A non-flag arithmetic regularity lemma and counting lemma

Daniel Altman

5 June 2023

Notation and the arithmetic regularity lemma

- Let $T_{4 A P}(f):=\mathbb{E}_{x, d} f(x) f(x+d) f(x+2 d) f(x+3 d)$, where
- $[N]:=\{1,2, \ldots, N\}$,
- $\mathbb{E}_{x, d}:=\frac{1}{N^{2}} \sum_{x, d \in[\mathbb{N}]}$,
- $f: \mathbb{N} \rightarrow \mathbb{C}$ are 1-bounded.

Notation and the arithmetic regularity lemma

- Let $T_{4 A P}(f):=\mathbb{E}_{x, d} f(x) f(x+d) f(x+2 d) f(x+3 d)$, where
- $[N]:=\{1,2, \ldots, N\}$,
- $\mathbb{E}_{x, d}:=\frac{1}{N^{2}} \sum_{x, d \in[\mathbb{N}]}$,
- $f: \mathbb{N} \rightarrow \mathbb{C}$ are 1 -bounded.
- In general, let $\Psi=\left(\psi_{1}, \ldots, \psi_{t}\right)$, each a linear form mapping $\mathbb{Z}^{D} \rightarrow \mathbb{Z}$, define $T_{\psi}(f):=\mathbb{E}_{x_{1}, \ldots, x_{D}} \prod_{i=1}^{t} f\left(\psi_{i}\left(x_{1}, \ldots, x_{D}\right)\right)$. (e.g. $t=4, D=2$,

$$
\left.\psi_{1}(x, d)=x, \psi_{2}(x, d)=x+d, \psi_{3}(x, d)=x+2 d, \psi_{4}(x, d)=x+3 d\right)
$$

Notation and the arithmetic regularity lemma

- Let $T_{4 A P}(f):=\mathbb{E}_{x, d} f(x) f(x+d) f(x+2 d) f(x+3 d)$, where
- $[N]:=\{1,2, \ldots, N\}$,
- $\mathbb{E}_{x, d}:=\frac{1}{N^{2}} \sum_{x, d \in[N]}$,
- $f: \mathbb{N} \rightarrow \mathbb{C}$ are 1 -bounded.
- In general, let $\psi=\left(\psi_{1}, \ldots, \psi_{t}\right)$, each a linear form mapping $\mathbb{Z}^{D} \rightarrow \mathbb{Z}$, define $T_{\Psi}(f):=\mathbb{E}_{x_{1}, \ldots, x_{D}} \prod_{i=1}^{t} f\left(\psi_{i}\left(x_{1}, \ldots, x_{D}\right)\right)$. (e.g. $t=4, D=2$,

$$
\left.\psi_{1}(x, d)=x, \psi_{2}(x, d)=x+d, \psi_{3}(x, d)=x+2 d, \psi_{4}(x, d)=x+3 d\right)
$$

Theorem (Arithmetic regularity lemma, very informally)

Let $f:[N] \rightarrow \mathbb{C}$ be 1-bounded. Then there exists a finite complexity nilsequence $f_{\text {nil }}$ such that

$$
T_{\Psi}(f) \approx T_{\Psi}\left(f_{\mathrm{nil}}\right) .
$$

New goal: understand $T_{\Psi}\left(f_{\text {nil }}\right)$.

What is a nilsequence?

Additive/linear characters $\bar{e}(\theta n)$, where:
(1) θn is a 'linear sequence',
(2) on the simply-connected abelian Lie group \mathbb{R},
(3) which has cocompact lattice \mathbb{Z},
(9) and $e(\cdot)$ is a smooth function on \mathbb{R} which is automorphic with respect to \mathbb{Z}.

Polynomial nilsequences $\bar{F}(g(n) \Gamma)$, where:
(1) $g(n)=g_{1}^{n} g_{2}^{n^{2}} \cdots g_{s}^{n^{s}}$ is a polynomial sequence,
(2) on a simply-connected nilpotent Lie group G,
(3) which has cocompact lattice 「,
(4) and F is a smooth function on G which is automorphic with respect to Γ.

What is a nilsequence?

Additive/linear characters $\bar{e}(\theta n)$, where:
(1) θn is a 'linear sequence',
(2) on the simply-connected abelian Lie group \mathbb{R},
(3) which has cocompact lattice \mathbb{Z},
(4) and $e(\cdot)$ is a smooth function on \mathbb{R} which is automorphic with respect to \mathbb{Z}.
E.g.: $e\left(\alpha n+\beta n^{2}+\theta n^{100}\right)$

Polynomial nilsequences $\bar{F}(g(n) \Gamma)$, where:
(1) $g(n)=g_{1}^{n} g_{2}^{n^{2}} \cdots g_{s}^{n^{s}}$ is a polynomial sequence,
(2) on a simply-connected nilpotent Lie group G,
(3) which has cocompact lattice Г,
(4) and F is a smooth function on G which is automorphic with respect to Γ.

What is a nilsequence?

Additive/linear characters $\bar{e}(\theta n)$, where:
(1) θn is a 'linear sequence',
(2) on the simply-connected abelian Lie group \mathbb{R},
(3) which has cocompact lattice \mathbb{Z},
(3) and $e(\cdot)$ is a smooth function on \mathbb{R} which is automorphic with respect to \mathbb{Z}.
E.g.: e($\left.\alpha n+\beta n^{2}+\theta n^{100}\right)$
E.g.: $G=\left(\begin{array}{ccc}1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1\end{array}\right), g(n)=\left(\begin{array}{lll}1 & \alpha & 0 \\ 0 & 1 & \beta \\ 0 & 0 & 1\end{array}\right)^{n}=\left(\begin{array}{ccc}1 & \alpha n & \alpha \beta\binom{n}{2} \\ 0 & 1 & \beta n \\ 0 & 0 & 1\end{array}\right)$

Polynomial nilsequences $\bar{F}(g(n) \Gamma)$, where:
(1) $g(n)=g_{1}^{n} g_{2}^{n^{2}} \cdots g_{s}^{n^{s}}$ is a polynomial sequence,
(2) on a simply-connected nilpotent Lie group G,
(3) which has cocompact lattice 「,
(9) and F is a smooth function on G which is automorphic with respect to Γ.
...yields... e($\alpha n\lfloor\beta n\rfloor)$

What is $\mathbb{E}_{n \in[N]} F(g(n) \Gamma)$?

