Multiple ergodic averages along polynomials for systems of commuting transformations

Borys Kuca
University of Crete

Joint work with Nikos Frantzikinakis

Multiple ergodic averages with polynomial iterates

We will study L^{2} limits of averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}
$$

where
(1) (X, \mathcal{X}, μ) is a standard probability space;
(2) T_{1}, \ldots, T_{k} are commuting invertible measure-preserving transformations acting on X
(I will refer to ($X, \mathcal{X}, \mu, T_{1}, \ldots, T_{k}$) simply as system);
(3) $p_{1}, \ldots, p_{k} \in \mathbb{Z}[n]$ are polynomials with $p_{i}(0)=0$ (we call such polynomials integral);
(c) $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.

Polynomial Szemerédi theorem (a special case)

Theorem (Bergelson \& Leibman 1996)

Let p_{1}, \ldots, p_{k} be integral polynomials and $\left(X, \mathcal{X}, \mu, T_{1}, \ldots, T_{k}\right)$ be a system. Suppose that $\mu(A)>0$. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T_{1}^{-p_{1}(n)} A \cap \cdots \cap T_{k}^{-p_{k}(n)} A\right)>0
$$

Corollary

Let p_{1}, \ldots, p_{k} be integral polynomials and $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$. Then each dense subset of \mathbb{Z}^{d} contains a polynomial progression of the form

$$
x, x+v_{1} p_{1}(n), \ldots, x+v_{k} p_{k}(n)
$$

with $n \neq 0$.
For instance, each dense subset on \mathbb{Z}^{2} contains

$$
\left(x_{1}, x_{2}\right),\left(x_{1}+n, x_{2}\right),\left(x_{1}, x_{2}+n^{2}\right)
$$

for some $n \neq 0$.

Norm convergence

Theorem (Walsh 2012)

Let $\left(X, \mathcal{X}, \mu, T_{1}, \ldots, T_{k}\right)$ be a system, p_{1}, \ldots, p_{k} be integral polynomials and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$. Then

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \ldots T_{k}^{p_{k}(n)} f_{k}
$$

converges in L^{2}.

What can we say about the limit?

A representative question: joint ergodicity

For instance, when are the polynomials jointly ergodic for the system, i.e.

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}=\int f_{1} \cdots \int f_{k}
$$

for all functions f_{1}, \ldots, f_{k} ?

We want to find
(1) a factor (T-invariant σ-algebra) \mathcal{Y}_{j};
(2) or a seminorm $\|\cdot\|_{j}$ such that

$$
\begin{gathered}
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k} \rightarrow 0 \\
\text { if } \mathbb{E}\left(f_{j} \mid \mathcal{Y}_{j}\right)=0 \text { or }\left\|f_{j}\right\|_{j}=0 .
\end{gathered}
$$

If this happens, we say that \mathcal{Y}_{j} or $\|\cdot\|_{j}$ controls/is characteristic for the average (at the index j).

The factor approach dates back to Furstenberg's multiple recurrence result.

Host-Kra seminorms

There exist a family of seminorms $\|\cdot\|_{s, T}$ on $L^{\infty}(\mu)$ satisfying

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdots T^{\ell n} f_{\ell}\right\|_{L^{2}(\mu)} \leq C_{\ell} \min _{j=1, \ldots, \ell^{\prime}}\left\|f_{j}\right\| \ell, T
$$

for all 1 -bounded functions f_{1}, \ldots, f_{ℓ}.
Similarly, for pairwise distinct integral polynomials p_{1}, \ldots, p_{ℓ}, there exists s such that

whenever $\left\|f_{j}\right\|_{s, T}=0$ for some $s \in \mathbb{N}$.
These Host-Kra seminorms satisfy the monotonicity property

$$
\|f\|_{1, T} \leq\|f\|_{2, T} \leq\|f\|_{3, T} \leq .
$$

Host-Kra seminorms

There exist a family of seminorms $\|\cdot\|_{s, T}$ on $L^{\infty}(\mu)$ satisfying

