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The Thue-Morse(—Prouhet) sequence

+1,—1, 1,41, —1,+1,+1,—1, — 1,41, +1, —1,+1, -1, —1,+1,...
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The Thue-Morse sequence (discovered by Prouhet) ¢: N — {+1, —1} is the
paradigmatic example of an automatic sequence. It can be defined in several ways:
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The Thue-Morse(—Prouhet) sequence

+1, -1, —1,+1, —1,4+1,+1,—1, 1, +1,+1, —1, +1,—1, —1, +1,...
The Thue-Morse sequence (discovered by Prouhet) ¢: N — {+1, —1} is the
paradigmatic example of an automatic sequence. It can be defined in several ways:
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The Thue-Morse(—Prouhet) sequence

41,1, 1,41, —1,+1,+1, -1, —1,+1,+1, —1,4+1, -1, —1,+1,...
The Thue-Morse sequence (discovered by Prouhet) ¢: N — {+1, —1} is the
paradigmatic example of an automatic sequence. It can be defined in several ways:

o Explicit formula: £(n) = +1 ?f n ?s emil (i.e.'7 sum of bina.ry digit.s .is éven),
—1 if nis odious (i.e., sum of binary digits is odd).

® Recurrence: t(0) = +1, ¢(2n) =t(n), t(2n+1)= —t(n).
® Fixed point of a substitution: +1 +— +1,—1; —1+— —1 +1.

® Automatic sequence:

start —

® Strongly 2-multiplicative sequence: ¢(1) = —1, and if m < 2° then
t(2%n +m) = t(n)t(m).
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Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. —eg. k=10or k=2
e ¥, ={0,1,...,k — 1}, the set of digits in base k;
e X7 is the set of words over ¥j, monoid with concatenation;
e for n € N, (n)i € X, is the base-k expansion of n; — no leading zeros
e for w € ¥j, [w]r € N is the integer encoded by w.
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e for n € N, (n)i € X, is the base-k expansion of n; — no leading zeros
e for w € ¥j, [w]r € N is the integer encoded by w.

A finite k-automaton consists of:

1
o a finite set of states S with a 1
distinguished initial state so; 0 1 0 1
@ a tramsition function 0: S X X — S;
e an output function 7: § — Q. start — 0 0

Computing the sequence:
o Extend § to a map S x X} with (s, uv) = §(d(s,u),v) or 6(d(s,v),u);
o The sequence computed by the automaton is given by a(n) = 7 (6(so, (n)x)).
o The automaton above computes the Rudin-Shapiro sequence (—1)# °f 11 in (n)2,
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1
o a finite set of states S with a 1
distinguished initial state so; 0 1 0 1
@ a tramsition function 0: S X X — S;
e an output function 7: § — Q. start — 0 0

Computing the sequence:
o Extend § to a map S x X} with (s, uv) = §(d(s,u),v) or 6(d(s,v),u);
o The sequence computed by the automaton is given by a(n) = 7 (6(so, (n)x)).
o The automaton above computes the Rudin-Shapiro sequence (—1)# °f 11 in (n)2,

Intuition: Automatic <= Computable by a finite device.
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Uniformity of Thue-Morse

Question (Mauduit & Sarkozy (1998)/folklore) J

Is which ways is the Thue-Morse sequence uniform/pseudorandom?
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Question (Mauduit & Sarkozy (1998)/folklore)

Is which ways is the Thue-Morse sequence uniform/pseudorandom?

Structure:
® Linear subword complexity: # {w € {+1,-1}" : w appears in t} =0().
O #{n< N :tin)=t(h+1)} ¥N/3#N/2. — t(n)=tn+1)iff 2{v2(n+1)
® #{n<N:tln)=tn+1)=t(n+2)}=0. — in general: t is cube-free
Uniformity:
©® Maximal arithmetical subword complexity: For each | € N and w € {+1, —1}
there exist n,m € Ng such that w = t(n),t(n+m),...,t(n + (I — 1)m).
>} Z t(n) = O(1) (not very hard).

n<N
e Z t(an +b) = O(N'°) with ¢ > 0. — Gelfond (1968)
n<N
@ Level of distribution equal to 1: For each € > 0 there exists § > 0 such that
_ 1-6 .
Z arrrnl(;aé(d‘ Z t(n)‘ =O0O(N ). — Spiegelhofer (2020)
d<N1l—e n<N

n=a mod d
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Gelfond problems

©® Thue-Morse does not correlate with the primes: — Mauduit & Rivat (2010)

4{p< N : pis prime, t(p) = +1} %W(N) L O(N').
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Gelfond problems

©® Thue-Morse does not correlate with the primes: — Mauduit & Rivat (2010)

#{p < N : pis prime, t(p) = +1} — %’/T(N) + O(N1—C).

