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The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

4 Automatic sequence:

+1start −1

0 0

1

1

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

1 / 19



The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

4 Automatic sequence:

+1start −1

0 0

1

1

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

1 / 19



The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

4 Automatic sequence:

+1start −1

0 0

1

1

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

1 / 19



The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

4 Automatic sequence:

+1start −1

0 0

1

1

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

1 / 19



The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

4 Automatic sequence:

+1start −1

0 0

1

1

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

1 / 19



The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

4 Automatic sequence:

+1start −1

0 0

1

1

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

1 / 19



The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

3 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

4 Automatic sequence:

+1start −1

0 0

1

1

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

1 / 19



Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.
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Uniformity of Thue�Morse

Question (Mauduit & Sarközy (1998)/folklore)

Is which ways is the Thue�Morse sequence uniform/pseudorandom?

Structure:

1 Linear subword complexity: #
{
w ∈ {+1,−1}l : w appears in t

}
= O(l).

2 # {n < N : t(n) = t(n+ 1)} ≃ N/3 ̸= N/2. −→ t(n) = t(n+ 1) i� 2 ∤ ν2(n+ 1)

3 # {n < N : t(n) = t(n+ 1) = t(n+ 2)} = 0. −→ in general: t is cube-free

Uniformity:

1 Maximal arithmetical subword complexity: For each l ∈ N and w ∈ {+1,−1}l
there exist n,m ∈ N0 such that w = t(n), t(n+m), . . . , t(n+ (l − 1)m).

2

∑
n<N

t(n) = O(1) (not very hard).

3

∑
n<N

t(an+ b) = O(N1−c) with c > 0. −→ Gelfond (1968)

4 Level of distribution equal to 1: For each ε > 0 there exists δ > 0 such that∑
d<N1−ε

max
a mod d

∣∣∣∣ ∑
n<N

n≡a mod d

t(n)

∣∣∣∣ = O(N1−δ). −→ Spiegelhofer (2020)
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Gelfond problems

1 Thue-Morse does not correlate with the primes: −→ Mauduit & Rivat (2010)

# {p < N : p is prime, t(p) = +1} =
1

2
π(N) +O(N1−c).

2 Thue-Morse does not correlate with polynomials p(x) ∈ Q[x] such that p(N) ⊆ N:

# {n < N : t(p(n)) = +1} =
1

2
N +O(N1−c).

Known for p(n) = n2; open for deg p ≥ 3. −→ Mauduit & Rivat (2009)

3 Thue-Morse does not correlate with Piatetski-Shapiro sequences:

# {n < N : t(⌊nα⌋) = +1} =
1

2
N +O(N1−c).

Known for α < 2; open for α > 2. −→ Spiegelhofer (2018)
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# {n < N : t(⌊nα⌋) = +1} =
1

2
N +O(N1−c).

Known for α < 2; open for α > 2. −→ Spiegelhofer (2018)
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Higher order Fourier analysis: �rst glance

De�nition (Gowers norm)

Fix k ≥ 2. Let f : [N ] → R. Then ∥f∥Uk[N ] ≥ 0 is de�ned by:

∥f∥2
k

Uk[N ] =E
n

∏
ω∈{0,1}k

C|ω|f (n0 + ω1n1 + . . . ωknk) ,

where the average is taken over all parallelepipeds in [N ], i.e., over all
n = (n0, . . . , nk) ∈ Zk+1 such that n0 + ω1n1 + . . . ωknk ∈ [N ] for all ω ∈ {0, 1}k.

Theorem (Generalised von Neumann Theorem)

Fix s ≥ 1 and let f0, f1, . . . , fs+1 : [N ] → C be 1-bounded. Then∣∣∣∣∣En,m

f0(n)f1(n+m)f2(n+ 2m) . . . fs+1(n+ (s+ 1)m)

∣∣∣∣∣ ≪ min
i

∥fi∥Us+1[N ] .

Corollary: If A ⊂ [N ], #A = αN and
∥∥1A − α1[N ]

∥∥
Us+1[N ]

≤ ε then then A

contains almost as many (s+ 2)-term APs as a random set of the same size,

#
{
(n,m) ∈ [N ]2 : n, n+m, . . . , n+ (s+ 1)m ∈ A

}
= αs+2N2/2(s+ 1) +O(εN2).
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Higher order Fourier analysis meets Thue�Morse

Recall: ∥f∥U2 ≃ ∥f̂∥ℓ4 ≃ ∥f̂∥∞. Hence, the result of Gelfond (1968) implies that the
Thue�Morse sequence is U2-uniform, ∥t∥U2[N ] ≪ N−c.

Corollary: The number of 3-term APs in {n ∈ [N ] : t(n) = +1} is ∼ N2/32.

Theorem (K.)

The Thue�Morse sequence is Gowers uniform of all orders. More precisely, for each
s ≥ 1 there exists c = cs > 0 such that ∥t∥Us+1[N ] ≪ N−c.

Corollary: The number of (s+ 2)-term APs in {n ∈ [N ] : t(n) = +1} is
∼ N2/2s+3(s+ 1).
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Uniform �digital� sequences

A sequence f : N → C is k-multiplicative if

f(n+m) = f(n)f(m) for all n,m ≥ 0 such that m < ki, ki|n.