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdots T^{\ell n} f_{\ell}\right\|_{L^{2}(\mu)} \leq C_{\ell} \min _{j=1, \ldots, \ell^{\prime}}\left\|f_{j}\right\| \ell, T
$$

for all 1-bounded functions f_{1}, \ldots, f_{ℓ}.
Similarly, for pairwise distinct integral polynomials p_{1}, \ldots, p_{ℓ}, there exists s such that

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} f_{1} \cdots T^{p_{\ell}(n)} f_{\ell}\right\|_{L^{2}(\mu)}=0
$$

whenever $\left\|f_{j}\right\|_{s, T}=0$ for some $s \in \mathbb{N}$.
These Host-Kra seminorms satisfy the monotonicity property

$$
\|f\|_{1, T} \leq\|f\|_{2, T} \leq\|f\|_{3, T} \leq \ldots
$$

Host-Kra factors

There exist factors $\mathcal{Z}_{s}(T)$ such that

$$
\|f\|_{s, T}=0 \Longleftrightarrow \mathbb{E}\left(f \mid \mathcal{Z}_{s-1}(T)\right)=0
$$

Properties of the factors:

- The factor $\mathcal{Z}_{0}(T)$ is the invariant factor $\mathcal{I}(T)$;
- In particular, if T ergodic, then $\mathbb{E}\left(f \mid \mathcal{Z}_{0}(T)\right)=\int f$;
- If T is ergodic, then $\mathcal{Z}_{1}(T)$ is the Kronecker factor;
- For $s \in \mathbb{N}$ and T ergodic, $\mathcal{Z}_{s}(T)$ is an inverse limit of s-step nilsystems (Host-Kra structure theorem).

Rational Kronecker factor

We also need the rational Kronecker factor:

$$
\begin{aligned}
\mathcal{K}_{\mathrm{rat}}(T) & =\left\langle A \in \mathcal{X}: T^{-r} A=A \text { for some } r>0\right\rangle \\
& =\mathcal{I}(T) \vee \mathcal{I}\left(T^{2}\right) \vee \mathcal{I}\left(T^{3}\right) \vee \cdots .
\end{aligned}
$$

For instance,
(1) For $T x=x+\sqrt{2}$ on \mathbb{T}, we have

$$
\mathbb{E}\left(f \mid \mathcal{K}_{\mathrm{rat}}(T)\right)=\mathbb{E}(f \mid \mathcal{I}(T))=\int f
$$

(2) For $T x=x+1$ on $\mathbb{Z} / N \mathbb{Z}$, we have

$$
\mathbb{E}\left(f \mid \mathcal{K}_{\mathrm{rat}}(T)\right)=f \quad \text { whereas } \quad \mathbb{E}(f \mid \mathcal{I}(T))=\int f
$$

Hence $\mathcal{I}(T)=\mathcal{Z}_{0}(T) \subset \mathcal{K}_{\text {rat }}(T) \subset \mathcal{Z}_{1}(T) \subset \mathcal{Z}_{2}(T) \subset \cdots$

Single averages

If T is totally ergodic (i.e. T, T^{2}, \ldots are ergodic), then

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p(n)} f \rightarrow \int f
$$

For general T, we have

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p(n)} f \rightarrow 0 \quad \text { if } \quad \mathbb{E}\left(f \mid \mathcal{K}_{\mathrm{rat}}(T)\right)=0
$$

On the combinatorial side, this corresponds to the fact that if $f_{0}, f_{1}: \mathbb{Z} \rightarrow \mathbb{C}$ are 1-bounded and compactly supported and

is "large", then f_{1} has a large average on arithmetic progressions
of small common difference and length $\sim N^{\operatorname{deg} p}$.