What is $\mathbb{E}_{n \in[N]} F(g(n) \Gamma)$?

- For $\frac{1}{3} n \in \mathbb{R} / \mathbb{Z}$:

$$
\mathbb{E}_{n \in[N]} F\left(\frac{1}{3} n\right) \approx \frac{1}{3}(F(0)+F(1 / 3)+F(2 / 3)) .
$$

Averages of nilsequences: periodicity vs. equidistribution

What is $\mathbb{E}_{n \in[N]} F(g(n) \Gamma)$?

- For $\frac{1}{3} n \in \mathbb{R} / \mathbb{Z}$:

$$
\mathbb{E}_{n \in[N]} F\left(\frac{1}{3} n\right) \approx \frac{1}{3}(F(0)+F(1 / 3)+F(2 / 3)) .
$$

- For $\sqrt{2} n \in \mathbb{R} / \mathbb{Z}$:

$$
\mathbb{E}_{n \in[N]} F(\sqrt{2} n) \approx \int_{\mathbb{R} / \mathbb{Z}} F .
$$

Averages of nilsequences: periodicity vs. equidistribution

What is $\mathbb{E}_{n \in[N]} F(g(n) \Gamma)$?

- For $\frac{1}{3} n \in \mathbb{R} / \mathbb{Z}$:

$$
\mathbb{E}_{n \in[N]} F\left(\frac{1}{3} n\right) \approx \frac{1}{3}(F(0)+F(1 / 3)+F(2 / 3)) .
$$

- For $\sqrt{2} n \in \mathbb{R} / \mathbb{Z}$:

$$
\mathbb{E}_{n \in[N]} F(\sqrt{2} n) \approx \int_{\mathbb{R} / \mathbb{Z}} F .
$$

- What about $(\sqrt{2} n, \sqrt{2} n)$ in $\mathbb{R}^{2} / \mathbb{Z}^{2}$?

Averages of nilsequences: periodicity vs. equidistribution

What is $\mathbb{E}_{n \in[N]} F(g(n) \Gamma)$?

- For $\frac{1}{3} n \in \mathbb{R} / \mathbb{Z}$:

$$
\mathbb{E}_{n \in[N]} F\left(\frac{1}{3} n\right) \approx \frac{1}{3}(F(0)+F(1 / 3)+F(2 / 3))
$$

- For $\sqrt{2} n \in \mathbb{R} / \mathbb{Z}$:

$$
\mathbb{E}_{n \in[N]} F(\sqrt{2} n) \approx \int_{\mathbb{R} / \mathbb{Z}} F .
$$

- What about $(\sqrt{2} n, \sqrt{2} n)$ in $\mathbb{R}^{2} / \mathbb{Z}^{2}$?
- What about $\left(\sqrt{2} n,\left(\sqrt{2}+\frac{1}{3}\right) n\right)$ in $\mathbb{R}^{2} / \mathbb{Z}^{2}$?

Equidistribution on cosets of a subnilmanifold

G simply-connected, nilpotent Lie group, 「 cocompact lattice, $g(n)$ polynomial sequence in G.

Theorem (Leibman, Green-Tao)

The sequence $g(n) \Gamma$ equidistributes in G / Γ if and only if, for all nontrivial, continuous homomorphisms $\eta: G \rightarrow \mathbb{R}$ which map Γ to \mathbb{Z}, $\eta(g(n) \Gamma)$ is not constant.

Equidistribution on cosets of a subnilmanifold

G simply-connected, nilpotent Lie group, 「 cocompact lattice, $g(n)$ polynomial sequence in G.

Theorem (Leibman, Green-Tao)

The sequence $g(n) \Gamma$ equidistributes in G / Γ if and only if, for all nontrivial, continuous homomorphisms $\eta: G \rightarrow \mathbb{R}$ which map Γ to \mathbb{Z}, $\eta(g(n) \Gamma)$ is not constant.

Corollary

We may factorise $g=\varepsilon g^{\prime} \gamma$ where $\varepsilon \in G$ is a constant, g^{\prime} is a polynomial sequence which equidistributes in some subnilmanifold $G^{\prime} /\left(G^{\prime} \cap \Gamma\right)$ of G, and $\gamma(n) \Gamma$ is periodic.

Equidistribution on cosets of a subnilmanifold

G simply-connected, nilpotent Lie group, 「 cocompact lattice, $g(n)$ polynomial sequence in G.

Theorem (Leibman, Green-Tao)

The sequence $g(n) \Gamma$ equidistributes in G / Γ if and only if, for all nontrivial, continuous homomorphisms $\eta: G \rightarrow \mathbb{R}$ which map Γ to \mathbb{Z}, $\eta(g(n) \Gamma)$ is not constant.

Corollary

We may factorise $g=\varepsilon g^{\prime} \gamma$ where $\varepsilon \in G$ is a constant, g^{\prime} is a polynomial sequence which equidistributes in some subnilmanifold $G^{\prime} /\left(G^{\prime} \cap \Gamma\right)$ of G, and $\gamma(n) \Gamma$ is periodic.
(Think: $\left(\sqrt{2} n,\left(\sqrt{2}+\frac{1}{3}\right) n\right)=(\sqrt{2}, \sqrt{2}) n+\left(0, \frac{1}{3}\right) n$. $)$

Equidistribution on cosets of a subnilmanifold

G simply-connected, nilpotent Lie group, 「 cocompact lattice, $g(n)$ polynomial sequence in G.