® Thue-Morse does not correlate with polynomials p(z) € Q[z] such that p(N) C N:
1 —c
#{n <N : t(;@(n))=—i—1}:§N—l—O(N1 ).

Known for p(n) = n?; open for degp > 3. — Mauduit & Rivat (2009)

® Thue-Morse does not correlate with Piatetski-Shapiro sequences:
« 1 —c
#{n <N : t(|n*]) =+1} = 5N+O(N1 ).

Known for a < 2; open for a > 2. — Spiegelhofer (2018)
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Higher order Fourier analysis: first glance

Definition (Gowers norm)
Fix k > 2. Let f: [N] = R. Then || f{|;(n; = 0 is defined by:
k
A5 =E [T €“'f(no+wim +...wen),
" we{0,1}k

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (no,...,nx) € Z*! such that ng +winy + ...wsns € [N] for all w € {0,1}".
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Higher order Fourier analysis: first glance

Definition (Gowers norm)
Fix k > 2. Let f: [N] = R. Then || f{|;(n; = 0 is defined by:
k
Hf”QUk[N] ZE H Clwlf(no—i—wlnl +...wknk),
" we{0,1}k

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (no,...,nx) € Z*T! such that no + wini +...wrnk € [N] for all w € {0,1}".

Theorem (Generalised von Neumann Theorem)
Fiz s > 1 and let fo, f1,..., fs+1: [N] = C be 1-bounded. Then

E fo(n)fi(n+m)fa(n+2m)... forr(n+ (s + m)| < min | fill yorapy -

n,m

Corollary: If A C [N], #4 = aN and HlA — al[N]’ vetin) S € then then A

contains almost as many (s + 2)-term APs as a random set of the same size,

#{(n,m) € [N]> :n,n+m,....,n+(s+1)me A} =a*>N?/2(s + 1) + O(eN?).
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Higher order Fourier analysis meets Thue-Morse

Recall: ||f/;2 ~ l£llea = || flloo. Hence, the result of Gelfond (1968) implies that the
Thue-Morse sequence is U2-uniform, [tz < N7°

Corollary: The number of 3-term APs in {n € [N] : t(n) = +1} is ~ N?/32.
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Higher order Fourier analysis meets Thue-Morse

Recall: ||f/;2 ~ | Flles = || flloo. Hence, the result of Gelfond (1968) implies that the
Thue-Morse sequence is U*-uniform, [[¢]|; 2y < N7°.

Corollary: The number of 3-term APs in {n € [N] : t(n) = +1} is ~ N?/32.

Theorem (K.)

The Thue—Morse sequence s Gowers uniform of all orders. More precisely, for each
s > 1 there ezists c = cs > 0 such that [|t]| ety < N°

Corollary: The number of (s + 2)-term APs in {n € [N] : t(n) = +1} is
~ N2/25%3 (5 4-1).
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Uniform “digital” sequences

A sequence f: N — C is k-multiplicative if
f(n+m)= f(n)f(m) for all n,m > 0 such that m < k°, k'|n.
Theorem (Fan & K.) If f is bounded and k-multiplicative, and s > 1 then
[fllrs+1(n) — 0 @as N — oo if and only if || f[|;2;5; — 0 as N — oo.

Nota bene: The same equivalence holds for multiplicative sequences, i.e., f: N — C
such that f(nm) = f(n)f(m) if ged(n,m) = 1. — Frantzikinakis & Host (2017)
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Uniform “digital” sequences

A sequence f: N — C is k-multiplicative if
f(n+m)= f(n)f(m) for all n,m > 0 such that m < k°, k'|n.
Theorem (Fan & K.) If f is bounded and k-multiplicative, and s > 1 then
[fllrs+1(n) — 0 @as N — oo if and only if || f[|;2;5; — 0 as N — oo.

