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Notation and the arithmetic regularity lemma

Let T4AP(f ) := Ex,d f (x)f (x + d)f (x + 2d)f (x + 3d), where

[N] := {1, 2, . . . ,N},
Ex,d := 1

N2

∑
x,d∈[N],

f : N → C are 1-bounded.

In general, let Ψ = (ψ1, . . . , ψt), each a linear form mapping
ZD → Z, define TΨ(f ) := Ex1,...,xD

∏t
i=1 f (ψi (x1, . . . , xD)).

(e.g. t = 4, D = 2,
ψ1(x , d) = x , ψ2(x , d) = x+d , ψ3(x , d) = x+2d , ψ4(x , d) = x+3d)

Theorem (Arithmetic regularity lemma, very informally)

Let f : [N] → C be 1-bounded. Then there exists a finite complexity
nilsequence fnil such that

TΨ(f ) ≈ TΨ(fnil).

New goal: understand TΨ(fnil).
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What is a nilsequence?

Additive/linear characters
e(θn), where:

1 θn is a ‘linear sequence’,

2 on the simply-connected
abelian Lie group R,

3 which has cocompact
lattice Z,

4 and e(·) is a smooth
function on R which is
automorphic with
respect to Z.

Polynomial nilsequences
F (g(n)Γ), where:

1 g(n) = gn
1 g

n2

2 · · · gns

s is a
polynomial sequence,

2 on a simply-connected
nilpotent Lie group G ,

3 which has cocompact
lattice Γ,

4 and F is a smooth
function on G which is
automorphic with
respect to Γ.

E.g.: e(αn + βn2 + θn100)

E.g.: G =

1 R R
0 1 R
0 0 1

, g(n) =

1 α 0
0 1 β
0 0 1

n

=

1 αn αβ
(
n
2

)
0 1 βn
0 0 1


...yields... e(αn⌊βn⌋)
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Averages of nilsequences: periodicity vs. equidistribution

What is En∈[N]F (g(n)Γ)?

For 1
3n ∈ R/Z:

En∈[N]F (
1

3
n) ≈ 1

3
(F (0) + F (1/3) + F (2/3)) .

For
√
2n ∈ R/Z:

En∈[N]F (
√
2n) ≈

∫
R/Z

F .

What about (
√
2n,

√
2n) in R2/Z2?

What about (
√
2n, (

√
2 + 1

3 )n) in R2/Z2?
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Equidistribution on cosets of a subnilmanifold

G simply-connected, nilpotent Lie group, Γ cocompact lattice, g(n)
polynomial sequence in G .

Theorem (Leibman, Green–Tao)

The sequence g(n)Γ equidistributes in G/Γ if and only if, for all
nontrivial, continuous homomorphisms η : G → R which map Γ to Z,
η(g(n)Γ) is not constant.

Corollary

We may factorise g = εg ′γ where ε ∈ G is a constant, g ′ is a polynomial
sequence which equidistributes in some subnilmanifold G ′/(G ′ ∩ Γ) of G ,
and γ(n)Γ is periodic.

(Think: (
√
2n, (

√
2 + 1

3 )n) = (
√
2,
√
2)n + (0, 13 )n.)

Understand En≤NF (g(n)Γ), by writing En≤NF (g
′(n)γ(n)Γ), foliating

into subprogressions on which γ(n)Γ is constant, and then analysing∫
G ′γi/Γ

Fdµ.

(Think: (
√
2n, (

√
2 + 1

3 )n), on (x , x), (x , x) + (0, 1/3), (x , x) + (0, 2/3).)
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Distribution on linear patterns

What is TΨ(fnil) = Ex1,...,xD∈[N]

∏t
i=1 fnil(ψi (x1, . . . , xD))?

View fnil(ψ1(x1, . . . , xD)) · · · fnil(ψt(x1, . . . , xD)) as a multiparameter
nilsequence on G t/Γt with polynomial sequence
gΨ(x1, . . . , xD) = (g(ψ1(x1, . . . , xD), . . . , g(ψt(x1, . . . , xD)) and
automorphic function F⊗t .