Theorem (Leibman, Green-Tao)

The sequence $g(n) \Gamma$ equidistributes in G / Γ if and only if, for all nontrivial, continuous homomorphisms $\eta: G \rightarrow \mathbb{R}$ which map Γ to \mathbb{Z}, $\eta(g(n) \Gamma)$ is not constant.

Corollary

We may factorise $g=\varepsilon g^{\prime} \gamma$ where $\varepsilon \in G$ is a constant, g^{\prime} is a polynomial sequence which equidistributes in some subnilmanifold $G^{\prime} /\left(G^{\prime} \cap \Gamma\right)$ of G, and $\gamma(n) \Gamma$ is periodic.
(Think: $\left(\sqrt{2} n,\left(\sqrt{2}+\frac{1}{3}\right) n\right)=(\sqrt{2}, \sqrt{2}) n+\left(0, \frac{1}{3}\right) n$.)
Understand $\mathbb{E}_{n \leq N} F(g(n) \Gamma)$, by writing $\mathbb{E}_{n \leq N} F\left(g^{\prime}(n) \gamma(n) \Gamma\right)$, foliating into subprogressions on which $\gamma(n) \Gamma$ is constant, and then analysing $\int_{G^{\prime} \gamma_{i} / \Gamma} F d \mu$.
(Think: $\left(\sqrt{2} n,\left(\sqrt{2}+\frac{1}{3}\right) n\right)$, on $\left.(x, x),(x, x)+(0,1 / 3),(x, x)+(0,2 / 3).\right)$

Distribution on linear patterns

What is $T_{\psi}\left(f_{\text {nil }}\right)=\mathbb{E}_{\chi_{1}, \ldots, x_{D} \in[N]} \prod_{i=1}^{t} f_{\text {nil }}\left(\psi_{i}\left(x_{1}, \ldots, x_{D}\right)\right)$?

Distribution on linear patterns

What is $T_{\psi}\left(f_{\text {nil }}\right)=\mathbb{E}_{\chi_{1}, \ldots, x_{D} \in[N]} \prod_{i=1}^{t} f_{\text {nil }}\left(\psi_{i}\left(x_{1}, \ldots, x_{D}\right)\right)$?

- View $f_{\text {nil }}\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right)\right) \cdots f_{\text {nil }}\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)$ as a multiparameter nilsequence on G^{t} / Γ^{t} with polynomial sequence $g^{\Psi}\left(x_{1}, \ldots, x_{D}\right)=\left(g\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right), \ldots, g\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)\right.\right.$ and automorphic function $F^{\otimes t}$.

Distribution on linear patterns

What is $T_{\psi}\left(f_{\text {nil }}\right)=\mathbb{E}_{\chi_{1}, \ldots, x_{D} \in[N]} \prod_{i=1}^{t} f_{\text {nil }}\left(\psi_{i}\left(x_{1}, \ldots, x_{D}\right)\right)$?

- View $f_{\text {nil }}\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right)\right) \cdots f_{\text {nil }}\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)$ as a multiparameter nilsequence on G^{t} / Γ^{t} with polynomial sequence $g^{\Psi}\left(x_{1}, \ldots, x_{D}\right)=\left(g\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right), \ldots, g\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)\right.\right.$ and automorphic function $F^{\otimes t}$.
- By multiparameter versions of the Leibman/Green-Tao equidistribution theorems g^{ψ} equidistributes in cosets of a subnilmanifold of G^{t} / Γ^{t}.

Distribution on linear patterns

What is $T_{\psi}\left(f_{\text {nil }}\right)=\mathbb{E}_{\chi_{1}, \ldots, x_{D} \in[N]} \prod_{i=1}^{t} f_{\text {nil }}\left(\psi_{i}\left(x_{1}, \ldots, x_{D}\right)\right)$?

- View $f_{\text {nil }}\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right)\right) \cdots f_{\text {nil }}\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)$ as a multiparameter nilsequence on G^{t} / Γ^{t} with polynomial sequence $g^{\Psi}\left(x_{1}, \ldots, x_{D}\right)=\left(g\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right), \ldots, g\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)\right.\right.$ and automorphic function $F^{\otimes t}$.
- By multiparameter versions of the Leibman/Green-Tao equidistribution theorems g^{ψ} equidistributes in cosets of a subnilmanifold of G^{t} / Γ^{t}. Then:
$T_{\psi}(f) \approx T_{\psi}\left(f_{\text {nil }}\right) \approx \mathbb{E}_{\text {subprogs }} \int_{G^{(\delta, \psi)} \gamma_{i} / \Gamma^{t}} F^{\otimes t}$.

Distribution on linear patterns

What is $T_{\psi}\left(f_{\text {nil }}\right)=\mathbb{E}_{\chi_{1}, \ldots, x_{D} \in[N]} \prod_{i=1}^{t} f_{\text {nil }}\left(\psi_{i}\left(x_{1}, \ldots, x_{D}\right)\right)$?

- View $f_{\text {nil }}\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right)\right) \cdots f_{\text {nil }}\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)$ as a multiparameter nilsequence on G^{t} / Γ^{t} with polynomial sequence $g^{\Psi}\left(x_{1}, \ldots, x_{D}\right)=\left(g\left(\psi_{1}\left(x_{1}, \ldots, x_{D}\right), \ldots, g\left(\psi_{t}\left(x_{1}, \ldots, x_{D}\right)\right)\right.\right.$ and automorphic function $F^{\otimes t}$.
- By multiparameter versions of the Leibman/Green-Tao equidistribution theorems g^{ψ} equidistributes in cosets of a subnilmanifold of G^{t} / Γ^{t}. Then:
$T_{\psi}(f) \approx T_{\psi}\left(f_{\text {nil }}\right) \approx \mathbb{E}_{\text {subprogs }} \int_{G^{(\delta, \psi)} \gamma_{i} / \Gamma^{t}} F^{\otimes t}$.
- New goal: describe the subprogressions and $G^{(g, \psi)} / \Gamma^{t}$ given g, Ψ. What properties does $G^{(g, \psi)} / \Gamma^{t}$ have?

