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Introduction

The study of Gowers norms (Gowers, 2001) has produced many interesting
results in the last years, the most notable of which being the proof that
the primes contain arbitrarily long arithmetic progression (Green and Tao,
2008).

A central topic in the area is about the inverse theorems for the Gowers
norms. For finite cyclic groups this was achieved in a series of papers
(Green and Tao 2008, Green, Tao and Ziegler 2011, 2012).

Similarly, for vector spaces of characteristic p this was done in (Bergelson,
Tao and Ziegler 2010, Tao and Ziegler 2010, 2012) with a recent
qualitative refinement recently (Berger, Sah, Sawhney and Tidor, 2021).
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Recent developments

Theorem (Jamneshan and Tao, 2021, informal)

Let Z be a finite abelian group and f ∈ L∞(Z) a 1-bounded function.
Suppose that ∥f ∥U3(Z) ≥ ϵ for some fixed ϵ > 0. Then there exists a
degree-2 filtered nilmanifold H/Γ, a polynomial map φ : Z → H/Γ and a
Lipschitz function W : H/Γ → C such that |⟨f ,W ◦φ⟩| ≫ϵ 1.

a

aThis result is even more explicit in terms of of the implicit constant ≫ϵ and the
complexity of the nilmanifold H/Γ.

Theorem (Jamneshan, Shalom and Tao, 2023, informal)

Let Z be a finite abelian m-torsion group and f ∈ L∞(Z) a 1-bounded
function. Suppose that ∥f ∥Uk+1(Z) ≥ ϵ for some fixed ϵ > 0. Then there
exists a polynomial map P on Z of degree at most O(k ,m) such that
|⟨f , e(−P)⟩| ≫ϵ 1.
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Introduction, cont.

In ergodic theory, seminorms analogous to Gowers norms were introduced
(Host and Kra 2005). (Host and Kra 2008) initiated an axiomatic
approach for Gowers norms defining the weakest structure a set must have
so that one can define a 2(3)-Gowers norm. Inspired by this, (Antoĺın
Camarena and Szegedy 2012) introduced the concept of nilspaces. Within
this framework, a general inverse theorem can be proved for any finite
abelian group:

Theorem (Candela and Szegedy, 2019, informal)

Let Z be a finite abelian group and f ∈ L∞(Z) a 1-bounded function.
Suppose that ∥f ∥Uk+1(Z) ≥ ϵ for some fixed ϵ > 0. Then there exists a
k-step cfr nilspace X, a morphism φ : Z → X and a Lipschitz function
W : X → C such that |⟨f ,W ◦φ⟩| ≫ϵ 1.

Can we give a description of X, φ and W in terms of more familiar objects?
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cfr nilspaces as quotients by higher-order lattice actions

Fourier analysis: Corresponds to the U2 norm. The correlating objects
function F ◦φ can be taken to be

χ : Z
φ−−−−→ R/Z e(·)−−−−−−→ C,

where φ is a homomorphism and e(x) := e2πix , i.e., χ is a Fourier
character.

Higher order Fourier analysis: This picture can be extended to

χ : Z
φ−−−−→ (Zr × Rs)/Γ

W−−−−−→ C,

where (Zr × Rs)/Γ is the quotient space of Zr × Rs by the action of Γ
which is a group described in terms of polynomials acting on Zr × Rs

(NOT a subgroup of Zr × Rs in general). W is a Lipschitz map and φ a
morphism.
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Example: The Heisenberg manifold

The Heisenberg manifold appears in many works in higher order Fourier

analysis (Green and Tao, 2006). It equals H/Γ where H =
(

1 R R
0 1 R
0 0 1

)
is the

Heisenberg group and Γ =
(

1 Z Z
0 1 Z
0 0 1

)
is the discrete Heisenberg group.

In the above framework we can describe it as follows: On R3 we define Γ
as the group generated by (x , y , z) 7→ (x + 1, y , z) and
(x , y , z) 7→ (x , y + 1, z + x). Then as a nilspace the Heisenberg manifold
equals R3/Γ.
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Free nilspaces and their translation groups

Definition (Free nilspace)

A free nilspace is a group nilspace of the form F =
∏k

i=1Di (Zai × Rbi )
where Di (Z) is the group nilspace generated by the filtration Z• = (Zj)j≥0,
Zj = Z if j ≤ i and {0} otherwise with the Host-Kra cubes.

