Disintegrating Cubic Measures for Sumsets

Donald Robertson
University of Manchester

$$
\text { June 6, } 2023
$$

Work With

Bryna Kra (Northwestern)
 Joel Moreira (Warwick University)

Florian K. Richter (EPFL)

Main Results

Theorem. If $A \subset \mathbb{N}$ has positive upper density then

$$
B+C \subset A
$$

for infinite sets $B, C \subset \mathbb{N}$.

Theorem. If $A \subset \mathbb{N}$ has positive upper density then

$$
B_{1}+B_{2}+\cdots+B_{k} \subset A
$$

for infinite sets $B_{1}, B_{2}, \ldots, B_{k} \subset \mathbb{N}$.

Dynamical Setup

$T: X \rightarrow X$ a homeomorphism of a compact metric space μ a T-invariant and T-ergodic probability on X
$E \subset X$ clopen with $\mu(E)>0$ and $A=\left\{n \in \mathbb{N}: T^{n}(a) \in E\right\}$
$a \in X$ generic for μ that is

$$
\lim _{N \rightarrow \infty} \frac{1}{K_{N}} \sum_{n=J_{N}}^{J_{N}+K_{N}} \delta_{T^{n} a}=\mu
$$

Dynamical Version of Main Result

Theorem (Main Theorem). There are sequences $b(n) \nearrow \infty$ and $c(n) \nearrow \infty$ and points $x, y, z \in X$ with

$$
\begin{aligned}
& (T \times T)^{b(n)}(a, x) \rightarrow(y, z) \\
& (T \times T)^{c(n)}(a, y) \rightarrow(x, z)
\end{aligned}
$$

and $z \in E$.

Special Circumstances

If a belongs to the support of μ then one can find $b(n) \nearrow \infty$ with

$$
T^{b(n)}(a) \rightarrow a
$$

and take $c(n)=b(n)+t$ where $T^{t}(a) \in E$.

$$
\begin{aligned}
(T \times T)^{b(n)}\left(a, T^{t}(a)\right) & \rightarrow\left(a, T^{t}(a)\right) \\
(T \times T)^{b(n)+t}(a, a) & \rightarrow\left(T^{t}(a), T^{t}(a)\right)
\end{aligned}
$$

Special Circumstances

In fact, if a belongs to the support of μ then A contains a translate of an IP set.

Example (Straus). There are $A \subset \mathbb{N}$ with positive density containing no translate of any IP set.

$$
A=\mathbb{N} \backslash \bigcup_{n=0}^{\infty} \alpha_{n}\left(\mathbb{N}+\beta_{n}\right)+n
$$

Limiting Configurations

A tuple (w, x, y, z) with sequence $b(n), c(n) \nearrow \infty$ satisfying

$$
\begin{aligned}
& (T \times T)^{b(n)}(w, x) \rightarrow(y, z) \\
& (T \times T)^{c(n)}(w, y) \rightarrow(x, z)
\end{aligned}
$$

is called an Erdős cube.

Theorem (Main Theorem). An Erdős cube exists with first coordinate a and last coordinate in E.

Cubic Measures

Theorem. $\mu^{[2]}$-almost every point in $X^{[2]}=X^{4}$ is an Erdős cube.

Proof

1. Recall

$$
\mu^{[2]}=\int \lambda_{(p, q)} \times \lambda_{(p, q)} \mathrm{d}(\mu \times \mu)(p, q)
$$

where $(p, q) \mapsto \lambda_{(p, q)}$ is an ergodic decomposition of $\mu \times \mu$ with respect to $T \times T$.
2. The map $(w, x, y, z) \mapsto(w, y, x, z)$ is a symmetry of $\mu^{\llbracket 2 \rrbracket}$.

Disintegration

The set $X \llbracket{ }^{\llbracket \rrbracket}$ is partitioned by the fibers of the projection to the first coordinate

$$
\pi_{00}(w, x, y, z)=w
$$

and for each $w \in X$ we can attempt to determine the piece of $\mu^{[2]}$ on $\pi_{00}^{-1}(w)$.