Single averages

If T is totally ergodic (i.e. T, T^{2}, \ldots are ergodic), then

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p(n)} f \rightarrow \int f
$$

For general T, we have

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p(n)} f \rightarrow 0 \quad \text { if } \quad \mathbb{E}\left(f \mid \mathcal{K}_{\mathrm{rat}}(T)\right)=0
$$

On the combinatorial side, this corresponds to the fact that if $f_{0}, f_{1}: \mathbb{Z} \rightarrow \mathbb{C}$ are 1-bounded and compactly supported and

$$
\sum_{x \in \mathbb{Z}} \frac{1}{N} \sum_{n=1}^{N} f_{0}(x) f_{1}(x+p(n))
$$

is "large", then f_{1} has a large average on arithmetic progressions of small common difference and length $\sim N^{\operatorname{deg} p}$.

Multiple ergodic averages of a single transformation

For distinct p_{1}, \ldots, p_{k}, we know a lot about the L^{2} limits of

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} f_{1} \cdots T^{p_{k}(n)} f_{k}:
$$

(1) They are always controlled by some Host-Kra seminorm (Host \& Kra 2005);
(2) If p_{1}, \ldots, p_{k} are linearly independent, then $\mathcal{K}_{\text {rat }}(T)$ is characteristic (Frantzikinakis \& Kra 2006);
(3) If p_{1}, \ldots, p_{k} are "quadratically independent", then $\mathcal{Z}_{1}(T)$ is characteristic (K. 2022);
(9) When T is weakly mixing, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} f_{1} \ldots T^{p_{k}(n)} f_{k}=\int f_{1} \ldots \int f_{k}
$$

for all distinct polynomials (Bergelson 1987).

For commuting T_{1}, \ldots, T_{k} and integral p_{1}, \ldots, p_{k}, we examine the L^{2} limits of

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}
$$

proving:
(1) Limiting formulas when p_{1}, \ldots, p_{k} are linearly independent or T is weak mixing;
(2) Optimal multiple recurrence results;
(3) Control by Host-Kra seminorms in most cases of interest;
(9) Nil + null decomposition for multicorrelation sequence.

Linearly independent polynomials

Theorem (Frantzikinakis \& K. 2022)

Let p_{1}, \ldots, p_{k} be linearly independent integral polynomials.
(1) If T_{1}, \ldots, T_{k} are totally ergodic, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \ldots T_{k}^{p_{k}(n)} f_{k}=\int f_{1} \cdots \int f_{k}
$$

(2) For general commuting T_{1}, \ldots, T_{k}, the factors $\mathcal{K}_{\text {rat }}\left(T_{j}\right)$ are characteristic.

Part (1) only known before for distinct degree polynomials (due to Chu, Frantzikinakis \& Host 2011).
Not even previously known for

Linearly independent polynomials

Theorem (Frantzikinakis \& K. 2022)

Let p_{1}, \ldots, p_{k} be linearly independent integral polynomials.
(1) If T_{1}, \ldots, T_{k} are totally ergodic, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \ldots T_{k}^{p_{k}(n)} f_{k}=\int f_{1} \cdots \int f_{k}
$$

(2) For general commuting T_{1}, \ldots, T_{k}, the factors $\mathcal{K}_{\text {rat }}\left(T_{j}\right)$ are characteristic.

Part (1) only known before for distinct degree polynomials (due to Chu, Frantzikinakis \& Host 2011).
Not even previously known for

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{n^{2}} f_{1} \cdot T_{2}^{n^{2}+n} f_{2}
$$

Optimal multiple recurrence

Corollary (Frantzikinakis \& K. 2022)

(1) If p_{1}, \ldots, p_{k} are linearly independent integral polynomials, then for every $A \subset X$ and $\varepsilon>0$, we have

$$
\mu\left(A \cap T_{1}^{-p_{1}(n)} A \cap \cdots \cap T_{k}^{-p_{k}(n)} A\right) \geq \mu(A)^{k+1}-\varepsilon
$$

for a syndetic set of n.
(2) Likewise, for every $B \subset \mathbb{Z}^{d}$, directions $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$ and $\varepsilon>0$, we have

$$
\bar{d}\left(B \cap\left(B-v_{1} p_{1}(n)\right) \cap \cdots \cap\left(B-v_{k} p_{k}(n)\right)\right) \geq \bar{d}(B)^{k+1}-\varepsilon
$$

for a syndetic set of n.