Definition (Translation group of a free nilspace)

Let F be a free nilspace. The group Θ(F ) is the group of translations that
preserve cubes when applied on faces of a certain codimension.

Γ is a subgroup of Θ(F ), the translation group of a free nilspace F .

Example: If F = D1(Z)×D2(R)×D3(Z) we have that Θ(F ) is the
group of transformations (x , y , z) → (x + a, y + b+ cx , z + d + ex + f

(x
2

)
)

for a, d , e, f ∈ Z and b, c ∈ R.
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Fiber-transitive group actions

On a free nilspace F =
∏k

i=1Di (Zai × Rbi ) we define

πj : F →
∏j

i=1Di (Zai × Rbi ) as the map that forgets the components of
degree larger than j .

Definition (Fiber-transitive group of translations)

Let F be a k-step free nilspace and let Γ ≤ Θ(F ). We say that Γ is a
fiber-transitive group on F if the following holds: for all x , y ∈ F , if there
exists γ ∈ Γ such that γ(x) = y and πj(x) = πj(y) for some j ∈ [k], then
there exists γ′ ∈ Γ ∩Θj+1(F ) such that γ′(x) = y .

Example: (Host and Kra, 2008) On F = D1(Z)×D2(Z) let
Γ = ⟨(x , y) 7→ (x + p, y + x), (x , y) 7→ (x , y + p), (x , y) 7→ (x , y + px)⟩.

Non-example: On the same F as before, Γ′ := ⟨(x , y) 7→ (x , y + x)⟩.
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cfr nilspaces as quotients of a free nilspace by a
fiber-transitive group action

Observation: For 1-step free nilspaces F = D1(Za × Rb), a
fiber-transitive Γ ≤ Θ(F ) is just a subgroup of Za × Rb (as an abelian
group). In fact, it is true that any compact finite-rank abelian group is the
quotient of Za × Rb by a cocompact lattice.

Theorem (Candela, G-S, Szegedy)

Let X be a k-step compact finite-rank nilspace. Then there exists a k-step
free nilspace F , and a fiber-transitive group Γ ⊂ Θ(F ), such that X ∼= F/Γ.

Corollary (Inverse theorem, informal)

Combining this with the inverse theorem of Candela and Szegedy (2019)
we prove that usual Fourier characters are replaced by functions of the

form χ : Z
φ−−−−→ F/Γ

W−−−−−→ C for the Uk+1 norm.
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Double coset nilspaces

The space F/Γ is a quotient but Γ is not (in general) a subgroup of F .
However, there is a natural description of this quotient in terms of double
coset spaces. Representing nilspaces as double cosets was suggested by
Gutman, Manners and Varjú (private communication 2014) and in ergodic
theory double cosets have been successfully used to describe the 2-factors
of some ergodic systems (Shalom 2021).

Let x0 ∈ F be arbitrary and let Stab(x0) := {α ∈ Θ(F ) : α(x0) = x0}. It
can be proved that (as a nilspace) F ∼= Stab(x0)\Θ(F ). Thus:

Theorem (Candela, G-S, Szegedy (informal))

Let F be a free nilspace and Γ a fiber-transitive group action. Let x0 ∈ F
be any fixed point. Then F/Γ ∼= Stab(x0)\Θ(F )/Γ as a double coset
space.
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Double coset nilspaces, cont.

The fiber-transitive property for the group Γ translates to a nice and
symmetric property of a pair of subgroups K , Γ ≤ G in order for K\G/Γ to
be a nilspace:

Definition (Groupable nilpair)

Let (G ,G•) be a filtered group of degree k and let K , Γ be subgroups of
G . We say that (K , Γ) is a groupable nilpair in (G ,G•) if any of the
following equivalent properties is satisfied:

1 For every x ∈ G and every i ≥ 0 we have
(KxΓ) ∩ (GixΓ) = (K ∩ Gi )xΓ.

2 For every x ∈ G and every i ≥ 0 we have
(KxΓ) ∩ (KxGi ) = Kx(Γ ∩ Gi ).

Remark: In parallel with the completion of this work, Jamneshan, Shalom
and Tao (2023) shared with us a preprint where they prove that totally
disconnected Γ-systems of order k are represented as double coset spaces
satisfying the previous definition.