Theorem (Fan & K.) If f is bounded and k-multiplicative, and s ≥ 1 then

∥f∥Us+1[N ] → 0 as N → ∞ if and only if ∥f∥U2[N ] → 0 as N → ∞.

Nota bene: The same equivalence holds for multiplicative sequences, i.e., f : N → C
such that f(nm) = f(n)f(m) if gcd(n,m) = 1. −→ Frantzikinakis & Host (2017)

Rudin�Shapiro sequence: r : N → {−1,+1}.
Explicit formula:

r(n) =

{
+1 if 11 appears an even number of times in the binary expansion of n,

−1 if 11 appears an odd number of times in the binary expansion of n.
.

Recurrence: r(0) = +1, r(2n) = r(n), r(2n+ 1) = (−1)nr(n).

Theorem (K.) For each s ≥ 1 there exists c > 0 such that ∥r∥Us+1[N ] ≪ N−c.
Remark: The same applies to other sequences de�ned by �counting patterns�.
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Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform?

Basic classes of non-uniform sequences:

1 periodic, such as n 7→ n mod 3;

2 forward synchronising, such as n 7→ ν2(n) mod 2; −→ 2ν2(n) || n

3 backwards synchronising, such as n 7→ ⌊log2(n)⌋ mod 2.

Theorem (Byszewski, K. & Müllner)

Each automatic sequence a : N0 → C has a decomposition a = astr + auni, where

1 auni is uniform in the sense that for each s ≥ 1 there exists cs > 0 such that

∥auni∥Us+1[N ] ≪ N−cs .

2 astr is structured in the sense that there exist aper, afs, abs : N0 → Ωper,Ωfs,Ωbs

which are periodic, forward synchronising and backward synchronising
respectively and a map F : Ωper × Ωfs × Ωbs → C such that

astr(n) = F (aper(n), afs(n), abs(n)) .
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Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fix s ≥ 1, ε > 0 and a growth function F : R+ → R+. Each sequence a : [N ] → [0, 1]
has a decomposition a = anil + asml + auni, where M = O(1) and

1 auni is uniform in the sense that ∥auni∥Us+1[N ] ≤ 1/F(M).

2 asml is small in the sense that ∥asml∥L2[N ] ≤ ε.

3 anil is a (F(M), N)-irrational virtual degree s nilsequence of complexity ≤ M .

Recall: If a is automatic, then astr(n) = F (aper(n), afs(n), abs(n)) , where

aper is periodic;

afs is essentially periodic; −→ afs = [ki-periodic]+O(1/kiη) in L2[N ]

abs is constant on long intervals.

Hence, astr = [1-step nilsequence]+ [small error].

Key di�erences:

For automatic sequences, 1-step nilsequences are enough.

Quantitative bounds in the decomposition are reasonable.
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Application: Popular di�erences

Fix l ∈ N, α > 0 and ε > 0. Let A ⊂ [N ] be a set with #A ≥ αN . We will call an
integer m ∈ [N ] a popular di�erence if A contains at least (αl − ε)N length-l
arithmetic progressions with di�erence m.

Theorem (Bergelson, Host & Kra (2005); Green & Tao (2010))

If l ≤ 4 then there are ≫ N popular di�erences. This is no longer true for l ≥ 5.

Corollary: Suppose that A = Ã ∩ [N ] for some automatic set Ã (with complexity
bounded as N → ∞). Then for each l ∈ N, there are ≫ N popular di�erences.

Proof ideas:

Let M ∈ N be large, let d ∈ N multiplicatively rich. Suppose that N = kL.

Put P =
{
m ∈ N : m ≡ 0 mod d, m ≡ 0 mod kM , m < kL−M

}
.

Hope: Many m ∈ P are popular di�erences, E
m∈P

E
n∈[N ]

l−1∏
i=0

1A(n+ im) ≳ αl.

By generalised von Neumann, we only need E
m∈P

E
n∈[N ]

l−1∏
i=0

1A,str(n+ im) ≳ αl.

Because 1A,str is structured, we almost always have 1A,str(n+ im) = 1A,str(n).

10 / 19



Application: Popular di�erences

Fix l ∈ N, α > 0 and ε > 0. Let A ⊂ [N ] be a set with #A ≥ αN . We will call an
integer m ∈ [N ] a popular di�erence if A contains at least (αl − ε)N length-l
arithmetic progressions with di�erence m.

Theorem (Bergelson, Host & Kra (2005); Green & Tao (2010))

If l ≤ 4 then there are ≫ N popular di�erences. This is no longer true for l ≥ 5.
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Application: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let k, ℓ ≥ 2 and let a : N → Ω be a sequence that is both k- and ℓ-automatic. Then

k and ℓ are multiplicatively dependent, i.e., logk(ℓ) ∈ Q; or
a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

We already know that they cannot be equal, or even asymptotically equal.

We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let k, ℓ ≥ 2 be multiplicatively independent integers and let a, b : N → C be k- and
ℓ-automatic, respectively. Then∑

n<N

a(n)b(n) =
∑
n<N

astr(n)bstr(n) +O(N1−c).