Nota bene: The same equivalence holds for multiplicative sequences, i.e., f: N — C
such that f(nm) = f(n)f(m) if ged(n,m) = 1. — Frantzikinakis & Host (2017)
Rudin—Shapiro sequence: r: N — {—1,+1}.
e Explicit formula:
(n) +1 if 11 appears an even number of times in the binary expansion of n,
T‘ =
—1if 11 appears an odd number of times in the binary expansion of n.
e Recurrence: r(0) = +1, r(2n) = r(n), r(2n 4+ 1) = (=1)"r(n).

Theorem (K.) For each s > 1 there exists ¢ > 0 such that |71y < N™°
Remark: The same applies to other sequences defined by “counting patterns”.
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Higher order Fourier analysis meets automatic sequences

Which among k-automatic sequences are Gowers uniform?

Question J
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Which among k-automatic sequences are Gowers uniform?

Basic classes of non-uniform sequences:
@ periodic, such as n — n mod 3;
® forward synchronising, such as n — va(n) mod 2; — 2v2(") | p

® backwards synchronising, such as n — |log,(n)| mod 2.
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Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform?

Basic classes of non-uniform sequences:
@ periodic, such as n — n mod 3;
® forward synchronising, such as n — va(n) mod 2; — 2v2(n) |

® backwards synchronising, such as n — |log,(n)| mod 2.

Theorem (Byszewski, K. & Miillner)

Each automatic sequence a: No — C has a decomposition a = astr + Quni, where

@ auni ts uniform in the sense that for each s > 1 there exists cs > 0 such that
||auni||Us+1[N] KN,

® asir 15 structured in the sense that there erist aper, Afs, Abs: No — Qper, Qss, Qbs
which are periodic, forward synchronising and backward synchronising
respectively and a map F: Qper X Qs X Qs — C such that

astr(n) = F' (aper(n), ass(n), avs(n)) .
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Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fiz s > 1, e > 0 and a growth function F: Ry — Ry. Fach sequence a: [N] — [0, 1]

has a decomposition a = ani + Gsm1 + Guni, where M = O(1) and
@ auni 1S uniform in the sense that ||a““i||U5+1[N] <1/F(M).

® sl 45 small in the sense that ||asm1||L2[N] <e.

® anil is a (F(M), N)-irrational virtual degree s nilsequence of complezrity < M.
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has a decomposition a = ani + Gsm1 + Guni, where M = O(1) and

@ auni 1S uniform in the sense that ||a““i||U5+1[N] <1/F(M).
® sl 45 small in the sense that ”asrnl”LZ[N] <e.

® anil is a (F(M), N)-irrational virtual degree s nilsequence of complezrity < M.

Recall: If a is automatic, then agr(n) = F (aper(n), ats(n), aps(n)) , where
@ aper is periodic;
@ ag is essentially periodic; — ags = [k-periodic] + O(1/k™) in L2[N]
@ ays is constant on long intervals.

Hence, asr = [1-step nilsequence] + [small error].
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Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fiz s > 1, e > 0 and a growth function F: Ry — Ry. Fach sequence a: [N] — [0, 1]
has a decomposition a = ani + Gsm1 + Guni, where M = O(1) and

@ auni 1S uniform in the sense that ||a““i||U5+1[N] <1/F(M).
® sl 45 small in the sense that ”asrnl”LZ[N] <e.

® anu 1s a (F(M), N)-irrational virtual degree s nilsequence of complezity < M.

Recall: If a is automatic, then ag:(n) = F (aper(n), ats(n), abs(n)) , where
@ aper is periodic;
@ ag is essentially periodic; — ags = [k-periodic] + O(1/k™) in L2[N]
@ ays is constant on long intervals.

Hence, asr = [1-step nilsequence] + [small error].