Result in the flag case

Where does $g^{\psi}(\boldsymbol{x}):=\left(g\left(\psi_{1}(\boldsymbol{x})\right), \cdots, g\left(\psi_{t}(\boldsymbol{x})\right)\right)=g_{1}^{\Psi(x)} g_{2}^{\Psi(x)^{2}} \cdots g_{s}^{\Psi(x)^{s}}$ distribute in G^{t} / Γ^{t} ?

Result in the flag case

Where does $g^{\psi}(\boldsymbol{x}):=\left(g\left(\psi_{1}(\boldsymbol{x})\right), \cdots, g\left(\psi_{t}(\boldsymbol{x})\right)\right)=g_{1}^{\Psi(x)} g_{2}^{\Psi(x)^{2}} \cdots g_{s}^{\Psi(x)^{s}}$ distribute in G^{t} / Γ^{t} ?

- Definition: Let V^{i} be the smallest vector space containing $\Psi(x)^{i}$.
- $\Psi(x, d)=(x, x+d, x+2 d, x+3 d)=(1,1,1,1) x+(0,1,2,3) d$. Then $V=\operatorname{span}((1,1,1,1),(0,1,2,3))$, and $V^{2}=\operatorname{span}((1,1,1,1),(0,1,2,3),(0,1,4,9))$. Also $V^{3}=\mathbb{R}^{4}$.

Result in the flag case

Where does $g^{\Psi}(\boldsymbol{x}):=\left(g\left(\psi_{1}(\boldsymbol{x})\right), \cdots, g\left(\psi_{t}(\boldsymbol{x})\right)\right)=g_{1}^{\Psi(x)} g_{2}^{\Psi(x)^{2}} \cdots g_{s}^{\Psi(x)^{s}}$ distribute in G^{t} / Γ^{t} ?

- Definition: Let V^{i} be the smallest vector space containing $\Psi(x)^{i}$.
- $\Psi(x, d)=(x, x+d, x+2 d, x+3 d)=(1,1,1,1) x+(0,1,2,3) d$. Then $V=\operatorname{span}((1,1,1,1),(0,1,2,3))$, and $V^{2}=\operatorname{span}((1,1,1,1),(0,1,2,3),(0,1,4,9))$. Also $V^{3}=\mathbb{R}^{4}$.
- Naive guess: $\left\langle H_{i}^{V^{i}}\right\rangle$ where H_{i} is
- Definition: Ψ is flag if $V \subset V^{2} \subset V^{3} \subset \cdots$.

Result in the flag case

Where does $g^{\Psi}(\boldsymbol{x}):=\left(g\left(\psi_{1}(\boldsymbol{x})\right), \cdots, g\left(\psi_{t}(\boldsymbol{x})\right)\right)=g_{1}^{\Psi(x)} g_{2}^{\Psi(x)^{2}} \cdots g_{s}^{\Psi(x)^{s}}$ distribute in G^{t} / Γ^{t} ?

- Definition: Let V^{i} be the smallest vector space containing $\Psi(x)^{i}$.
- $\Psi(x, d)=(x, x+d, x+2 d, x+3 d)=(1,1,1,1) x+(0,1,2,3) d$. Then $V=\operatorname{span}((1,1,1,1),(0,1,2,3))$, and $V^{2}=\operatorname{span}((1,1,1,1),(0,1,2,3),(0,1,4,9))$. Also $V^{3}=\mathbb{R}^{4}$.
- Naive guess: $\left\langle H_{i}^{V^{i}}\right\rangle$ where H_{i} is
- Definition: Ψ is flag if $V \subset V^{2} \subset V^{3} \subset \cdots$.

Theorem (Green-Tao)

If Ψ is flag and g is irrational with respect to a filtration G_{0} then g^{Ψ} (quantitatively) equidistributes in an explicit $G\left(G_{\bullet}, \Psi\right) /\left(G\left(G_{\bullet}, \Psi\right) \cap \Gamma^{t}\right)$

Result in the flag case

Where does $g^{\psi}(\boldsymbol{x}):=\left(g\left(\psi_{1}(\boldsymbol{x})\right), \cdots, g\left(\psi_{t}(\boldsymbol{x})\right)\right)=g_{1}^{\Psi(x)} g_{2}^{\Psi(x)^{2}} \cdots g_{s}^{\Psi(x)^{s}}$ distribute in G^{t} / Γ^{t} ?

- Definition: Let V^{i} be the smallest vector space containing $\Psi(x)^{i}$.
- $\Psi(x, d)=(x, x+d, x+2 d, x+3 d)=(1,1,1,1) x+(0,1,2,3) d$. Then $V=\operatorname{span}((1,1,1,1),(0,1,2,3))$, and $V^{2}=\operatorname{span}((1,1,1,1),(0,1,2,3),(0,1,4,9))$. Also $V^{3}=\mathbb{R}^{4}$.
- Naive guess: $\left\langle H_{i}^{V^{i}}\right\rangle$ where H_{i} is
- Definition: Ψ is flag if $V \subset V^{2} \subset V^{3} \subset \cdots$.

Theorem (Green-Tao)

If Ψ is flag and g is irrational with respect to a filtration G_{0} then g^{Ψ} (quantitatively) equidistributes in an explicit $G\left(G_{\bullet}, \Psi\right) /\left(G\left(G_{\bullet}, \Psi\right) \cap \Gamma^{t}\right)$, where $G\left(G_{\bullet}, \Psi\right)=\left\langle g_{i}^{v_{i}}: g_{i} \in G_{i}, v_{i} \in V^{i}\right\rangle$ is the Leibman group.

