm smoothing technique.

This stronger seminorm control is necessary for the degree lowering
argument.
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Seminorm smoothing

A ping-pong strategy: we pass information from g to f and then
back to g .

Suppose for simplicity that we have |||g |||T−1S control, i.e.

lim
N→∞

1

N

N∑
n=1

T n2f · Sn2+ng = 0 whenever |||g |||T−1S = 0.

1 (Ping) Control by |||f |||T ,...,T ;

2 (Pong) Control by |||g |||S ,...,S .
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Ping

Suppose that

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T n2 f · Sn2+ng

∥∥∥∥∥
2

> 0.

Let h = limN→∞
1
N

∑N
n=1 T

n2 f · Sn2+ng and

G = lim
N→∞

1

N

N∑
n=1

S−(n2+n)h · S−(n2+n)T n2 f ,

so that

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T n2 f · Sn2+ng

∥∥∥∥∥
2

2

=

∫
g · G .

By the Cauchy-Schwarz and definition of G , we have

‖G‖22 = lim
N→∞

∫
h ·

1

N

N∑
n=1

T n2 f · Sn2+nG > 0.

and so

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T n2 f · Sn2+nG

∥∥∥∥∥
2

> 0.
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Recall the assumption that

lim
N→∞

1

N

N∑
n=1

T n2 f · Sn2+ng = 0 whenever |||g |||T−1S = 0

for all g. In particular,

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T n2 f · Sn2+ng

∥∥∥∥∥
2

> 0

⇒ lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T n2 f · Sn2+nG

∥∥∥∥∥
2

> 0⇒ |||G |||T−1S > 0.

Importantly, we have

|||G |||2
T−1S

=

∫
G · u > 0

for a T−1S-invariant function u (i.e. Su = Tu); hence

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T n2 f · Sn2+nu

∥∥∥∥∥
2

= lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

T n2 f · T n2+nu

∥∥∥∥∥
2

> 0.

This we know how to handle. We get |||f |||s,T > 0 for some s ∈ N.
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So in the ping step, we started with averages of the form

lim
N→∞

1

N

N∑
n=1

T n2f · Sn2+ng

and ended up with averages

lim
N→∞

1

N

N∑
n=1

T n2f · T n2+nu

that are simpler to handle.

In the pong step, we similarly reduce to averages

lim
N→∞

1

N

N∑
n=1

T n2(Ds,T f ) · Sn2+ng

that we know how to handle (Ds,T f is the dual function
associated with |||f |||s,T ).
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Longer averages

For longer averages such as

lim
N→∞

1

N

N∑
n=1

T n2f · Sn2+ng · Rn2+2nh,

we induct on complexity.

In the ping step, we reduce to T ,S , S , then S ,S , S (same
transformation = base case).

In the pong step, we replace functions by dual functions (these
can be removed by van der Corput).
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Adaptations to combinatorics

Theorem (K. 2023)

Let p1, . . . , pk be linearly independent integral polynomials and
v1, . . . , vk ∈ Zd . Then each subset of (Z/NZ)d (N prime) lacking
a polynomial progression of the form

m, m + v1p1(n), . . . , m + vkpk(n)

with n 6= 0 has at most O(Nd−c) elements.

This jointly generalises results of Peluse (for d = 1) and myself
(for distinct degree polynomials).

This extension uses a quantitative concatenation result for box
norms of independent interest.
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