Key differences:
e For automatic sequences, 1-step nilsequences are enough.

e Quantitative bounds in the decomposition are reasonable.
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Application: Popular differences

Fixl €N, a >0 and ¢ > 0. Let A C [N] be a set with #A4 > aN. We will call an

integer m € [N] a popular difference if A contains at least (o' — )N length-I
arithmetic progressions with difference m.

10/19



Application: Popular differences

Fixl €N, a >0 and ¢ > 0. Let A C [N] be a set with #A4 > aN. We will call an
integer m € [N] a popular difference if A contains at least (o' — )N length-I
arithmetic progressions with difference m.

Theorem (Bergelson, Host & Kra (2005); Green & Tao (2010))
If I < 4 then there are > N popular differences. This is no longer true for 1 > 5.
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Application: Popular differences

Fixl €N, a >0and e > 0. Let A C [N] be a set with #A > aN. We will call an
integer m € [N] a popular difference if A contains at least (o' — ¢)N length-1
arithmetic progressions with difference m.

Theorem (Bergelson, Host & Kra (2005); Green & Tao (2010))
If I < 4 then there are > N popular differences. This is no longer true for 1 > 5.

Corollary: Suppose that A = AN [N] for some automatic set A (with complexity
bounded as N — co). Then for each | € N, there are > N popular differences.

Proof ideas:

o Let M € N be large, let d € N multiplicatively rich. Suppose that N = k=,
° PutP:{mGN :m=0modd, m=0mod k", m<kL7M}.

-1

Hope: Many m € P are popular differences, [f, [E H la(n+im) > a.
meP ne[N] ;g

-1
By generalised von Neumann, we only need [ [k, lastr(n+im) 2 al.
meP ne[N] jg

Because 14 str is structured, we almost always have 14 str(n 4 im) = 14 str(n).
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Application: Quantitative Cobham’s theorem

Theorem (Cobham (1969))
Let k, £ > 2 and let a: N — Q be a sequence that is both k- and ¢-automatic. Then
e k and ¢ are multiplicatively dependent, i.e., log,(¢) € Q; or

e a is eventually periodic (and hence automatic in every base).
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Question: How similar can a k-automatic sequence be to an ¢-automatic sequence?
e We already know that they cannot be equal, or even asymptotically equal.
o We need to account for possible correlations with periodic sequences.
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Theorem (Cobham (1969))
Let k, £ > 2 and let a: N — Q be a sequence that is both k- and ¢-automatic. Then
e k and ¢ are multiplicatively dependent, i.e., log,(¢) € Q; or

e a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ¢-automatic sequence?
e We already know that they cannot be equal, or even asymptotically equal.
o We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Miillner)

Let k, £ > 2 be multiplicatively independent integers and let a,b: N — C be k- and
{-automatic, respectively. Then

S am)b(n) = 37 auer(n)bat(n) + O(N'7°).

n<N n<N
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Let k, £ > 2 and let a: N — Q be a sequence that is both k- and ¢-automatic. Then
e k and ¢ are multiplicatively dependent, i.e., log,(¢) € Q; or

e a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ¢-automatic sequence?
e We already know that they cannot be equal, or even asymptotically equal.
o We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Miillner)

Let k, £ > 2 be multiplicatively independent integers and let a,b: N — C be k- and
{-automatic, respectively. Then

S am)b(n) = 37 auer(n)bat(n) + O(N'7°).

n<N n<N

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
{-automatic sequence b,

> a(n)b(n) = O(N'~).

n<N

11/19



Group extensions of automata

Two “extreme” classes of k-automatic sequences:

® Synchronising (forwards): There exists a synchronising word w € X, such that
a(uwv) = a(wv) for all words u,v € Xj,.

In particular, a is almost periodic.

® Invertible: There is a group G, A: ¥y — G, A(0) =idg, and amap x: G — C
such that

a(n) =x (M (w) - A(u—1) - A (ug)) for wiwi—1...uo = (n)p € . (1)
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Two “extreme” classes of k-automatic sequences:

® Synchronising (forwards): There exists a synchronising word w € X, such that
a(uwv) = a(wv) for all words u,v € Xj,.

In particular, a is almost periodic.

