A non-flag arithmetic regularity lemma and counting lemma

Daniel Altman

5 June 2023

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma

3

Notation and the arithmetic regularity lemma

• Let
$$T_{4AP}(f) := \mathbb{E}_{x,d}f(x)f(x+d)f(x+2d)f(x+3d)$$
, where

•
$$[N] := \{1, 2, \dots, N\},\$$

•
$$\mathbb{E}_{x,d} := \frac{1}{N^2} \sum_{x,d \in [N]}$$
,

2

Notation and the arithmetic regularity lemma

- Let $T_{4AP}(f) := \mathbb{E}_{x,d}f(x)f(x+d)f(x+2d)f(x+3d)$, where
 - $[N] := \{1, 2, \dots, N\},\$
 - $\mathbb{E}_{x,d} := \frac{1}{N^2} \sum_{x,d \in [N]}$,
 - $f: \mathbb{N} \to \mathbb{C}$ are 1-bounded.
- In general, let $\Psi = (\psi_1, \dots, \psi_t)$, each a linear form mapping $\mathbb{Z}^D \to \mathbb{Z}$, define $T_{\Psi}(f) := \mathbb{E}_{x_1,\dots,x_D} \prod_{i=1}^t f(\psi_i(x_1,\dots,x_D))$. (e.g. t = 4, D = 2, $\psi_1(x,d) = x, \psi_2(x,d) = x+d, \psi_3(x,d) = x+2d, \psi_4(x,d) = x+3d$)

Notation and the arithmetic regularity lemma

- Let $T_{4AP}(f) := \mathbb{E}_{x,d}f(x)f(x+d)f(x+2d)f(x+3d)$, where
 - $[N] := \{1, 2, \dots, N\},\$
 - $\mathbb{E}_{x,d} := \frac{1}{N^2} \sum_{x,d \in [N]}$,
 - $f: \mathbb{N} \to \mathbb{C}$ are 1-bounded.
- In general, let $\Psi = (\psi_1, \dots, \psi_t)$, each a linear form mapping $\mathbb{Z}^D \to \mathbb{Z}$, define $T_{\Psi}(f) := \mathbb{E}_{x_1,\dots,x_D} \prod_{i=1}^t f(\psi_i(x_1,\dots,x_D))$. (e.g. t = 4, D = 2, $\psi_1(x,d) = x, \psi_2(x,d) = x+d, \psi_3(x,d) = x+2d, \psi_4(x,d) = x+3d$)

Theorem (Arithmetic regularity lemma, very informally)

Let $f:[N]\to \mathbb{C}$ be 1-bounded. Then there exists a finite complexity nilsequence f_{nil} such that

$$T_{\Psi}(f) \approx T_{\Psi}(f_{\mathsf{nil}}).$$

New goal: understand $T_{\Psi}(f_{nil})$.

-

What is a nilsequence?

 $\frac{\text{Additive/linear characters}}{e(\theta n), \text{ where:}}$

- θn is a 'linear sequence',
- on the simply-connected abelian Lie group ℝ,
- which has cocompact lattice Z,
- and e(·) is a smooth function on ℝ which is automorphic with respect to ℤ.

 $\frac{\text{Polynomial nilsequences}}{F(g(n)\Gamma), \text{ where:}}$

- $g(n) = g_1^n g_2^{n^2} \cdots g_s^{n^s}$ is a polynomial sequence,
- on a simply-connected nilpotent Lie group G,
- which has cocompact lattice Γ,
- and F is a smooth function on G which is automorphic with respect to Γ.

What is a nilsequence?

 $\frac{\text{Additive/linear characters}}{e(\theta n), \text{ where:}}$

- θn is a 'linear sequence',
- on the simply-connected abelian Lie group ℝ,
- which has cocompact lattice Z,
- and e(·) is a smooth function on ℝ which is automorphic with respect to ℤ.

E.g.: $e(\alpha n + \beta n^2 + \theta n^{100})$

 $\frac{\text{Polynomial nilsequences}}{F(g(n)\Gamma), \text{ where:}}$

- $g(n) = g_1^n g_2^{n^2} \cdots g_s^{n^s}$ is a polynomial sequence,
- on a simply-connected nilpotent Lie group G,
- which has cocompact lattice Γ,
- and F is a smooth function on G which is automorphic with respect to Γ.

What is a nilsequence?

 $\frac{\text{Additive/linear characters}}{e(\theta n), \text{ where:}}$

- θn is a 'linear sequence',
- on the simply-connected abelian Lie group ℝ,
- which has cocompact lattice Z,
- and e(·) is a smooth function on ℝ which is automorphic with respect to ℤ.

 $\frac{\text{Polynomial nilsequences}}{F(g(n)\Gamma), \text{ where:}}$

- $g(n) = g_1^n g_2^{n^2} \cdots g_s^{n^s}$ is a polynomial sequence,
- on a simply-connected nilpotent Lie group G,
- which has cocompact lattice Γ,
- and F is a smooth function on G which is automorphic with respect to Γ.