By multiparameter versions of the Leibman/Green–Tao
equidistribution theorems gΨ equidistributes in cosets of a
subnilmanifold of G t/Γt . Then:
TΨ(f ) ≈ TΨ(fnil) ≈ Esubprogs

∫
G (g,Ψ)γi/Γt F

⊗t .

New goal: describe the subprogressions and G (g ,Ψ)/Γt given g ,Ψ.
What properties does G (g ,Ψ)/Γt have?
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Result in the flag case

Where does gΨ(x) := (g(ψ1(x)), · · · , g(ψt(x))) = g
Ψ(x)
1 g

Ψ(x)2

2 · · · gΨ(x)s

s

distribute in G t/Γt?

Definition: Let V i be the smallest vector space containing Ψ(x)i .

Ψ(x , d) = (x , x + d , x + 2d , x + 3d) = (1, 1, 1, 1)x + (0, 1, 2, 3)d .
Then V = span((1, 1, 1, 1), (0, 1, 2, 3)), and
V 2 = span((1, 1, 1, 1), (0, 1, 2, 3), (0, 1, 4, 9)). Also V 3 = R4.

Naive guess: ⟨HV i

i ⟩ where Hi is

Definition: Ψ is flag if V ⊂ V 2 ⊂ V 3 ⊂ · · · .

Theorem (Green–Tao)

If Ψ is flag and g is irrational with respect to a filtration G• then gΨ

(quantitatively) equidistributes in an explicit G (G•,Ψ)/(G (G•,Ψ) ∩ Γt) ,
where G (G•,Ψ) = ⟨g vi

i : gi ∈ Gi , vi ∈ V i ⟩ is the Leibman group.

Theorem (Green–Tao)

Given any g we may factorise g = g ′γ where g ′ is irrational with respect
to some G ′

• (potentially in a subgroup), and γ is rational.
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A non-flag example

Consider Ψ(x , y) = (y , 2x + 2y , x + 3y , x) =
(0, 2, 1, 1)x + (1, 2, 3, 0)y =: v1x + v2y . Then
V = span{(0, 2, 1, 1), (1, 2, 3, 0)}

V 2 = span{(0, 4, 1, 1), (1, 4, 9, 0), (0, 4, 3, 0)}, and V 3 = R4.

Consider on the Heisenberg group the linear polynomial sequence1 a c
0 1 b
0 0 1

n

=

1 an cn +
(
n
2

)
ab

0 1 bn
0 0 1

.

The Leibman group is GΨ = ⟨GV ,GV 2

2 ⟩ ≤ G 4.

Define η on GΨ ≤ G 4 by η(h1, h2, h3, h4) = w · (c1, c2, c3, c4), where

hi =

1 ai ci
0 1 bi
0 0 1

 ∈ G for each i and w = (24, 3,−4,−8) ∈ V 2⊥.

Then η(gΨ(x , y)) = w · v1(c − 1
2ab)x + w · v2(c − 1

2ab)y .

What data from a polynomial sequence g determines the
distribution of gΨ? Spoiler answer: the (additive) distribution of the
coefficients of g in the Lie algebra. (modulo factorisation).
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Qualitative equidistribution in the Lie algebra

If Γ′ ≤ Γ has finite index, then g(n) equidistributes on G/Γ′ iff it
equidistributes on G/Γ.

Defn: lattices Γ and Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ and Γ′.

Fact

Γ and Γ′ are commensurable if and only if spanQ(log Γ) = spanQ(log Γ
′).

Defn: a rational structure gQ for g is a rational Lie subalgebra with
g ∼= gQ ⊗ R.
Fact: for any rational structure gQ in g, there is a lattice Γ in G
such that gQ = spanQ(log Γ). Conversely, for any lattice Γ in G ,
spanQ(log Γ) is rational structure in g.
Defn: A polynomial sequence p in g equidistributes in (g, gQ) if
exp p equidistributes in G/Γ, where Γ is any lattice such that
spanQ log Γ = gQ.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

p(n) in g equidistributes in (g, gQ) if and only if for every nontrivial
rational Lie algebra homomorphism η : g → R, we have η ◦ p(n) ̸⊂ Q.