Result in the flag case

Where does $g^{\Psi}(\boldsymbol{x}):=\left(g\left(\psi_{1}(\boldsymbol{x})\right), \cdots, g\left(\psi_{t}(\boldsymbol{x})\right)\right)=g_{1}^{\Psi(x)} g_{2}^{\Psi(x)^{2}} \cdots g_{s}^{\Psi(x)^{s}}$ distribute in G^{t} / Γ^{t} ?

- Definition: Let V^{i} be the smallest vector space containing $\Psi(x)^{i}$.
- $\Psi(x, d)=(x, x+d, x+2 d, x+3 d)=(1,1,1,1) x+(0,1,2,3) d$. Then $V=\operatorname{span}((1,1,1,1),(0,1,2,3))$, and $V^{2}=\operatorname{span}((1,1,1,1),(0,1,2,3),(0,1,4,9))$. Also $V^{3}=\mathbb{R}^{4}$.
- Naive guess: $\left\langle H_{i}^{V^{i}}\right\rangle$ where H_{i} is
- Definition: Ψ is flag if $V \subset V^{2} \subset V^{3} \subset \cdots$.

Theorem (Green-Tao)

If Ψ is flag and g is irrational with respect to a filtration G_{0} then g^{Ψ} (quantitatively) equidistributes in an explicit $G\left(G_{\bullet}, \Psi\right) /\left(G\left(G_{\bullet}, \Psi\right) \cap \Gamma^{t}\right)$, where $G\left(G_{\bullet}, \Psi\right)=\left\langle g_{i}^{v_{i}}: g_{i} \in G_{i}, v_{i} \in V^{i}\right\rangle$ is the Leibman group.

Theorem (Green-Tao)

Given any g we may factorise $g=g^{\prime} \gamma$ where g^{\prime} is irrational with respect to some G_{\bullet}^{\prime} (potentially in a subgroup), and γ is rational.

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$ $(0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y$. Then $V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\}$

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$

$$
\begin{aligned}
& (0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y . \text { Then } \\
& V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\} \\
& V^{2}=\operatorname{span}\{(0,4,1,1),(1,4,9,0),(0,4,3,0)\}, \text { and } V^{3}=\mathbb{R}^{4} .
\end{aligned}
$$

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$

$$
\begin{aligned}
& (0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y . \text { Then } \\
& V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\} \\
& V^{2}=\operatorname{span}\{(0,4,1,1),(1,4,9,0),(0,4,3,0)\}, \text { and } V^{3}=\mathbb{R}^{4} .
\end{aligned}
$$

- Consider on the Heisenberg group the linear polynomial sequence

$$
\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & a n & c n+\binom{n}{2} a b \\
0 & 1 & b n \\
0 & 0 & 1
\end{array}\right)
$$

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$

$$
\begin{aligned}
& (0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y . \text { Then } \\
& V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\} \\
& V^{2}=\operatorname{span}\{(0,4,1,1),(1,4,9,0),(0,4,3,0)\}, \text { and } V^{3}=\mathbb{R}^{4} .
\end{aligned}
$$

- Consider on the Heisenberg group the linear polynomial sequence

$$
\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & a n & c n+\binom{n}{2} a b \\
0 & 1 & b n \\
0 & 0 & 1
\end{array}\right)
$$

- The Leibman group is $G^{\psi}=\left\langle G^{V}, G_{2}^{V^{2}}\right\rangle \leq G^{4}$.

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$

$$
\begin{aligned}
& (0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y . \text { Then } \\
& V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\} \\
& V^{2}=\operatorname{span}\{(0,4,1,1),(1,4,9,0),(0,4,3,0)\}, \text { and } V^{3}=\mathbb{R}^{4} .
\end{aligned}
$$

- Consider on the Heisenberg group the linear polynomial sequence

$$
\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & a n & c n+\binom{n}{2} a b \\
0 & 1 & b n \\
0 & 0 & 1
\end{array}\right)
$$

- The Leibman group is $G^{\Psi}=\left\langle G^{V}, G_{2}^{V^{2}}\right\rangle \leq G^{4}$.
- Define η on $G^{\Psi} \leq G^{4}$ by $\eta\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=w \cdot\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$, where

$$
h_{i}=\left(\begin{array}{ccc}
1 & a_{i} & c_{i} \\
0 & 1 & b_{i} \\
0 & 0 & 1
\end{array}\right) \in G \text { for each } i \text { and } w=(24,3,-4,-8) \in V^{2 \perp} \text {. }
$$

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$

$$
\begin{aligned}
& (0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y . \text { Then } \\
& V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\} \\
& V^{2}=\operatorname{span}\{(0,4,1,1),(1,4,9,0),(0,4,3,0)\}, \text { and } V^{3}=\mathbb{R}^{4} .
\end{aligned}
$$

- Consider on the Heisenberg group the linear polynomial sequence

$$
\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & a n & c n+\binom{n}{2} a b \\
0 & 1 & b n \\
0 & 0 & 1
\end{array}\right)
$$

- The Leibman group is $G^{\Psi}=\left\langle G^{V}, G_{2}^{V^{2}}\right\rangle \leq G^{4}$.
- Define η on $G^{\Psi} \leq G^{4}$ by $\eta\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=w \cdot\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$, where

$$
h_{i}=\left(\begin{array}{ccc}
1 & a_{i} & c_{i} \\
0 & 1 & b_{i} \\
0 & 0 & 1
\end{array}\right) \in G \text { for each } i \text { and } w=(24,3,-4,-8) \in V^{2 \perp} \text {. }
$$

- Then $\eta\left(g^{\psi}(x, y)\right)=w \cdot v_{1}\left(c-\frac{1}{2} a b\right) x+w \cdot v_{2}\left(c-\frac{1}{2} a b\right) y$.