® Invertible: There is a group G, A: ¥y — G, A(0) =idg, and amap x: G — C

such that
a(n) =x (M (w) - A(u—1) - A (ug)) for wiwi—1...uo = (n)p € . (1)
Idea: Arbitrary . Synchronising ® Group .
automaton automaton labels
Simplifying assumptions:
® The sequence a is invertible and given by (7). — significantly simpler case
® The map x: G — S* C C is a group homomorphism. — Peter-Weyl, dim = 1

Goal: The sequence a is either highly Gowers uniform of all orders or periodic.
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Group extensions of automata

Definition: A group eztension T of an automaton A = (S, so,d) (without output)
by a group G consists of A and

e a label function \: S x X — G.
In order to compute a sequence using 7:
e extend A to S X X by A(s,uv) = A(s, u)A(d(s,u),v) for u,v € XF;
e pick an output function 7 on S x G and put a(n) = 7 (6(so, (n)x), A(s0, (N)k))-
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by a group G consists of A and

e a label function \: S x X — G.
In order to compute a sequence using 7:
e extend A to S X X by A(s,uv) = A(s, u)A(d(s,u),v) for u,v € XF;
e pick an output function 7 on S x G and put a(n) = 7 (6(so, (n)x), A(s0, (N)k))-

Example: Rudin-Shapiro sequence

1/-1
0/+1 1/4+1
/+ /+ o G={+1,-1}
start — 0 0 start — 0/_|_1 ° T(Svg) =9

Figure: Automaton Figure: Group extension
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Group extensions of automata

Definition: A group eztension T of an automaton A = (S, so,d) (without output)
by a group G consists of A and

e a label function \: S x X — G.
In order to compute a sequence using 7:
e extend A to S X X by A(s,uv) = A(s, u)A(d(s,u),v) for u,v € XF;
e pick an output function 7 on S x G and put a(n) = 7 (6(so, (n)x), A(s0, (N)k))-

Example: Rudin-Shapiro sequence

1/-1
0/+1 1/4+1
/+ /+ o G={+1,-1}
start — 0 0 start — 0/_|_1 ° T(Svg) =9

Figure: Automaton Figure: Group extension

Theorem (Miillner (2017)) Each primitive automatic sequence is produced by a
group extension of a synchronising automaton.
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Recurrence (1/4)

Let us consider the U2-norm of the Thue-Morse sequence t. Recall that

||f||é2[N] = <f: £ f)UZ[N] s

where (-)UQ[N] is the Gowers product given by
(foo, fio, fo1, f11>U2[N] =K foo(no)flo(no + nl)f_l(](no + n2) fi1(no + n1 + n2).
n~N

and the average is taken over all n = (ng,n1,n2) € 72 such that
no,no + Ni,no + n2,no +n1 +n2 € [N] = {0,1,...,N— 1}
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Recurrence (1/4)

Let us consider the U2-norm of the Thue-Morse sequence t. Recall that

||f||U2N]_<f f7f7f>U2N]>

where (-)UQ[N] is the Gowers product given by
(foo, fio, fo1, f11>U2[N] =K foo(no)flo(no + nl)f_l(](no + n2) fi1(no + n1 + n2).
n~N

and the average is taken over all n = (ng,n1,n2) € 72 such that
no,no + Ni,no + n2,no +n1 +n2 € [N] = {0,1,...,N— 1}

Idea: Write n = 2n’ + e with e € {0,1}® and replace [§ with [E E
n~N n’~N/2ec{0, 1}3
Basic computation yields:
t(no + winy + wang) = t(n6 +wini + wonh + Tw)t(eo + wier + waez mod 2),

where r,, = 1o (e0, €1, e2) = [(e0 + wier + waea) /2].
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Recurrence (2/4)

We are now ready to compute that:
||t||4U2[N] = ]ENt(no)t(no + n1)t(no + n2)t(no + n1 + n2)
~ [E t(eo mod 2)t(eo + e1x mod 2)t(eo + e2 mod 2)t(eo + €1 + e2 mod 2)
ec{0,1}3

x & t(ng+roo)t(ng + ny + r10)t(ng + ns + roa)t(no + ny + ns + ri1)
n'~N/2

E N(e) <t807t‘1907t81>t‘191>U2[N/2] )
ec{0,1}3

where the last line can be taken as the definition of u(e) and tg, for w € {0,1}>.
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Recurrence (2/4)