E.g.:
$$e(\alpha n + \beta n^2 + \theta n^{100})$$

E.g.: $G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix}$, $g(n) = \begin{pmatrix} 1 & \alpha & 0 \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & \alpha n & \alpha \beta \binom{n}{2} \\ 0 & 1 & \beta n \\ 0 & 0 & 1 \end{pmatrix}$
...yields... $e(\alpha n \lfloor \beta n \rfloor)$

What is $\mathbb{E}_{n \in [N]} F(g(n)\Gamma)$?

What is
$$\mathbb{E}_{n \in [N]} F(g(n)\Gamma)$$
?

• For
$$\frac{1}{3}n \in \mathbb{R}/\mathbb{Z}$$
:
 $\mathbb{E}_{n \in [N]}F(\frac{1}{3}n) \approx \frac{1}{3}(F(0) + F(1/3) + F(2/3)).$

What is
$$\mathbb{E}_{n \in [N]} F(g(n)\Gamma)$$
?

• For
$$\frac{1}{3}n \in \mathbb{R}/\mathbb{Z}$$
:
 $\mathbb{E}_{n \in [N]}F(\frac{1}{3}n) \approx \frac{1}{3}(F(0) + F(1/3) + F(2/3)).$

• For
$$\sqrt{2}n\in\mathbb{R}/\mathbb{Z}$$
: $\mathbb{E}_{n\in[N]}F(\sqrt{2}n)pprox\int_{\mathbb{R}/\mathbb{Z}}F$

э

What is
$$\mathbb{E}_{n \in [N]} F(g(n)\Gamma)$$
?

• For
$$\frac{1}{3}n \in \mathbb{R}/\mathbb{Z}$$
:
$$\mathbb{E}_{n \in [N]}F(\frac{1}{3}n) \approx \frac{1}{3}(F(0) + F(1/3) + F(2/3)).$$

• For
$$\sqrt{2}n \in \mathbb{R}/\mathbb{Z}$$
:
 $\mathbb{E}_{n \in [N]}F(\sqrt{2}n) \approx \int_{\mathbb{R}/\mathbb{Z}}F.$

• What about $(\sqrt{2}n, \sqrt{2}n)$ in $\mathbb{R}^2/\mathbb{Z}^2$?

What is
$$\mathbb{E}_{n \in [N]} F(g(n)\Gamma)$$
?

• For
$$\frac{1}{3}n \in \mathbb{R}/\mathbb{Z}$$
:
 $\mathbb{E}_{n \in [N]}F(\frac{1}{3}n) \approx \frac{1}{3}(F(0) + F(1/3) + F(2/3)).$

• For
$$\sqrt{2}n \in \mathbb{R}/\mathbb{Z}$$
:
 $\mathbb{E}_{n \in [N]} F(\sqrt{2}n) \approx \int_{\mathbb{R}/\mathbb{Z}} F.$

- What about $(\sqrt{2}n, \sqrt{2}n)$ in $\mathbb{R}^2/\mathbb{Z}^2$?
- What about $(\sqrt{2}n,(\sqrt{2}+\frac{1}{3})n)$ in $\mathbb{R}^2/\mathbb{Z}^2?$

G simply-connected, nilpotent Lie group, Γ cocompact lattice, g(n) polynomial sequence in G.

Theorem (Leibman, Green–Tao)

The sequence $g(n)\Gamma$ equidistributes in G/Γ if and only if, for all nontrivial, continuous homomorphisms $\eta : G \to \mathbb{R}$ which map Γ to \mathbb{Z} , $\eta(g(n)\Gamma)$ is not constant.

G simply-connected, nilpotent Lie group, Γ cocompact lattice, g(n) polynomial sequence in G.

Theorem (Leibman, Green–Tao)

The sequence $g(n)\Gamma$ equidistributes in G/Γ if and only if, for all nontrivial, continuous homomorphisms $\eta : G \to \mathbb{R}$ which map Γ to \mathbb{Z} , $\eta(g(n)\Gamma)$ is not constant.

Corollary

We may factorise $g = \varepsilon g' \gamma$ where $\varepsilon \in G$ is a constant, g' is a polynomial sequence which equidistributes in some subnilmanifold $G'/(G' \cap \Gamma)$ of G, and $\gamma(n)\Gamma$ is periodic.

G simply-connected, nilpotent Lie group, Γ cocompact lattice, g(n) polynomial sequence in G.

Theorem (Leibman, Green–Tao)

The sequence $g(n)\Gamma$ equidistributes in G/Γ if and only if, for all nontrivial, continuous homomorphisms $\eta : G \to \mathbb{R}$ which map Γ to \mathbb{Z} , $\eta(g(n)\Gamma)$ is not constant.

Corollary

We may factorise $g = \varepsilon g' \gamma$ where $\varepsilon \in G$ is a constant, g' is a polynomial sequence which equidistributes in some subnilmanifold $G'/(G' \cap \Gamma)$ of G, and $\gamma(n)\Gamma$ is periodic.

(Think: $(\sqrt{2}n, (\sqrt{2} + \frac{1}{3})n) = (\sqrt{2}, \sqrt{2})n + (0, \frac{1}{3})n.)$

G simply-connected, nilpotent Lie group, Γ cocompact lattice, g(n) polynomial sequence in G.