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$

$$
\begin{aligned}
& (0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y . \text { Then } \\
& V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\} \\
& V^{2}=\operatorname{span}\{(0,4,1,1),(1,4,9,0),(0,4,3,0)\}, \text { and } V^{3}=\mathbb{R}^{4} .
\end{aligned}
$$

- Consider on the Heisenberg group the linear polynomial sequence

$$
\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & a n & c n+\binom{n}{2} a b \\
0 & 1 & b n \\
0 & 0 & 1
\end{array}\right)
$$

- The Leibman group is $G^{\psi}=\left\langle G^{V}, G_{2}^{V^{2}}\right\rangle \leq G^{4}$.
- Define η on $G^{\Psi} \leq G^{4}$ by $\eta\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=w \cdot\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$, where

$$
h_{i}=\left(\begin{array}{ccc}
1 & a_{i} & c_{i} \\
0 & 1 & b_{i} \\
0 & 0 & 1
\end{array}\right) \in G \text { for each } i \text { and } w=(24,3,-4,-8) \in V^{2 \perp} \text {. }
$$

- Then $\eta\left(g^{\psi}(x, y)\right)=w \cdot v_{1}\left(c-\frac{1}{2} a b\right) x+w \cdot v_{2}\left(c-\frac{1}{2} a b\right) y$.
- What data from a polynomial sequence g determines the distribution of g^{Ψ} ?

A non-flag example

- Consider $\Psi(x, y)=(y, 2 x+2 y, x+3 y, x)=$

$$
\begin{aligned}
& (0,2,1,1) x+(1,2,3,0) y=: v_{1} x+v_{2} y . \text { Then } \\
& V=\operatorname{span}\{(0,2,1,1),(1,2,3,0)\} \\
& V^{2}=\operatorname{span}\{(0,4,1,1),(1,4,9,0),(0,4,3,0)\}, \text { and } V^{3}=\mathbb{R}^{4} .
\end{aligned}
$$

- Consider on the Heisenberg group the linear polynomial sequence

$$
\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & a n & c n+\binom{n}{2} a b \\
0 & 1 & b n \\
0 & 0 & 1
\end{array}\right)
$$

- The Leibman group is $G^{\Psi}=\left\langle G^{V}, G_{2}^{V^{2}}\right\rangle \leq G^{4}$.
- Define η on $G^{\Psi} \leq G^{4}$ by $\eta\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=w \cdot\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$, where

$$
h_{i}=\left(\begin{array}{ccc}
1 & a_{i} & c_{i} \\
0 & 1 & b_{i} \\
0 & 0 & 1
\end{array}\right) \in G \text { for each } i \text { and } w=(24,3,-4,-8) \in V^{2 \perp} \text {. }
$$

- Then $\eta\left(g^{\psi}(x, y)\right)=w \cdot v_{1}\left(c-\frac{1}{2} a b\right) x+w \cdot v_{2}\left(c-\frac{1}{2} a b\right) y$.
- What data from a polynomial sequence g determines the distribution of g^{Ψ} ? Spoiler answer: the (additive) distribution of the coefficients of g in the Lie algebra. (modulo factorisation).

Qualitative equidistribution in the Lie algebra

- If $\Gamma^{\prime} \leq \Gamma$ has finite index, then $g(n)$ equidistributes on G / Γ^{\prime} iff it equidistributes on G / Γ.

Qualitative equidistribution in the Lie algebra

- If $\Gamma^{\prime} \leq \Gamma$ has finite index, then $g(n)$ equidistributes on G / Γ^{\prime} iff it equidistributes on G / Γ.
- Defn: lattices Γ and Γ^{\prime} are commensurable if $\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime}.

Qualitative equidistribution in the Lie algebra

- If $\Gamma^{\prime} \leq \Gamma$ has finite index, then $g(n)$ equidistributes on G / Γ^{\prime} iff it equidistributes on G / Γ.
- Defn: lattices Γ and Γ^{\prime} are commensurable if $\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime}.

Fact

Γ and Γ^{\prime} are commensurable if and only if $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)=\operatorname{span}_{\mathbb{Q}}\left(\log \Gamma^{\prime}\right)$.

Qualitative equidistribution in the Lie algebra

- If $\Gamma^{\prime} \leq \Gamma$ has finite index, then $g(n)$ equidistributes on G / Γ^{\prime} iff it equidistributes on G / Γ.
- Defn: lattices Γ and Γ^{\prime} are commensurable if $\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime}.

Fact

Γ and Γ^{\prime} are commensurable if and only if $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)=\operatorname{span}_{\mathbb{Q}}\left(\log \Gamma^{\prime}\right)$.

- Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.

Qualitative equidistribution in the Lie algebra

- If $\Gamma^{\prime} \leq \Gamma$ has finite index, then $g(n)$ equidistributes on G / Γ^{\prime} iff it equidistributes on G / Γ.
- Defn: lattices Γ and Γ^{\prime} are commensurable if $\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime}.

Fact

Γ and Γ^{\prime} are commensurable if and only if $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)=\operatorname{span}_{\mathbb{Q}}\left(\log \Gamma^{\prime}\right)$.

- Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.
- Fact: for any rational structure $\mathfrak{g}_{\mathbb{Q}}$ in \mathfrak{g}, there is a lattice Γ in G such that $\mathfrak{g}_{\mathbb{Q}}=\operatorname{span}_{\mathbb{Q}}(\log \Gamma)$. Conversely, for any lattice Γ in G, $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)$ is rational structure in \mathfrak{g}.

Qualitative equidistribution in the Lie algebra

- If $\Gamma^{\prime} \leq \Gamma$ has finite index, then $g(n)$ equidistributes on G / Γ^{\prime} iff it equidistributes on G / Γ.
- Defn: lattices Γ and Γ^{\prime} are commensurable if $\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime}.

Fact

Γ and Γ^{\prime} are commensurable if and only if $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)=\operatorname{span}_{\mathbb{Q}}\left(\log \Gamma^{\prime}\right)$.

- Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.
- Fact: for any rational structure $\mathfrak{g}_{\mathbb{Q}}$ in \mathfrak{g}, there is a lattice Γ in G such that $\mathfrak{g}_{\mathbb{Q}}=\operatorname{span}_{\mathbb{Q}}(\log \Gamma)$. Conversely, for any lattice Γ in G, $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)$ is rational structure in \mathfrak{g}.
- Defn: A polynomial sequence p in \mathfrak{g} equidistributes in $\left(\mathfrak{g}, \mathfrak{g}_{\mathbb{Q}}\right)$ if $\exp p$ equidistributes in G / Γ, where Γ is any lattice such that $\operatorname{span}_{\mathbb{Q}} \log \Gamma=\mathfrak{g}_{\mathbb{Q}}$.

Qualitative equidistribution in the Lie algebra

- If $\Gamma^{\prime} \leq \Gamma$ has finite index, then $g(n)$ equidistributes on G / Γ^{\prime} iff it equidistributes on G / Γ.
- Defn: lattices Γ and Γ^{\prime} are commensurable if $\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime}.

Fact

Γ and Γ^{\prime} are commensurable if and only if $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)=\operatorname{span}_{\mathbb{Q}}\left(\log \Gamma^{\prime}\right)$.

- Defn: a rational structure $\mathfrak{g}_{\mathbb{Q}}$ for \mathfrak{g} is a rational Lie subalgebra with $\mathfrak{g} \cong \mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{R}$.
- Fact: for any rational structure $\mathfrak{g}_{\mathbb{Q}}$ in \mathfrak{g}, there is a lattice Γ in G such that $\mathfrak{g}_{\mathbb{Q}}=\operatorname{span}_{\mathbb{Q}}(\log \Gamma)$. Conversely, for any lattice Γ in G, $\operatorname{span}_{\mathbb{Q}}(\log \Gamma)$ is rational structure in \mathfrak{g}.
- Defn: A polynomial sequence p in \mathfrak{g} equidistributes in $\left(\mathfrak{g}, \mathfrak{g}_{\mathbb{Q}}\right)$ if $\exp p$ equidistributes in G / Γ, where Γ is any lattice such that $\operatorname{span}_{\mathbb{Q}} \log \Gamma=\mathfrak{g}_{\mathbb{Q}}$.

Theorem (Lie algebra multiparameter Leibman/Green-Tao)

$p(\boldsymbol{n})$ in \mathfrak{g} equidistributes in $\left(\mathfrak{g}, \mathfrak{g}_{\mathbb{Q}}\right)$ if and only if for every nontrivial rational Lie algebra homomorphism $\eta: \mathfrak{g} \rightarrow \mathbb{R}$, we have $\eta \circ p(\boldsymbol{n}) \not \subset \mathbb{Q}$.

Qualitative equidistribution on linear patterns

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g}. Let ψ be a linear pattern. Where does $p^{\psi}(\boldsymbol{x})=\left(p\left(\psi_{1}(\boldsymbol{x}), \ldots, p\left(\psi_{t}(\boldsymbol{x})\right)\right)\right.$ distribute in \mathfrak{g}^{t} ?

Qualitative equidistribution on linear patterns

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g}. Let ψ be a linear pattern. Where does $p^{\psi}(\boldsymbol{x})=\left(p\left(\psi_{1}(\boldsymbol{x}), \ldots, p\left(\psi_{t}(\boldsymbol{x})\right)\right)\right.$ distribute in \mathfrak{g}^{t} ?

- identify $\mathfrak{g} \otimes \mathbb{R}^{t} \cong \mathfrak{g}^{t}\left(\right.$ where $\left.a \otimes\left(u_{1}, \ldots, u_{t}\right) \mapsto\left(a u_{1}, \ldots, a u_{t}\right)\right)$. Get $[a \otimes u, b \otimes v]=[a, b] \otimes u v$.

Qualitative equidistribution on linear patterns

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g}. Let Ψ be a linear pattern. Where does $p^{\psi}(\boldsymbol{x})=\left(p\left(\psi_{1}(\boldsymbol{x}), \ldots, p\left(\psi_{t}(\boldsymbol{x})\right)\right)\right.$ distribute in \mathfrak{g}^{t} ?

- identify $\mathfrak{g} \otimes \mathbb{R}^{t} \cong \mathfrak{g}^{t}\left(\right.$ where $\left.a \otimes\left(u_{1}, \ldots, u_{t}\right) \mapsto\left(a u_{1}, \ldots, a u_{t}\right)\right)$. Get $[a \otimes u, b \otimes v]=[a, b] \otimes u v$.
- Definition: $a \in \mathfrak{g}$ is linearly irrational wrt $\mathfrak{g}_{\mathbb{Q}}$ if for all rational linear maps $I \in \mathfrak{g}_{\mathbb{Q}}^{*}$, we have $I(a) \in \mathbb{Q} \Longrightarrow I(a)=0$.

Qualitative equidistribution on linear patterns

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g}. Let ψ be a linear pattern. Where does $p^{\psi}(\boldsymbol{x})=\left(p\left(\psi_{1}(\boldsymbol{x}), \ldots, p\left(\psi_{t}(\boldsymbol{x})\right)\right)\right.$ distribute in \mathfrak{g}^{t} ?

- identify $\mathfrak{g} \otimes \mathbb{R}^{t} \cong \mathfrak{g}^{t}\left(\right.$ where $\left.a \otimes\left(u_{1}, \ldots, u_{t}\right) \mapsto\left(a u_{1}, \ldots, a u_{t}\right)\right)$. Get $[a \otimes u, b \otimes v]=[a, b] \otimes u v$.
- Definition: $a \in \mathfrak{g}$ is linearly irrational wrt $\mathfrak{g}_{\mathbb{Q}}$ if for all rational linear maps $I \in \mathfrak{g}_{\mathbb{Q}}^{*}$, we have $I(a) \in \mathbb{Q} \Longrightarrow I(a)=0$.