We are now ready to compute that:
||t||4U2[N] = ]ENt(no)t(no + n1)t(no + n2)t(no + n1 + n2)
~ [E t(eo mod 2)t(eo + e1x mod 2)t(eo + e2 mod 2)t(eo + €1 + e2 mod 2)
ec{0,1}3

x [ tng+7ro0)t(ng + ni + rio)t(ng 4+ ns 4 ro1)t(ng +ni +nh + r11)

n'~N/2

E N(e) <t807t‘1907t81>t‘191>U2[N/2] )
ec{0,1}3

where the last line can be taken as the definition of u(e) and tg, for w € {0,1}>.
Iterate (I > 0 times) and collect:

”tH?JZ[N] =~ [EI)S M(e) <t‘0307t(1§07tglvtT1>U2[N/2l]
ecl0,2'

Zwl (t) <t00,tlo,tm,tu)Uz[N/zz] ,
t

where t = (too,tm, t01,t11) and each tw, w € {0, 1}2, is a shift of ¢.
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Recurrence (3/4)

Recall: HtH?]Q[N] ~ Zwl (t) <t()(),151()7 t01’t11>U2[N/21]'

Trivial bound: Z |wl )] < 1. Need: any improvement.

1fZ|w, ) < 1fcthen [l 772y < (1 = )08 N/H1oe2

< Nﬁcl7 as claimed.
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Recall: HtH?]Q[N] ~ Zwl (t) <t()(),151()7 t01’t11>U2[N/21]'
Trivial bound: Z |wl )] < 1. Need: any improvement.

If Z |wi (t)] < 1 — ¢ then Ht||U2[N & (1= ¢)los /o2 N~ as claimed.

Non-trivial part of the argument: Find some [ > 0 and e, e’ € [0,2")? such that
o pu(e) = +1 and p(e') = —1;
o t& =1 =t for all w € {0,1}%

Recall that in this situation we have

p(e) = t(eo)t(eo + e1)t(eo + e2)t(eo + e1 + e2).
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Recurrence (3/4)

Recall: HtH?]Q[N] ~ Zwl (t) <t()(),151()7 t01’t11>U2[N/21]'
Trivial bound: Z |wl )] < 1. Need: any improvement.

If Z |wi (t)] < 1 — ¢ then Ht||U2[N & (1= ¢)los /o2 N~ as claimed.

Non-trivial part of the argument: Find some [ > 0 and e, e’ € [0,2")? such that
o pu(e) = +1 and p(e') = —1;
o t& =1 =t for all w € {0,1}%

Recall that in this situation we have

p(e) = t(eo)t(eo + e1)t(eo + e2)t(eo + e1 + e2).

For Thue-Morse such e and e’ can be constructed by an ad hoc argument. The key
difficulty in generalising to other (invertible) sequences is to deal with this step.
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Recurrence (4/4)

Back to general case: The sequence a is given by a(n) = x(A(n)),

A(n) = A (w) - A (wg—q1) - X (uo) where wu;—1...u0 = (n)x € Xf,

and x: G — C is a homomorphism. Again, we have recurrence:

H(LH?JQ[N] = E :u/(e) <a807aT07a817aT1>U2[N/2l] )
ec[0,k!)3
where a are shifts of a. If e is such that a® = a for all w € {0,1}? then

,u(e) = H X(/\(60 +wier + UJ2€2)).
we{0,1}2

We want to find @, e ... &™) ¢ [0,k")? such that Z;";OI pweW) = 0.
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Recurrence (4/4)

Back to general case: The sequence a is given by a(n) = x(A(n)),
A(n) = A (w) - A (wg—q1) - X (uo) where wu;—1...u0 = (n)x € Xf,

and x: G — C is a homomorphism. Again, we have recurrence:

HG’H?}Q[N] = [El)s :u/(e) <a807aT07a817aT1>U2[N/2l] )
ec[0,k

where a are shifts of a. If e is such that a® = a for all w € {0,1}? then

,u(e) = H X(/\(60 +wier + UJ2€2)).
we{0,1}2

We want to find @, e ... &™) ¢ [0,k")? such that Z;";OI pweW) = 0.