Theorem (Leibman, Green–Tao)

The sequence $g(n)\Gamma$ equidistributes in G/Γ if and only if, for all nontrivial, continuous homomorphisms $\eta : G \to \mathbb{R}$ which map Γ to \mathbb{Z} , $\eta(g(n)\Gamma)$ is not constant.

Corollary

We may factorise $g = \varepsilon g' \gamma$ where $\varepsilon \in G$ is a constant, g' is a polynomial sequence which equidistributes in some subnilmanifold $G'/(G' \cap \Gamma)$ of G, and $\gamma(n)\Gamma$ is periodic.

(Think: $(\sqrt{2}n, (\sqrt{2} + \frac{1}{3})n) = (\sqrt{2}, \sqrt{2})n + (0, \frac{1}{3})n.)$ Understand $\mathbb{E}_{n \le N} F(g(n)\Gamma)$, by writing $\mathbb{E}_{n \le N} F(g'(n)\gamma(n)\Gamma)$, foliating into subprogressions on which $\gamma(n)\Gamma$ is constant, and then analysing $\int_{G'\gamma_i/\Gamma} Fd\mu.$ (Think: $(\sqrt{2}n, (\sqrt{2} + \frac{1}{3})n)$, on (x, x), (x, x) + (0, 1/3), (x, x) + (0, 2/3).)

æ

• View $f_{nil}(\psi_1(x_1, \ldots, x_D)) \cdots f_{nil}(\psi_t(x_1, \ldots, x_D))$ as a multiparameter nilsequence on G^t/Γ^t with polynomial sequence $g^{\Psi}(x_1, \ldots, x_D) = (g(\psi_1(x_1, \ldots, x_D), \ldots, g(\psi_t(x_1, \ldots, x_D)))$ and automorphic function $F^{\otimes t}$.

- View $f_{nil}(\psi_1(x_1, \ldots, x_D)) \cdots f_{nil}(\psi_t(x_1, \ldots, x_D))$ as a multiparameter nilsequence on G^t/Γ^t with polynomial sequence $g^{\Psi}(x_1, \ldots, x_D) = (g(\psi_1(x_1, \ldots, x_D), \ldots, g(\psi_t(x_1, \ldots, x_D)))$ and automorphic function $F^{\otimes t}$.
- By multiparameter versions of the Leibman/Green–Tao equidistribution theorems g^{Ψ} equidistributes in cosets of a subnilmanifold of G^t/Γ^t .

- View $f_{nil}(\psi_1(x_1, \ldots, x_D)) \cdots f_{nil}(\psi_t(x_1, \ldots, x_D))$ as a multiparameter nilsequence on G^t/Γ^t with polynomial sequence $g^{\Psi}(x_1, \ldots, x_D) = (g(\psi_1(x_1, \ldots, x_D), \ldots, g(\psi_t(x_1, \ldots, x_D)))$ and automorphic function $F^{\otimes t}$.
- By multiparameter versions of the Leibman/Green–Tao equidistribution theorems g^{Ψ} equidistributes in cosets of a subnilmanifold of G^t/Γ^t . Then: $T_{\Psi}(f) \approx T_{\Psi}(f_{nil}) \approx \mathbb{E}_{subprogs} \int_{G^{(g,\Psi)} \gamma_i/\Gamma^t} F^{\otimes t}$.

- View $f_{nil}(\psi_1(x_1, \ldots, x_D)) \cdots f_{nil}(\psi_t(x_1, \ldots, x_D))$ as a multiparameter nilsequence on G^t/Γ^t with polynomial sequence $g^{\Psi}(x_1, \ldots, x_D) = (g(\psi_1(x_1, \ldots, x_D), \ldots, g(\psi_t(x_1, \ldots, x_D)))$ and automorphic function $F^{\otimes t}$.
- By multiparameter versions of the Leibman/Green–Tao equidistribution theorems g^{Ψ} equidistributes in cosets of a subnilmanifold of G^t/Γ^t . Then: $T_{\Psi}(f) \approx T_{\Psi}(f_{nil}) \approx \mathbb{E}_{subprogs} \int_{G^{(g,\Psi)} \sim (/\Gamma^t)} F^{\otimes t}$.
- New goal: describe the subprogressions and $G^{(g,\Psi)}/\Gamma^t$ given g, Ψ . What properties does $G^{(g,\Psi)}/\Gamma^t$ have?

Where does $g^{\Psi}(\mathbf{x}) := (g(\psi_1(\mathbf{x})), \cdots, g(\psi_t(\mathbf{x}))) = g_1^{\Psi(x)} g_2^{\Psi(x)^2} \cdots g_s^{\Psi(x)^s}$ distribute in G^t/Γ^t ?

3

Where does $g^{\Psi}(\mathbf{x}) := \overline{(g(\psi_1(\mathbf{x})), \cdots, g(\psi_t(\mathbf{x})))} = g_1^{\Psi(\mathbf{x})} g_2^{\Psi(\mathbf{x})^2} \cdots g_s^{\Psi(\mathbf{x})^s}$ distribute in G^t/Γ^t ?