Theorem

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)
Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Proof:

Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)
Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \rightarrow \mathbb{R}$ and suppose $\eta\left(p^{\Psi}(\boldsymbol{x})\right) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$.

Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \rightarrow \mathbb{R}$ and suppose $\eta\left(p^{\psi}(\boldsymbol{x})\right) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$. Then:
$\eta\left(p^{\psi}(\boldsymbol{x})\right)=\sum_{i=1}^{s} \eta\left(a_{i} \otimes \Psi(\boldsymbol{x})^{i}\right)=\sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta\left(a_{i} \otimes v_{m, i}\right) m(\boldsymbol{x}) \in \mathbb{Q}$.

Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \rightarrow \mathbb{R}$ and suppose $\eta\left(p^{\psi}(\boldsymbol{x})\right) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$. Then:
$\eta\left(p^{\Psi}(\boldsymbol{x})\right)=\sum_{i=1}^{s} \eta\left(a_{i} \otimes \Psi(\boldsymbol{x})^{i}\right)=\sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta\left(a_{i} \otimes v_{m, i}\right) m(\boldsymbol{x}) \in \mathbb{Q}$. Then $\eta\left(a_{i} \otimes v_{m, i}\right) \in \mathbb{Q}$ for all m, i.

Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \rightarrow \mathbb{R}$ and suppose $\eta\left(p^{\psi}(\boldsymbol{x})\right) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$. Then:
$\eta\left(p^{\Psi}(\boldsymbol{x})\right)=\sum_{i=1}^{s} \eta\left(a_{i} \otimes \Psi(\boldsymbol{x})^{i}\right)=\sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta\left(a_{i} \otimes v_{m, i}\right) m(\boldsymbol{x}) \in \mathbb{Q}$. Then $\eta\left(a_{i} \otimes v_{m, i}\right) \in \mathbb{Q}$ for all m, i. But each $\eta\left(\cdot \otimes v_{m, i}\right)$ is a rational linear map on \mathfrak{g} with respect to $\mathfrak{g}_{\mathbb{Q}}$, so by the linear irrationality of a_{i} we have $\eta\left(a_{i} \otimes v_{m, i}\right)=0$.

Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \rightarrow \mathbb{R}$ and suppose $\eta\left(p^{\psi}(\boldsymbol{x})\right) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$. Then: $\eta\left(p^{\Psi}(\boldsymbol{x})\right)=\sum_{i=1}^{s} \eta\left(a_{i} \otimes \Psi(\boldsymbol{x})^{i}\right)=\sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta\left(a_{i} \otimes v_{m, i}\right) m(\boldsymbol{x}) \in \mathbb{Q}$. Then $\eta\left(a_{i} \otimes v_{m, i}\right) \in \mathbb{Q}$ for all m, i. But each $\eta\left(\cdot \otimes v_{m, i}\right)$ is a rational linear map on \mathfrak{g} with respect to $\mathfrak{g}_{\mathbb{Q}}$, so by the linear irrationality of a_{i} we have $\eta\left(a_{i} \otimes v_{m, i}\right)=0$. But the kernel of a rational linear map is a rational subspace so $\eta\left(S_{i} \otimes v_{m, i}\right)=0$. Furthermore, $\left\{v_{m, i}\right\}_{m}$ span V^{i}, so $\eta\left(S_{i} \otimes V_{m, i}\right)=0$. Finally η is a Lie algebra homomorphism to an abelian Lie algebra, so vanishes on $\left\langle S_{i} \otimes V^{i}\right\rangle$.

Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)

Let $p(n)=\sum_{i=1}^{s} a_{i} n^{i}$ be a polynomial sequence in \mathfrak{g} with rational structure $\mathfrak{g}_{\mathbb{Q}}$ such that a_{i} is linearly irrational for each i. Let Ψ be a linear pattern. Then p^{ψ} equidistributes in $\mathfrak{g}^{\psi}:=\left\langle S_{i} \otimes V^{i}\right\rangle$, where S_{i} is the smallest rational subspace containing a_{i}.

Proof: Let η be a rational Lie algebra homomorphism $\mathfrak{g}^{\Psi} \rightarrow \mathbb{R}$ and suppose $\eta\left(p^{\Psi}(\boldsymbol{x})\right) \in \mathbb{Q}$ for all $x \in \mathbb{Z}^{D}$. Then: $\eta\left(p^{\Psi}(\boldsymbol{x})\right)=\sum_{i=1}^{s} \eta\left(a_{i} \otimes \Psi(\boldsymbol{x})^{i}\right)=\sum_{m \in \mathcal{M}} \sum_{i=1}^{s} \eta\left(a_{i} \otimes v_{m, i}\right) m(\boldsymbol{x}) \in \mathbb{Q}$. Then $\eta\left(a_{i} \otimes v_{m, i}\right) \in \mathbb{Q}$ for all m, i. But each $\eta\left(\cdot \otimes v_{m, i}\right)$ is a rational linear map on \mathfrak{g} with respect to $\mathfrak{g}_{\mathbb{Q}}$, so by the linear irrationality of a_{i} we have $\eta\left(a_{i} \otimes v_{m, i}\right)=0$. But the kernel of a rational linear map is a rational subspace so $\eta\left(S_{i} \otimes v_{m, i}\right)=0$. Furthermore, $\left\{v_{m, i}\right\}_{m}$ span V^{i}, so $\eta\left(S_{i} \otimes V_{m, i}\right)=0$. Finally η is a Lie algebra homomorphism to an abelian Lie algebra, so vanishes on $\left\langle S_{i} \otimes V^{i}\right\rangle$.

Theorem (A. 2022+)

For any polynomial sequence p in G / Γ, there is a factorisation $p=c p^{\prime} \gamma$, where c is a constant, p^{\prime} is linearly irrational, and γ is periodic $\bmod \Gamma$.

The end