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma



Qualitative equidistribution in the Lie algebra

If Γ′ ≤ Γ has finite index, then g(n) equidistributes on G/Γ′ iff it
equidistributes on G/Γ.
Defn: lattices Γ and Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ and Γ′.

Fact

Γ and Γ′ are commensurable if and only if spanQ(log Γ) = spanQ(log Γ
′).

Defn: a rational structure gQ for g is a rational Lie subalgebra with
g ∼= gQ ⊗ R.
Fact: for any rational structure gQ in g, there is a lattice Γ in G
such that gQ = spanQ(log Γ). Conversely, for any lattice Γ in G ,
spanQ(log Γ) is rational structure in g.
Defn: A polynomial sequence p in g equidistributes in (g, gQ) if
exp p equidistributes in G/Γ, where Γ is any lattice such that
spanQ log Γ = gQ.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

p(n) in g equidistributes in (g, gQ) if and only if for every nontrivial
rational Lie algebra homomorphism η : g → R, we have η ◦ p(n) ̸⊂ Q.

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma



Qualitative equidistribution in the Lie algebra

If Γ′ ≤ Γ has finite index, then g(n) equidistributes on G/Γ′ iff it
equidistributes on G/Γ.
Defn: lattices Γ and Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ and Γ′.

Fact

Γ and Γ′ are commensurable if and only if spanQ(log Γ) = spanQ(log Γ
′).

Defn: a rational structure gQ for g is a rational Lie subalgebra with
g ∼= gQ ⊗ R.
Fact: for any rational structure gQ in g, there is a lattice Γ in G
such that gQ = spanQ(log Γ). Conversely, for any lattice Γ in G ,
spanQ(log Γ) is rational structure in g.
Defn: A polynomial sequence p in g equidistributes in (g, gQ) if
exp p equidistributes in G/Γ, where Γ is any lattice such that
spanQ log Γ = gQ.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

p(n) in g equidistributes in (g, gQ) if and only if for every nontrivial
rational Lie algebra homomorphism η : g → R, we have η ◦ p(n) ̸⊂ Q.

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma



Qualitative equidistribution in the Lie algebra

If Γ′ ≤ Γ has finite index, then g(n) equidistributes on G/Γ′ iff it
equidistributes on G/Γ.
Defn: lattices Γ and Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ and Γ′.

Fact

Γ and Γ′ are commensurable if and only if spanQ(log Γ) = spanQ(log Γ
′).

Defn: a rational structure gQ for g is a rational Lie subalgebra with
g ∼= gQ ⊗ R.

Fact: for any rational structure gQ in g, there is a lattice Γ in G
such that gQ = spanQ(log Γ). Conversely, for any lattice Γ in G ,
spanQ(log Γ) is rational structure in g.
Defn: A polynomial sequence p in g equidistributes in (g, gQ) if
exp p equidistributes in G/Γ, where Γ is any lattice such that
spanQ log Γ = gQ.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

p(n) in g equidistributes in (g, gQ) if and only if for every nontrivial
rational Lie algebra homomorphism η : g → R, we have η ◦ p(n) ̸⊂ Q.

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma



Qualitative equidistribution in the Lie algebra

If Γ′ ≤ Γ has finite index, then g(n) equidistributes on G/Γ′ iff it
equidistributes on G/Γ.
Defn: lattices Γ and Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ and Γ′.

Fact

Γ and Γ′ are commensurable if and only if spanQ(log Γ) = spanQ(log Γ
′).

Defn: a rational structure gQ for g is a rational Lie subalgebra with
g ∼= gQ ⊗ R.
Fact: for any rational structure gQ in g, there is a lattice Γ in G
such that gQ = spanQ(log Γ). Conversely, for any lattice Γ in G ,
spanQ(log Γ) is rational structure in g.

Defn: A polynomial sequence p in g equidistributes in (g, gQ) if
exp p equidistributes in G/Γ, where Γ is any lattice such that
spanQ log Γ = gQ.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

p(n) in g equidistributes in (g, gQ) if and only if for every nontrivial
rational Lie algebra homomorphism η : g → R, we have η ◦ p(n) ̸⊂ Q.