• Definition: Let V^i be the smallest vector space containing $\Psi(\mathbf{x})^i$.

•
$$\Psi(x,d) = (x, x + d, x + 2d, x + 3d) = (1,1,1,1)x + (0,1,2,3)d$$
.
Then $V = \text{span}((1,1,1,1), (0,1,2,3))$, and
 $V^2 = \text{span}((1,1,1,1), (0,1,2,3), (0,1,4,9))$. Also $V^3 = \mathbb{R}^4$.

3

Where does $g^{\Psi}(\mathbf{x}) := (g(\psi_1(\mathbf{x})), \cdots, g(\psi_t(\mathbf{x}))) = g_1^{\Psi(\mathbf{x})} g_2^{\Psi(\mathbf{x})^2} \cdots g_s^{\Psi(\mathbf{x})^s}$ distribute in G^t/Γ^t ?

- Definition: Let V^i be the smallest vector space containing $\Psi(\mathbf{x})^i$.
- $\Psi(x,d) = (x, x + d, x + 2d, x + 3d) = (1,1,1,1)x + (0,1,2,3)d$. Then V = span((1,1,1,1), (0,1,2,3)), and $V^2 = \text{span}((1,1,1,1), (0,1,2,3), (0,1,4,9))$. Also $V^3 = \mathbb{R}^4$.
- Naive guess: $\langle H_i^{V^i} \rangle$ where H_i is
- Definition: Ψ is flag if $V \subset V^2 \subset V^3 \subset \cdots$.

Where does $g^{\Psi}(\mathbf{x}) := (g(\psi_1(\mathbf{x})), \cdots, g(\psi_t(\mathbf{x}))) = g_1^{\Psi(\mathbf{x})} g_2^{\Psi(\mathbf{x})^2} \cdots g_s^{\Psi(\mathbf{x})^s}$ distribute in G^t/Γ^t ?

- Definition: Let V^i be the smallest vector space containing $\Psi(\mathbf{x})^i$.
- $\Psi(x,d) = (x, x + d, x + 2d, x + 3d) = (1,1,1,1)x + (0,1,2,3)d$. Then V = span((1,1,1,1), (0,1,2,3)), and $V^2 = \text{span}((1,1,1,1), (0,1,2,3), (0,1,4,9))$. Also $V^3 = \mathbb{R}^4$.
- Naive guess: $\langle H_i^{V^i} \rangle$ where H_i is
- Definition: Ψ is flag if $V \subset V^2 \subset V^3 \subset \cdots$.

Theorem (Green–Tao)

If Ψ is flag and g is irrational with respect to a filtration G_{\bullet} then g^{Ψ} (quantitatively) equidistributes in an explicit $G(G_{\bullet}, \Psi)/(G(G_{\bullet}, \Psi) \cap \Gamma^{t})$

Where does $g^{\Psi}(\mathbf{x}) := (g(\psi_1(\mathbf{x})), \cdots, g(\psi_t(\mathbf{x}))) = g_1^{\Psi(\mathbf{x})} g_2^{\Psi(\mathbf{x})^2} \cdots g_s^{\Psi(\mathbf{x})^s}$ distribute in G^t/Γ^t ?

- Definition: Let V^i be the smallest vector space containing $\Psi(\mathbf{x})^i$.
- $\Psi(x,d) = (x, x + d, x + 2d, x + 3d) = (1,1,1,1)x + (0,1,2,3)d$. Then V = span((1,1,1,1), (0,1,2,3)), and $V^2 = \text{span}((1,1,1,1), (0,1,2,3), (0,1,4,9))$. Also $V^3 = \mathbb{R}^4$.
- Naive guess: $\langle H_i^{V^i} \rangle$ where H_i is
- Definition: Ψ is flag if $V \subset V^2 \subset V^3 \subset \cdots$.

Theorem (Green–Tao)

If Ψ is flag and g is irrational with respect to a filtration G_{\bullet} then g^{Ψ} (quantitatively) equidistributes in an explicit $G(G_{\bullet}, \Psi)/(G(G_{\bullet}, \Psi) \cap \Gamma^{t})$, where $G(G_{\bullet}, \Psi) = \langle g_{i}^{v_{i}} : g_{i} \in G_{i}, v_{i} \in V^{i} \rangle$ is the Leibman group.

3

Where does $g^{\Psi}(\mathbf{x}) := (g(\psi_1(\mathbf{x})), \cdots, g(\psi_t(\mathbf{x}))) = g_1^{\Psi(\mathbf{x})} g_2^{\Psi(\mathbf{x})^2} \cdots g_s^{\Psi(\mathbf{x})^s}$ distribute in G^t/Γ^t ?