Our proof uses two main properties of linearly independent polynomials:
(1) Equidistibution property: for every $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ not all rational and any linearly indepdendent integral polynomials p_{1}, \ldots, p_{k},

$$
\alpha_{1} p_{1}(n)+\cdots+\alpha_{k} p_{k}(n)
$$

is equidistributed in \mathbb{T}; in particular, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(\alpha_{1} p_{1}(n)+\cdots+\alpha_{k} p_{k}(n)\right)=0
$$

(2) Seminorm estimates for the limits

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}
$$

Our proof uses two main properties of linearly independent polynomials:
(1) Equidistibution property: for every $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ not all rational and any linearly indepdendent integral polynomials p_{1}, \ldots, p_{k},

$$
\alpha_{1} p_{1}(n)+\cdots+\alpha_{k} p_{k}(n)
$$

is equidistributed in \mathbb{T}; in particular, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(\alpha_{1} p_{1}(n)+\cdots+\alpha_{k} p_{k}(n)\right)=0
$$

(2) Seminorm estimates for the limits

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}
$$

Seminorm estimates for commuting transformations

Theorem (Frantzikinakis \& K. 2022)

Let p_{1}, \ldots, p_{k} be pairwise linearly independent. There exists $s \in \mathbb{N}$ such that for every system, we have

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}\right\|_{L^{2}(\mu)}=0
$$

whenever $\left\|f_{i}\right\|_{s, T_{i}}=0$ for some i.

Previously, this was only known for distinct degree polynomials. It was not even known for

Seminorm estimates for commuting transformations

Theorem (Frantzikinakis \& K. 2022)

Let p_{1}, \ldots, p_{k} be pairwise linearly independent. There exists $s \in \mathbb{N}$ such that for every system, we have

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}\right\|_{L^{2}(\mu)}=0
$$

whenever $\left\|f_{i}\right\|_{s, T_{i}}=0$ for some i.

Previously, this was only known for distinct degree polynomials.
It was not even known for

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{n^{2}} f_{1} \cdot T_{2}^{n^{2}+n} f_{2}
$$

Corollary for weakly mixing transformations

Corollary (Frantzikinakis \& K. 2022)

Let p_{1}, \ldots, p_{k} be pairwise linearly independent. For every system of weakly mixing transformations, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdots T_{k}^{p_{k}(n)} f_{k}=\int f_{1} \cdots \int f_{k},
$$

This is because for a weakly mixing transformation T, we have

$$
\|f\|_{s, T}=\left|\int f\right|
$$

for any $s \in \mathbb{N}$ and bounded f.

Seminorm control for pairwise dependent polynomials

What about an average like

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{n^{2}} f_{1} \cdot T_{2}^{n^{2}} f_{2} \cdot T_{3}^{n^{2}+n} f_{3} ?
$$

We get seminorm control whenever

$$
\mathcal{I}\left(T_{1}^{-1} T_{2}\right)=\mathcal{I}\left(T_{1}\right) \cap \mathcal{I}\left(T_{2}\right)
$$

(so in particular when $T_{1}^{-1} T_{2}$ is ergodic).

We show that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g=\int f \cdot \int g
$$

whenever T, S are totally ergodic and commute.
(1) Box seminorm control;
(2) Host-Kra seminorm control;
(3) Degree lowering.