Key construction: the “cube group” @ c G*,

Q[Q] = Qm (G, A) = {()\(eo 4+ wier + (/.)262))

we{0,1}2

Fact: 9 is a group. The rest of the argument hinges on describing QR

€G4:e€N3}.
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Cube groups
Host—Kra cube groups: groups generated by “upper faces”
HK/(G) = ((9,9,9,9), (id,id, g, 9), (id, g,id, g) : g € G) < G".
We may freely assume that A (1),..., A (k — 1) generate G. Then HK?(G) c Q.

Example
Let G=7Z/mZ m | k—1 and A (i) = ¢ for all ¢ € Xx. Then

HK?(@) = (G, N).
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We may freely assume that A (1),..., A (k — 1) generate G. Then HK?(G) c Q.

Example
Let G=Z/mZ m |k —1 and A (i) = for all 4 € . Then

HK?(@) = (G, N).

Definition: A pair (H, k) (where H is a group and x: X — H, x(0) = idg) is a
factor of (G, \) if there exists a factor map w: H — G such that

@ 7 is a group epimorphism;

@ K=o\

We always have the inclusion 7% (Q[2](G, /\)) c o¥(H, k).
-1
We call (H, k) characteristic if Q% (G, \) = (71'[2]) (Q[Q] (H, n)) .
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Host—Kra cube groups: groups generated by “upper faces”
HK/(G) = ((9,9,9,9), (id,id, g, 9), (id, g,id, g) : g € G) < G".
We may freely assume that A (1),..., A (k — 1) generate G. Then HK?(G) c Q.

Example
Let G=Z/mZ m |k —1 and A (i) = for all 4 € . Then

HK?(@) = (G, N).

Definition: A pair (H, k) (where H is a group and x: X — H, x(0) = idg) is a
factor of (G, \) if there exists a factor map w: H — G such that

@ 7 is a group epimorphism;

@ K=o\

We always have the inclusion 7% (Q[2](G, /\)) c o¥(H, k).

-1
We call (H, k) characteristic if Q% (G, \) = (71'[2]) (Q[Q] (H, n)) .
Goal: Find a characteristic factor of the form (Z/mZ,id).
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Characteristic factors
Lemma

There is a mazimal normal subgroup K < G such that the factor (G/K, ) is
characteristic. It is the group generated by h € G such that (h,idg,idq,idg) € ol
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characteristic. It is the group generated by h € G such that (h,idg,idg,idg) € ol

e Let r = |G|, and let n € N be arbitrary. For notational clarity, suppose k = 10.
o Put e = 107" n+1, e; = 10*" — 10", e3 = 10" — 1.

e We can compute the group labels:

Aeo) = A((n)100...000...01) = A(n)A(1)

)\(60 + 61) = )\((n)lo 9...990... 01) = )\(n))\(l)

)\(60 + 62) = )\((n)loO ...010.. 00) = )\(’I’L))\(l)
A(60+61+€2):)\((n+1)100...000...00):A(TL-Fl).

T T
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o As a consequence, A(n+1)(A(n)A(1))™' € K and by induction: A(n)A\(1)™" € K.
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Characteristic factors
Lemma

There is a mazimal normal subgroup K < G such that the factor (G/K, ) is
characteristic. It is the group generated by h € G such that (h,idg,idg,idg) € ol

e Let r = |G|, and let n € N be arbitrary. For notational clarity, suppose k = 10.
o Put e = 107" n+1, e; = 10*" — 10", e3 = 10" — 1.

e We can compute the group labels:

Aeo) = A((n)100...000...01) = A(n)A(1)

)\(60 + 61) = )\((n)lo 9...990... 01) = )\(n))\(l)

)\(60 + 62) = )\((n)mO ...010.. 00) = )\(’I’L))\(l)
A(60+61+€2):)\((n+1)100...000...00):A(’I’L-Fl).

T T

o As a consequence, A(n+1)(A(n)A(1))™' € K and by induction: A(n)A\(1)™" € K.
o This means that G/K = Z/mZ and A(n) = n mod m, as needed.
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THANK YOU FOR YOUR ATTENTION!