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma



Qualitative equidistribution in the Lie algebra

If Γ′ ≤ Γ has finite index, then g(n) equidistributes on G/Γ′ iff it
equidistributes on G/Γ.
Defn: lattices Γ and Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ and Γ′.

Fact

Γ and Γ′ are commensurable if and only if spanQ(log Γ) = spanQ(log Γ
′).

Defn: a rational structure gQ for g is a rational Lie subalgebra with
g ∼= gQ ⊗ R.
Fact: for any rational structure gQ in g, there is a lattice Γ in G
such that gQ = spanQ(log Γ). Conversely, for any lattice Γ in G ,
spanQ(log Γ) is rational structure in g.
Defn: A polynomial sequence p in g equidistributes in (g, gQ) if
exp p equidistributes in G/Γ, where Γ is any lattice such that
spanQ log Γ = gQ.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

p(n) in g equidistributes in (g, gQ) if and only if for every nontrivial
rational Lie algebra homomorphism η : g → R, we have η ◦ p(n) ̸⊂ Q.

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma



Qualitative equidistribution in the Lie algebra

If Γ′ ≤ Γ has finite index, then g(n) equidistributes on G/Γ′ iff it
equidistributes on G/Γ.
Defn: lattices Γ and Γ′ are commensurable if Γ ∩ Γ′ has finite index
in both Γ and Γ′.

Fact

Γ and Γ′ are commensurable if and only if spanQ(log Γ) = spanQ(log Γ
′).

Defn: a rational structure gQ for g is a rational Lie subalgebra with
g ∼= gQ ⊗ R.
Fact: for any rational structure gQ in g, there is a lattice Γ in G
such that gQ = spanQ(log Γ). Conversely, for any lattice Γ in G ,
spanQ(log Γ) is rational structure in g.
Defn: A polynomial sequence p in g equidistributes in (g, gQ) if
exp p equidistributes in G/Γ, where Γ is any lattice such that
spanQ log Γ = gQ.

Theorem (Lie algebra multiparameter Leibman/Green–Tao)

p(n) in g equidistributes in (g, gQ) if and only if for every nontrivial
rational Lie algebra homomorphism η : g → R, we have η ◦ p(n) ̸⊂ Q.

Daniel Altman A non-flag arithmetic regularity lemma and counting lemma



Qualitative equidistribution on linear patterns

Let p(n) =
∑s

i=1 ain
i be a polynomial sequence in g. Let Ψ be a linear

pattern. Where does pΨ(x) = (p(ψ1(x), . . . , p(ψt(x))) distribute in gt?

identify g⊗ Rt ∼= gt (where a⊗ (u1, . . . , ut) 7→ (au1, . . . , aut)). Get
[a⊗ u, b ⊗ v ] = [a, b]⊗ uv .

Definition: a ∈ g is linearly irrational wrt gQ if for all rational linear
maps l ∈ g∗Q, we have l(a) ∈ Q =⇒ l(a) = 0.

Theorem

Let p(n) =
∑s

i=1 ain
i be a polynomial sequence in g with rational

structure gQ such that ai is linearly irrational for each i . Let Ψ be a
linear pattern. Then pΨ equidistributes in gΨ := ⟨Si ⊗ V i ⟩, where Si is
the smallest rational subspace containing ai .
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Qualitative equidistribution on linear patterns, cont.

Theorem (A. 2022+)

Let p(n) =
∑s

i=1 ain
i be a polynomial sequence in g with rational

structure gQ such that ai is linearly irrational for each i . Let Ψ be a
linear pattern. Then pΨ equidistributes in gΨ := ⟨Si ⊗ V i ⟩, where Si is
the smallest rational subspace containing ai .

Proof:

Let η be a rational Lie algebra homomorphism gΨ → R and
suppose η(pΨ(x)) ∈ Q for all x ∈ ZD . Then:
η(pΨ(x)) =

∑s
i=1 η(ai ⊗Ψ(x)i ) =

∑
m∈M

∑s
i=1 η(ai ⊗ vm,i )m(x) ∈ Q.
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The end
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