Disintegration

Want for every $w \in X$ a probability σ_{w} on $\pi_{00}^{-1}(w)$ such that

$$
\int \sigma_{w} \mathrm{~d} \mu(w)=\mu^{\llbracket 2 \rrbracket}
$$

and to deduce that σ_{a} almost-every point is an Erdős cube.

Cubic Measure Again

It is standard that

$$
\begin{aligned}
\mu^{\llbracket 2 \rrbracket} & =\int \lambda_{(w, x)} \times \lambda_{(w, x)} \mathrm{d}(\mu \times \mu)(w, x) \\
& =\int \delta_{(w, x)} \times \lambda_{(w, x)} \mathrm{d}(\mu \times \mu)(w, x) \\
& =\int \delta_{w} \times \int \delta_{x} \times \lambda_{(w, x)} \mathrm{d} \mu(x) \mathrm{d} \mu(w)
\end{aligned}
$$

so we want to define $\sigma_{w}=\delta_{w} \times \int \delta_{x} \times \lambda_{(w, x)} \mathrm{d} \mu(x)$ for all $w \in X$.

Getting Main Theorem

1. Suppose $\sigma_{w}=\delta_{w} \times \int \delta_{x} \times \lambda_{(w, x)} \mathrm{d} \mu(x)$ makes sense for all w.
2. If σ_{a} has $(w, x, y, z) \mapsto(w, y, x, z)$ symmetry it suffices to prove for almost-every x that (a, x) is generic for $\lambda_{(a, x)}$.
3. Almost-every σ_{t} has (t, x) generic for $\lambda_{(t, x)}$ almost-surely.
4. If $w \mapsto \sigma_{w}$ is continuous and equivariant can find $s(n) \nearrow \infty$ with

$$
(T \times T \times T \times T)^{s(n)} \sigma_{a} \rightarrow \sigma_{t}
$$

Disintegration

Theorem (Disintegration Theorem).
If we have for every $w \in X$ a probability σ_{w} on $X[[2]]$ with the properties

1. $\sigma_{w}(\{(w, x, y, z): x, y, z \in X\})=1$
2. $w \mapsto \sigma_{w}$ continuous
3. $(T \times T \times T \times T) \sigma_{w}=\sigma_{T(w)}$
4. $w \mapsto \sigma_{w}$ disintegrates $\mu^{\llbracket 2 \rrbracket}$
5. $\pi_{11} \sigma_{w}=\mu$
6. σ_{w} invariant for $(w, x, y, z) \mapsto(w, y, x, z)$
then there is an Erdős cube (w, x, y, z) with $w=a$ and $z \in E$.

Disintegration

By standard results in measure theory we can get σ_{w} defined for μ almost-every w with

1. $\sigma_{w}(\{(w, x, y, z): x, y, z \in X\})=1$
2. $w \mapsto \sigma_{w}$ measurable
3. $(T \times T \times T \times T) \sigma_{w}=\sigma_{T(w)}$
4. $w \mapsto \sigma_{w}$ disintegrates $\mu^{\llbracket 2 \rrbracket}$
5. $\pi_{11} \sigma_{w}=\mu$
6. σ_{w} invariant for $(w, x, y, z) \mapsto(w, y, x, z)$

But we are disintegrating a special measure!

Ergodic Decomposition

To define

$$
\sigma_{w}=\delta_{w} \times \int \delta_{x} \times \lambda_{(w, x)} \mathrm{d} \mu(x)
$$

for all $w \in X$ we need $\lambda_{(w, x)}$ to be defined for all (w, x) and for

$$
(w, x) \mapsto \lambda_{(w, x)}
$$

to be continuous.

Ergodic Decomposition

Non-Theorem There is a continuous map $(w, x) \mapsto \lambda_{(w, x)}$ from $X \times X$ to the space of probability measures on $X \times X$ with the following property: for $\mu \times \mu$ almost-every (w, x) the measure $\lambda_{(w, x)}$ is $T \times T$ invariant and ergodic.

Ergodic Decomposition

Where does the ergodic decomposition of $\mu \times \mu$ come from? It is controlled by the maximal compact group rotation factor $\left(Z_{1}, m, R\right)$ of (X, μ, T).

$$
\int f \otimes g d \lambda_{(w, x)}=\int \mathbb{E}\left(f \mid Z_{1}\right) \otimes \mathbb{E}\left(g \mid Z_{1}\right) \mathrm{d} \lambda_{(w, x)}
$$

We think of $\lambda_{(w, x)}$ as determined by the orbit of $(\pi w, \pi x)$ in $Z_{1} \times Z_{1}$.