- Definition: Let V^i be the smallest vector space containing $\Psi(\mathbf{x})^i$.
- $\Psi(x,d) = (x, x + d, x + 2d, x + 3d) = (1,1,1,1)x + (0,1,2,3)d$. Then V = span((1,1,1,1), (0,1,2,3)), and $V^2 = \text{span}((1,1,1,1), (0,1,2,3), (0,1,4,9))$. Also $V^3 = \mathbb{R}^4$.
- Naive guess: $\langle H_i^{V^i} \rangle$ where H_i is
- Definition: Ψ is flag if $V \subset V^2 \subset V^3 \subset \cdots$.

Theorem (Green–Tao)

If Ψ is flag and g is irrational with respect to a filtration G_{\bullet} then g^{Ψ} (quantitatively) equidistributes in an explicit $G(G_{\bullet}, \Psi)/(G(G_{\bullet}, \Psi) \cap \Gamma^{t})$, where $G(G_{\bullet}, \Psi) = \langle g_{i}^{v_{i}} : g_{i} \in G_{i}, v_{i} \in V^{i} \rangle$ is the Leibman group.

Theorem (Green–Tao)

Given any g we may factorise $g = g'\gamma$ where g' is irrational with respect to some G'_{\bullet} (potentially in a subgroup), and γ is rational.

• Consider $\Psi(x, y) = (y, 2x + 2y, x + 3y, x) = (0, 2, 1, 1)x + (1, 2, 3, 0)y =: v_1x + v_2y$. Then $V = \text{span}\{(0, 2, 1, 1), (1, 2, 3, 0)\}$

э.

• Consider
$$\Psi(x, y) = (y, 2x + 2y, x + 3y, x) =$$

(0,2,1,1)x + (1,2,3,0)y =: v₁x + v₂y. Then
 $V = \text{span}\{(0,2,1,1), (1,2,3,0)\}$
 $V^2 = \text{span}\{(0,4,1,1), (1,4,9,0), (0,4,3,0)\}$, and $V^3 = \mathbb{R}^4$.

< (T) >

æ -

• Consider
$$\Psi(x, y) = (y, 2x + 2y, x + 3y, x) =$$

(0,2,1,1)x + (1,2,3,0)y =: v₁x + v₂y. Then
 $V = \text{span}\{(0,2,1,1), (1,2,3,0)\}$
 $V^2 = \text{span}\{(0,4,1,1), (1,4,9,0), (0,4,3,0)\}$, and $V^3 = \mathbb{R}^4$.

• Consider on the Heisenberg group the linear polynomial sequence $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & an & cn + \binom{n}{2}ab \\ 0 & 1 & bn \\ 0 & 0 & 1 \end{pmatrix}.$

3

• Consider
$$\Psi(x, y) = (y, 2x + 2y, x + 3y, x) =$$

(0,2,1,1)x + (1,2,3,0)y =: v₁x + v₂y. Then
 $V = \text{span}\{(0,2,1,1), (1,2,3,0)\}$
 $V^2 = \text{span}\{(0,4,1,1), (1,4,9,0), (0,4,3,0)\}$, and $V^3 = \mathbb{R}^4$.

• Consider on the Heisenberg group the linear polynomial sequence $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & an & cn + \binom{n}{2}ab \\ 0 & 1 & bn \\ 0 & 0 & 1 \end{pmatrix}.$

• The Leibman group is $G^{\Psi} = \langle G^V, G_2^{V^2} \rangle \leq G^4.$

• Consider
$$\Psi(x, y) = (y, 2x + 2y, x + 3y, x) =$$

(0,2,1,1)x + (1,2,3,0)y =: v₁x + v₂y. Then
 $V = \text{span}\{(0,2,1,1), (1,2,3,0)\}$
 $V^2 = \text{span}\{(0,4,1,1), (1,4,9,0), (0,4,3,0)\}$, and $V^3 = \mathbb{R}^4$.

• Consider on the Heisenberg group the linear polynomial sequence $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & an & cn + \binom{n}{2}ab \\ 0 & 1 & bn \\ 0 & 0 & 1 \end{pmatrix}.$

• The Leibman group is $G^{\Psi} = \langle G^{V}, G_{2}^{V^{2}} \rangle \leq G^{4}.$

• Define η on $G^{\Psi} \leq G^4$ by $\eta(h_1, h_2, h_3, h_4) = w \cdot (c_1, c_2, c_3, c_4)$, where $h_i = \begin{pmatrix} 1 & a_i & c_i \\ 0 & 1 & b_i \\ 0 & 0 & 1 \end{pmatrix} \in G$ for each i and $w = (24, 3, -4, -8) \in V^{2^{\perp}}$.

• Consider
$$\Psi(x, y) = (y, 2x + 2y, x + 3y, x) =$$

(0,2,1,1)x + (1,2,3,0)y =: v₁x + v₂y. Then
V = span{(0,2,1,1), (1,2,3,0)}
V² = span{(0,4,1,1), (1,4,9,0), (0,4,3,0)}, and V³ = \mathbb{R}^4 .