11 / 23



Let us discuss about the topology of all these objects...

Even for topological abelian groups problems may arise when defining
quotients:

Example: In the abelian group R consider the subgroups Z and Q. Both
are normal subgroups so algebraically both quotients are well-defined
abelian groups. However, R/Z is much nicer than R/Q (with the quotient
topology).

From the perspective of nilspaces we face similar problems. In fact, it was
not clear at all even how to define a topological nilspace with a
non-compact topology.
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lch nilspaces

We will say that a topological space is lch if it is locally-compact,
second-countable and Hausdorff.

Definition (lch nilspace)

We say that a nilspace X is an lch nilspace if X is an lch topological
space such that the following property holds for every integer n ≥ 0:

1 The cube set Cn(X) is closed in the product topology on XJnK.

2 The coordinate projection pJnK : Cn(X) → Corn(X) is an open map.

Sanity check: If we did not have condition 2, we could define a 1-step
lch nilspace which is not a topological abelian group.
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More on topology

Once this definition is established, many objects used in the theory of
nilspaces have to be studied from the perspective of having a topology. To
name a few:

1 Extension of nilspaces: if p : Y → X is an (algebraic) extension of
nilspaces, what conditions on X and p ensure that Y is also an lch
nilspace?

2 The group of translations Θ(X) of an lch nilspace is now defined as
the group of continuous translations. This forces the group of
translations of a free nilspace F to be describable in terms of
polynomials as stated before.

3 For fiber-transitive group actions we need to find conditions analogous
to those for topological groups to ensure well-defined lch quotients.

Slogan: Topology helps us in many parts of the proof albeit requiring us
to extend many existing results to topological setting.
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Extensions of nilspaces

Definition (Continuous extensions of lch nilspaces)

Let k , t ≥ 0 be integers. Let X, Y be k-step lch nilspaces such that Y is
an algebraic nilspace extension of X of degree t, by some lch abelian
group Z, with associated projection p : Y → X. We say that Y (or
p : Y → X) is a continuous extension of X if the action of Z on Y is
continuous and p is a continuous open map.

Observation: This is analogous to the theory of extensions of abelian lch
groups. In fact, any surjective homomorphism φ : G → H defines the short
exact sequence

0 −−−→ ker(φ) −−−→ G −−−→ H −−−→ 0.
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Extensions of free nilspaces

Recall: Let G be an abelian Lie group and φ : G → Zr × Rs a surjective
(continuous) homomorphism. Then G ∼= Zr × Rs × ker(φ) (that is, the
group Zr × Rs is projective for Lie groups).

Theorem (Candela, G-S, Szegedy)

Let F be a k-step free nilspace and let Y be a degree-k extension of F by
an abelian Lie group Z, with corresponding projection q : Y → F . Then
this extension splits, i.e., there exists a continuous morphism s : F → Y
such that q ◦s = id. In particular Y is isomorphic as an lch nilspace to
the product-nilspace F ×Dk(Z).

Corollary: the Heisenberg group H =
(

1 R R
0 1 R
0 0 1

)
endowed with the

Host-Kra cubes is isomorphic as an lch nilspace to D1(R2)×D2(R).
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Extensions of free nilspaces, cont.

Proof sketch: Induction on the step k of F =
∏k

i=1Di (Zai × Rbi ).
1 Prove that the map q is consistent, i.e., for every i ∈ [k] and

α ∈ Θi (Y) there exists (a unique) β ∈ Θi (F ) such that q ◦α = β ◦q.
Let q̂ : Θ(Y) → Θ(F ) be the map sending α 7→ β.

2 Prove that the map q̂ is surjective. To do so we use the criteria of
Translation bundles (Antoĺın-Camarena and Szegedy, 2012) which
reduces the problem to check if some other extension Tk−1 of
πk−1(F ) = Fk−1 splits. This is given by the induction hypothesis.