Ergodic Decomposition

Theorem. If there is a topological factor map $\pi:(X, T) \rightarrow(Z, R)$ realizing the Kronecker factor of (X, μ, T) then there is a continuous map $(w, x) \mapsto \lambda_{(w, x)}$ from $X \times X$ to the space of probability measures on $X \times X$ with the following property: for $\mu \times \mu$ almost-every (w, x) the measure $\lambda_{(w, x)}$ is $T \times T$ invariant and ergodic.

Proof

1. The map $\pi \times \pi: X \times X \rightarrow Z \times Z$ is continuous, and orbit closures vary continuously in $Z \times Z$. Thus the ergodic decomposition of $m \times m$ is continuously varying.
2. The structure theory allows us to lift this to a decomposition for $T \times T$ on $X \times X$ by associating with (w, x) the ergodic measure corresponding to the orbit of $(\pi w, \pi x)$.

Additional Properties

1. $\lambda_{(w, x)}$ only depends on $(\pi w, \pi x)$.
2. $(T \times T) \lambda_{(w, x)}=\lambda_{(T w, T \times)}$ everywhere.
3. Every $\lambda_{(w, x)}$ is a self-joining of (X, μ, T).

Topological Factor Maps for Distal Factors

Theorem (Host Kra 2009). By passing to a topological extension, we can assume there is a factor map in the topological category to any given distal factor of (X, μ, T). Moreover, generic points survive the passage.

General Disintegration

Theorem. For every $k \in \mathbb{N}$ the inductive construction

$$
\begin{aligned}
\sigma_{w}^{[[1]]} & =\delta_{w} \times \mu \\
\sigma_{w}^{[[k+1]]} & =\int_{? ? ?} \delta_{x} \times \lambda_{x}^{[[k]]} \mathrm{d} \sigma_{w}^{[[k]]}(x)
\end{aligned}
$$

is a disintegration of $\mu^{[[k+1]]}$ over $\pi_{00 \cdots 0}(x)=x_{00 \cdots 0}$ with all desirable properties.

Complications

For all this to work, we need a continuous ergodic decomposition of $\mu^{\llbracket k \rrbracket}$.

1. Orbit closures in powers of nilmanifolds do not foliate as nicely as orbit closures in compact abelian groups.
2. Our continuous ergodic decomposition of $\mu^{\llbracket k \rrbracket}$ is not defined on all of $X \llbracket k \rrbracket$. It is only defined on an appropriate set of cubes.

Orbit Closures in Nilmanifolds

Theorem (Leibman 2009). In a connected nilmanifold Z there is a subnilmanifold Y with the following property: almost-every orbit closure $\overline{\left\{R^{n}(z): n \in \mathbb{Z}\right\}}$ is a translate of Y.

Nilcubes

Let $\pi_{k}: X \rightarrow Z_{k}$ be a continuous factor map to the k-step pronilfactor of (X, μ, T).

Define the nilcubes of X to be

$$
N^{\llbracket k \rrbracket}(X)=\left(\pi_{k}^{\llbracket k \rrbracket}\right)^{-1}\left(Q^{\llbracket k \rrbracket}\left(Z_{k}\right)\right)
$$

where $\mathbb{Q}^{\llbracket k \rrbracket}\left(Z_{k}\right)$ are the (Host Kra Maass 2010) dynamical cubes.

Nilcubes

Our continuous ergodic decomposition of $\mu^{\llbracket k \rrbracket}$ is defined on $N^{\llbracket k \rrbracket}(X)$.

One has $E^{\llbracket k \rrbracket}(X) \subset Q^{\llbracket k \rrbracket}(X) \subset N^{\llbracket k \rrbracket}(X)$ where E denotes Erdős cubes.

In general $\mathbb{N}^{\llbracket k \rrbracket}(X)$ is larger than the support of $\mu^{\llbracket k \rrbracket}$ because a might not be in the support of μ.

Dziekuje!