• Consider on the Heisenberg group the linear polynomial sequence $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & an & cn + \binom{n}{2}ab \\ 0 & 1 & bn \\ 0 & 0 & 1 \end{pmatrix}.$

• The Leibman group is $G^{\Psi} = \langle G^{V}, G_{2}^{V^{2}} \rangle \leq G^{4}.$

• Define η on $G^{\Psi} \leq G^4$ by $\eta(h_1, h_2, h_3, h_4) = w \cdot (c_1, c_2, c_3, c_4)$, where $h_i = \begin{pmatrix} 1 & a_i & c_i \\ 0 & 1 & b_i \\ 0 & 0 & 1 \end{pmatrix} \in G$ for each i and $w = (24, 3, -4, -8) \in V^{2^{\perp}}$.

• Then
$$\eta(g^{\Psi}(x,y)) = w \cdot v_1(c - \frac{1}{2}ab)x + w \cdot v_2(c - \frac{1}{2}ab)y$$
.

- Consider $\Psi(x, y) = (y, 2x + 2y, x + 3y, x) =$ (0,2,1,1)x + (1,2,3,0)y =: v₁x + v₂y. Then $V = \text{span}\{(0,2,1,1), (1,2,3,0)\}$ $V^2 = \text{span}\{(0,4,1,1), (1,4,9,0), (0,4,3,0)\}$, and $V^3 = \mathbb{R}^4$.
- Consider on the Heisenberg group the linear polynomial sequence $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & an & cn + \binom{n}{2}ab \\ 0 & 1 & bn \\ 0 & 0 & 1 \end{pmatrix}.$

• The Leibman group is $G^{\Psi} = \langle G^V, G_2^{V^2} \rangle \leq G^4.$

- Define η on $G^{\Psi} \leq G^4$ by $\eta(h_1, h_2, h_3, h_4) = w \cdot (c_1, c_2, c_3, c_4)$, where $h_i = \begin{pmatrix} 1 & a_i & c_i \\ 0 & 1 & b_i \\ 0 & 0 & 1 \end{pmatrix} \in G$ for each i and $w = (24, 3, -4, -8) \in V^{2^{\perp}}$.
- Then $\eta(g^{\Psi}(x,y)) = w \cdot v_1(c \frac{1}{2}ab)x + w \cdot v_2(c \frac{1}{2}ab)y$.
- What data from a polynomial sequence g determines the distribution of g^{Ψ} ?

3

• Consider
$$\Psi(x, y) = (y, 2x + 2y, x + 3y, x) =$$

(0,2,1,1)x + (1,2,3,0)y =: v₁x + v₂y. Then
 $V = \text{span}\{(0,2,1,1), (1,2,3,0)\}$
 $V^2 = \text{span}\{(0,4,1,1), (1,4,9,0), (0,4,3,0)\}$, and $V^3 = \mathbb{R}^4$.

• Consider on the Heisenberg group the linear polynomial sequence $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & an & cn + \binom{n}{2}ab \\ 0 & 1 & bn \\ 0 & 0 & 1 \end{pmatrix}.$

• The Leibman group is $G^{\Psi} = \langle G^V, G_2^{V^2} \rangle \leq G^4.$

- Define η on $G^{\Psi} \leq G^4$ by $\eta(h_1, h_2, h_3, h_4) = w \cdot (c_1, c_2, c_3, c_4)$, where $h_i = \begin{pmatrix} 1 & a_i & c_i \\ 0 & 1 & b_i \\ 0 & 0 & 1 \end{pmatrix} \in G$ for each i and $w = (24, 3, -4, -8) \in V^{2^{\perp}}$.
- Then $\eta(g^{\Psi}(x,y)) = w \cdot v_1(c \frac{1}{2}ab)x + w \cdot v_2(c \frac{1}{2}ab)y$.
- What data from a polynomial sequence g determines the distribution of g^Ψ? Spoiler answer: the (additive) distribution of the coefficients of g in the Lie algebra. (modulo factorisation).

= 900

If Γ' ≤ Γ has finite index, then g(n) equidistributes on G/Γ' iff it equidistributes on G/Γ.

b) 4 (E) b

э

- If $\Gamma' \leq \Gamma$ has finite index, then g(n) equidistributes on G/Γ' iff it equidistributes on G/Γ .
- Defn: lattices Γ and Γ' are *commensurable* if Γ ∩ Γ' has finite index in both Γ and Γ'.

- If $\Gamma' \leq \Gamma$ has finite index, then g(n) equidistributes on G/Γ' iff it equidistributes on G/Γ .
- Defn: lattices Γ and Γ' are *commensurable* if Γ ∩ Γ' has finite index in both Γ and Γ'.

Fact Γ and Γ' are commensurable if and only if span_Q(log Γ) = span_Q(log Γ').

- If $\Gamma' \leq \Gamma$ has finite index, then g(n) equidistributes on G/Γ' iff it equidistributes on G/Γ .
- Defn: lattices Γ and Γ' are *commensurable* if Γ ∩ Γ' has finite index in both Γ and Γ'.

Fact

 Γ and Γ' are commensurable if and only if span_{\mathbb{O}}(log Γ) = span_{\mathbb{O}}(log Γ').

• Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.

- If $\Gamma' \leq \Gamma$ has finite index, then g(n) equidistributes on G/Γ' iff it equidistributes on G/Γ .
- Defn: lattices Γ and Γ' are *commensurable* if Γ ∩ Γ' has finite index in both Γ and Γ'.