Box seminorms

For T, S, we define

$$
\|f\|_{T, S}^{4}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \lim _{M \rightarrow \infty} \frac{1}{M} \sum_{m=1}^{M} \int f \cdot T^{n} \bar{f} \cdot S^{m} \bar{f} \cdot T^{n} S^{m} f .
$$

We can similarly define $\|f\|_{T_{1}, \ldots, T_{s}}$.

Donoso, Ferré-Moragues, Koutsogiannis and Sun showed that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g=0 \tag{1}
\end{equation*}
$$

whenever $\|g\|_{S, \ldots, S, T^{-1} S, \ldots, T^{-1} S}=0$.
Our input: (1) holds whenever $\|g\|_{s, S}=0$ for some $s \in \mathbb{N}$ via a new seminorm smoothing technique.

This stronger seminorm control is necessary for the degree lowering argument.

Seminorm smoothing

A ping-pong strategy: we pass information from g to f and then back to g.

Suppose for simplicity that we have $\|g\|_{T^{-1} S}$ control, i.e.

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g=0 \quad \text { whenever } \quad\|g\|_{T^{-1} S}=0
$$

(1) (Ping) Control by $\|f\|_{T, \ldots, T}$;
(2) (Pong) Control by $\|g\|_{S, \ldots, S \text {. }}$

Suppose that

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g\right\|_{2}>0
$$

Let $h=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g$ and

$$
G=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} S^{-\left(n^{2}+n\right)} \bar{h} \cdot S^{-\left(n^{2}+n\right)} T^{n^{2}} \bar{f}
$$

so that

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g\right\|_{2}^{2}=\int g \cdot G
$$

By the Cauchy-Schwarz and definition of G, we have

$$
\|G\|_{2}^{2}=\lim _{N \rightarrow \infty} \int h \cdot \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} G>0
$$

and so

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} G\right\|_{2}>0
$$

Recall the assumption that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g=0 \quad \text { whenever } \quad\|g\|_{T^{-1} S}=0
$$

for all g. In particular,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g\right\|_{2}>0 \\
& \Rightarrow \lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} G\right\|_{2}>0 \Rightarrow\|G\|_{T-1} S>0
\end{aligned}
$$

Importantly, we have

$$
\|G\|_{T^{-1} S}^{2}=\int G \cdot u>0
$$

for a $T^{-1} S$-invariant function u (i.e. $S u=T u$); hence

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} u\right\|_{2}=\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot T^{n^{2}+n} u\right\|_{2}>0
$$

This we know how to handle. We get $\|f\|_{s, T}>0$ for some $s \in \mathbb{N}$.

So in the ping step, we started with averages of the form

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g
$$

and ended up with averages

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot T^{n^{2}+n} u
$$

that are simpler to handle.
In the pong step, we similarly reduce to averages

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}}\left(\mathcal{D}_{s, T} f\right) \cdot S^{n^{2}+n} g
$$

that we know how to handle ($\mathcal{D}_{s, T} f$ is the dual function associated with $\left.\|f\|_{s, T}\right)$.

Longer averages

For longer averages such as

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f \cdot S^{n^{2}+n} g \cdot R^{n^{2}+2 n} h
$$

we induct on complexity.
In the ping step, we reduce to T, S, S, then S, S, S (same transformation $=$ base case).

In the pong step, we replace functions by dual functions (these can be removed by van der Corput).

Adaptations to combinatorics

Theorem (K. 2023)

Let p_{1}, \ldots, p_{k} be linearly independent integral polynomials and $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$. Then each subset of $(\mathbb{Z} / N \mathbb{Z})^{d}$ (N prime) lacking a polynomial progression of the form

$$
m, m+v_{1} p_{1}(n), \ldots, m+v_{k} p_{k}(n)
$$

with $n \neq 0$ has at most $O\left(N^{d-c}\right)$ elements.

This jointly generalises results of Peluse (for $d=1$) and myself (for distinct degree polynomials).

This extension uses a quantitative concatenation result for box norms of independent interest.