3 For i ∈ [k] and j ∈ [ai ], let βi ,j ∈ Θi (F ) the map that adds 1 in the
jth coordinate of Di (Zai ) and let β′

i ,j ∈ Θi (Y) be such that
q̂(β′

i ,j) = βi ,j . Similarly, let γi ,ℓ(c) : R → Θi (F ) the 1-parameter

subgroup that adds c on the ℓth coordinate of Di (Rbi ) and let
γ′i ,ℓ(c) : R → Θi (Y) be a lift of it.

4 Any x ∈ F equals uniquely
∏

i ,j ,ℓ β
□
i ,jγi ,ℓ(□)(0). The cross section

s : F → Y will be defined as x 7→
∏

i ,j ,ℓ β
′□
i ,jγ

′
i ,ℓ(□)(y0) where

q(y0) = 0.
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Main theorem: cfr nilspaces are quotients of free
nilspaces

Let us now prove one of the main results of the paper, that any cfr
nilspace is a quotient of a free nilspace by a fiber-transitive group action.

Instead of showing first that the quotient by a fiber-transitive group action
gives a nilspace, we are going to try to prove directly that any cfr
nilspace is the quotient of a free nilspace by some subgroup of
translations. This way we will see how the definition of fiber-transitive
group action naturally appears.
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Proof of main theorem (part 1)

The proof is going to be by induction on the step k of the cfr nilspace X.
The case k = 1 follows from abelian Lie group theory.

Step 1: Assume by induction that Xk−1 equals the quotient of a
k − 1-step free nilspace Fk−1 by the action of some finitely-generated
group H ≤ Θ(Fk−1). The quotient map being φk−1 : Fk−1 → Xk−1.

Step 2: Consider the fiber-product
Fk−1 ×Xk−1

X := {(f , x) ∈ Fk−1 × X : φk−1(f ) = πk−1(x)},

Fk−1 ×Xk−1
X X

Fk−1 Xk−1 .

p2

p1 πk−1

φk−1
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Proof of main theorem (part 2)

Step 3: Show that Fk−1 ×Xk−1
X is an extension of Fk−1 by Zk(X), the

last structure group of X. Hence Fk−1 ×Xk−1
X is isomorphic to

Fk−1 ×Dk(Zk(X)).

Step 4: There exists a group Z = Zr × Rs and a surjective
homomorphism ϕ : Z → Zk(X). Thus if F = Fk−1 ×Dk(Z) we can further
refine the previous picture to:

F Fk−1 ×Dk(Zk) ∼= Fk−1 ×Xk−1
X X

Fk−1 Xk−1 .

πϕ p2

πk−1

φk−1

p1
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Proof of main theorem (part 3)

Step 5: If H = ⟨h1, . . . , hn⟩ note that we can lift these translations
through the fibration p1 : Fk−1 ×Xk−1

X → Fk−1 simply by taking
h′i := (hi , id) for i ∈ [n]. That is, on Fk−1 ×Xk−1

X we can define the
translation that acts as hi in the first coordinate and as id in the second.
Step 6: For every i ∈ [n] we have that h′i can be seen as a translation in
Fk−1 ×Dk(Zk(X)). But this is a group nilspace very explicit, and we can
show that all translations here can be represented with polynomial maps.
Moreover, using this explicit expression it can be shown that for each
i ∈ [n] there exists h̃i ∈ Θ(F ) such that πϕ ◦ h̃i = h′i ◦πϕ.

F Fk−1 ×Dk(Zk) ∼= Fk−1 ×Xk−1
X X

Fk−1 Xk−1 .

πϕ p2

πk−1

φk−1

p1

h̃i
h′i = (hi , id) id

hi

21 / 23



Proof of main theorem (part 4)

Step 7: Recall that we took a surjective homomorphism ϕ : Z → Zk(X).
We can do it in a way that the kernel is a lattice generated by
γ1, . . . , γm ∈ Z. For every j ∈ [m] let γ̃j ∈ Θk(F ) be the map that adds γj
to the Z component of F = Fk−1 ×Dk(Z).

Step 8: Putting everything together the best candidate group H ′ in Θ(F )
such that X ∼= F/H ′ is precisely H ′ := ⟨h̃1, . . . , h̃n, γ̃1, . . . , γ̃m⟩ and in fact
this works. Moreover, this group satisfies the fiber-transitive property.
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The end

Thank you for your attention!
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