Fact

 Γ and Γ' are commensurable if and only if span_{\mathbb{Q}}(log Γ) = span_{\mathbb{Q}}(log Γ').

- Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.
- Fact: for any rational structure g_Q in g, there is a lattice Γ in G such that g_Q = span_Q(log Γ). Conversely, for any lattice Γ in G, span_Q(log Γ) is rational structure in g.

- If $\Gamma' \leq \Gamma$ has finite index, then g(n) equidistributes on G/Γ' iff it equidistributes on G/Γ .
- Defn: lattices Γ and Γ' are *commensurable* if Γ ∩ Γ' has finite index in both Γ and Γ'.

Fact

 Γ and Γ' are commensurable if and only if span_{\mathbb{Q}}(log Γ) = span_{\mathbb{Q}}(log Γ').

- Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.
- Fact: for any rational structure g_Q in g, there is a lattice Γ in G such that g_Q = span_Q(log Γ). Conversely, for any lattice Γ in G, span_Q(log Γ) is rational structure in g.
- Defn: A polynomial sequence p in g equidistributes in (g, g_Q) if exp p equidistributes in G/Γ, where Γ is any lattice such that span_Q log Γ = g_Q.

- If $\Gamma' \leq \Gamma$ has finite index, then g(n) equidistributes on G/Γ' iff it equidistributes on G/Γ .
- Defn: lattices Γ and Γ' are *commensurable* if Γ ∩ Γ' has finite index in both Γ and Γ'.

Fact

 Γ and Γ' are commensurable if and only if span_{\mathbb{O}}(log Γ) = span_{\mathbb{O}}(log Γ').

- Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.
- Fact: for any rational structure g_Q in g, there is a lattice Γ in G such that g_Q = span_Q(log Γ). Conversely, for any lattice Γ in G, span_Q(log Γ) is rational structure in g.
- Defn: A polynomial sequence p in g equidistributes in (g, g_Q) if exp p equidistributes in G/Γ, where Γ is any lattice such that span_Q log Γ = g_Q.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

 $p(\mathbf{n})$ in \mathfrak{g} equidistributes in $(\mathfrak{g}, \mathfrak{g}_{\mathbb{Q}})$ if and only if for every nontrivial rational Lie algebra homomorphism $\eta : \mathfrak{g} \to \mathbb{R}$, we have $\eta \circ p(\mathbf{n}) \not\subset \mathbb{Q}$.

200

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} . Let Ψ be a linear pattern. Where does $p^{\Psi}(\mathbf{x}) = (p(\psi_1(\mathbf{x}), \dots, p(\psi_t(\mathbf{x}))))$ distribute in \mathfrak{g}^t ?

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} . Let Ψ be a linear pattern. Where does $p^{\Psi}(\mathbf{x}) = (p(\psi_1(\mathbf{x}), \dots, p(\psi_t(\mathbf{x}))))$ distribute in \mathfrak{g}^t ?

• identify $\mathfrak{g} \otimes \mathbb{R}^t \cong \mathfrak{g}^t$ (where $a \otimes (u_1, \ldots, u_t) \mapsto (au_1, \ldots, au_t)$). Get $[a \otimes u, b \otimes v] = [a, b] \otimes uv$.

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} . Let Ψ be a linear pattern. Where does $p^{\Psi}(\mathbf{x}) = (p(\psi_1(\mathbf{x}), \dots, p(\psi_t(\mathbf{x}))))$ distribute in \mathfrak{g}^t ?

- identify $\mathfrak{g} \otimes \mathbb{R}^t \cong \mathfrak{g}^t$ (where $a \otimes (u_1, \ldots, u_t) \mapsto (au_1, \ldots, au_t)$). Get $[a \otimes u, b \otimes v] = [a, b] \otimes uv$.
- Definition: a ∈ g is linearly irrational wrt g_Q if for all rational linear maps l ∈ g^{*}_Q, we have l(a) ∈ Q ⇒ l(a) = 0.

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} . Let Ψ be a linear pattern. Where does $p^{\Psi}(\mathbf{x}) = (p(\psi_1(\mathbf{x}), \dots, p(\psi_t(\mathbf{x}))))$ distribute in \mathfrak{g}^t ?

- identify $\mathfrak{g} \otimes \mathbb{R}^t \cong \mathfrak{g}^t$ (where $a \otimes (u_1, \ldots, u_t) \mapsto (au_1, \ldots, au_t)$). Get $[a \otimes u, b \otimes v] = [a, b] \otimes uv$.
- Definition: a ∈ g is linearly irrational wrt g_Q if for all rational linear maps l ∈ g^{*}_Q, we have l(a) ∈ Q ⇒ l(a) = 0.

Theorem

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

3

Theorem (A. 2022+)

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

Proof:

Theorem (A. 2022+)

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \to \mathbb{R}$ and suppose $\eta(p^{\Psi}(\mathbf{x})) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$.

Theorem (A. 2022+)

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \to \mathbb{R}$ and suppose $\eta(p^{\Psi}(\mathbf{x})) \in \mathbb{Q}$ for all $\mathbf{x} \in \mathbb{Z}^{D}$. Then: $\eta(p^{\Psi}(\mathbf{x})) = \sum_{i=1}^{s} \eta(\mathbf{a}_{i} \otimes \Psi(\mathbf{x})^{i}) = \sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta(\mathbf{a}_{i} \otimes \mathbf{v}_{m,i}) m(\mathbf{x}) \in \mathbb{Q}$.

Theorem (A. 2022+)

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \to \mathbb{R}$ and suppose $\eta(p^{\Psi}(\mathbf{x})) \in \mathbb{Q}$ for all $\mathbf{x} \in \mathbb{Z}^{D}$. Then: $\eta(p^{\Psi}(\mathbf{x})) = \sum_{i=1}^{s} \eta(\mathbf{a}_{i} \otimes \Psi(\mathbf{x})^{i}) = \sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta(\mathbf{a}_{i} \otimes \mathbf{v}_{m,i}) m(\mathbf{x}) \in \mathbb{Q}$. Then $\eta(\mathbf{a}_{i} \otimes \mathbf{v}_{m,i}) \in \mathbb{Q}$ for all m, i.

Theorem (A. 2022+)

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \to \mathbb{R}$ and suppose $\eta(p^{\Psi}(\mathbf{x})) \in \mathbb{Q}$ for all $\mathbf{x} \in \mathbb{Z}^{D}$. Then: $\eta(p^{\Psi}(\mathbf{x})) = \sum_{i=1}^{s} \eta(a_{i} \otimes \Psi(\mathbf{x})^{i}) = \sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta(a_{i} \otimes v_{m,i}) m(\mathbf{x}) \in \mathbb{Q}$. Then $\eta(a_{i} \otimes v_{m,i}) \in \mathbb{Q}$ for all m, i. But each $\eta(\cdot \otimes v_{m,i})$ is a rational linear map on \mathfrak{g} with respect to $\mathfrak{g}_{\mathbb{Q}}$, so by the linear irrationality of a_{i} we have $\eta(a_{i} \otimes v_{m,i}) = 0$.

Theorem (A. 2022+)

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \to \mathbb{R}$ and suppose $\eta(p^{\Psi}(\mathbf{x})) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$. Then: $\eta(p^{\Psi}(\mathbf{x})) = \sum_{i=1}^{s} \eta(a_i \otimes \Psi(\mathbf{x})^i) = \sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta(a_i \otimes v_{m,i}) m(\mathbf{x}) \in \mathbb{Q}$. Then $\eta(a_i \otimes v_{m,i}) \in \mathbb{Q}$ for all m, i. But each $\eta(\cdot \otimes v_{m,i})$ is a rational linear map on \mathfrak{g} with respect to $\mathfrak{g}_{\mathbb{Q}}$, so by the linear irrationality of a_i we have $\eta(a_i \otimes v_{m,i}) = 0$. But the kernel of a rational linear map is a rational subspace so $\eta(S_i \otimes v_{m,i}) = 0$. Furthermore, $\{v_{m,i}\}_m$ span V^i , so $\eta(S_i \otimes V_{m,i}) = 0$. Finally η is a Lie algebra homomorphism to an abelian Lie algebra, so vanishes on $\langle S_i \otimes V^i \rangle$.

Theorem (A. 2022+)

Let $p(n) = \sum_{i=1}^{s} a_i n^i$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_i is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{Ψ} equidistributes in $\mathfrak{g}^{\Psi} := \langle S_i \otimes V^i \rangle$, where S_i is the smallest rational subspace containing a_i .

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \to \mathbb{R}$ and suppose $\eta(p^{\Psi}(\mathbf{x})) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$. Then: $\eta(p^{\Psi}(\mathbf{x})) = \sum_{i=1}^{s} \eta(a_i \otimes \Psi(\mathbf{x})^i) = \sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta(a_i \otimes v_{m,i}) m(\mathbf{x}) \in \mathbb{Q}$. Then $\eta(a_i \otimes v_{m,i}) \in \mathbb{Q}$ for all m, i. But each $\eta(\cdot \otimes v_{m,i})$ is a rational linear map on \mathfrak{g} with respect to $\mathfrak{g}_{\mathbb{Q}}$, so by the linear irrationality of a_i we have $\eta(a_i \otimes v_{m,i}) = 0$. But the kernel of a rational linear map is a rational subspace so $\eta(S_i \otimes v_{m,i}) = 0$. Furthermore, $\{v_{m,i}\}_m$ span V^i , so $\eta(S_i \otimes V_{m,i}) = 0$. Finally η is a Lie algebra homomorphism to an abelian Lie algebra, so vanishes on $\langle S_i \otimes V^i \rangle$.

Theorem (A. 2022+)

For any polynomial sequence p in G/Γ , there is a factorisation $p = cp'\gamma$, where c is a constant, p' is linearly irrational, and γ is periodic mod Γ .

The end

イロト イボト イヨト イヨト

= 990