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b, ∑

n<N

a(n)b(n) = O(N1−c).
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Group extensions of automata

Two �extreme� classes of k-automatic sequences:

1 Synchronising (forwards): There exists a synchronising word w ∈ Σ∗
k such that

a(uwv) = a(wv) for all words u, v ∈ Σ∗
k.

In particular, a is almost periodic.

2 Invertible: There is a group G, λ : Σk → G, λ(0) = idG, and a map χ : G → C
such that

a(n) = χ (λ (ul) · λ (ul−1) · · · · · λ (u0)) for ulul−1 . . . u0 = (n)k ∈ Σ∗
k. (†)

Idea:

{
Arbitrary
automaton

}
−→

{
Synchronising
automaton

}
⊕

{
Group
labels

}
.

Simplifying assumptions:

1 The sequence a is invertible and given by (†). −→ signi�cantly simpler case

2 The map χ : G → S1 ⊂ C is a group homomorphism. −→ Peter�Weyl, dim = 1

Goal: The sequence a is either highly Gowers uniform of all orders or periodic.
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Goal: The sequence a is either highly Gowers uniform of all orders or periodic.
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Group extensions of automata

De�nition: A group extension T of an automaton A = (S, s0, δ) (without output)
by a group G consists of A and

a label function λ : S × Σk → G.

In order to compute a sequence using T :

extend λ to S × Σ∗
k by λ(s, uv) = λ(s, u)λ(δ(s, u), v) for u, v ∈ Σ∗

k;

pick an output function τ on S ×G and put a(n) = τ (δ(s0, (n)k), λ(s0, (n)k)).

Example: Rudin-Shapiro sequence

+1start −1

+1 −1

1 10 0
1

1

0 0

Figure: Automaton

start

1/+10/+1

0/+1

1/−1

Figure: Group extension

G = {+1,−1}
τ(s, g) = g

Theorem (Müllner (2017)) Each primitive automatic sequence is produced by a
group extension of a synchronising automaton.
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Recurrence (1/4)

Let us consider the U2-norm of the Thue�Morse sequence t. Recall that

∥f∥4U2[N ] = ⟨f, f, f, f⟩U2[N ] ,

where ⟨·⟩U2[N ] is the Gowers product given by

⟨f00, f10, f01, f11⟩U2[N ] = E
n∼N

f00(n0)f̄10(n0 + n1)f̄10(n0 + n2)f11(n0 + n1 + n2).

and the average is taken over all n = (n0, n1, n2) ∈ Z3 such that
n0, n0 + n1, n0 + n2, n0 + n1 + n2 ∈ [N ] = {0, 1, . . . , N − 1}.

Idea: Write n = 2n′ + e with e ∈ {0, 1}3 and replace E
n∼N

with E
n′∼N/2

E
e∈{0,1}3

.

Basic computation yields:

t(n0 + ω1n1 + ω2n2) = t(n′
0 + ω1n

′
1 + ω2n

′
2 + rω)t(e0 + ω1e1 + ω2e2 mod 2),

where rω = rω(e0, e1, e2) = ⌊(e0 + ω1e1 + ω2e2) /2⌋.
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Recurrence (2/4)

We are now ready to compute that:

∥t∥4U2[N ] = E
n∼N

t(n0)t(n0 + n1)t(n0 + n2)t(n0 + n1 + n2)

≃ E
e∈{0,1}3

t(e0 mod 2)t(e0 + e1 mod 2)t(e0 + e2 mod 2)t(e0 + e1 + e2 mod 2)

× E
n′∼N/2

t(n′
0 + r00)t(n

′
0 + n′

1 + r10)t(n
′
0 + n′

2 + r01)t(n
′
0 + n′

1 + n′
2 + r11)

= E
e∈{0,1}3

µ(e) ⟨te00, te10, te01, te11⟩U2[N/2] ,

where the last line can be taken as the de�nition of µ(e) and teω for ω ∈ {0, 1}2.

Iterate (l ≥ 0 times) and collect:

∥t∥4U2[N ] ≃ E
e∈[0,2l)3

µ(e) ⟨te00, te10, te01, te11⟩U2[N/2l]

=
∑
t

wl (t) ⟨t00, t10, t01, t11⟩U2[N/2l] ,

where t = (t00, t10, t01, t11) and each tω, ω ∈ {0, 1}2, is a shift of t.
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Recurrence (3/4)

Recall: ∥t∥4U2[N ] ≃
∑
t

wl (t) ⟨t00, t10, t01, t11⟩U2[N/2l].

Trivial bound:
∑
t

|wl(t)| ≤ 1. Need: any improvement.

If
∑
t

|wl(t)| ≤ 1− c then ∥t∥4U2[N ] ≪ (1− c)logN/l log 2 ≪ N−c′ , as claimed.

Non-trivial part of the argument: Find some l ≥ 0 and e, e′ ∈ [0, 2l)3 such that

µ(e) = +1 and µ(e′) = −1;

teω = te
′

ω = t for all ω ∈ {0, 1}2.
Recall that in this situation we have

µ(e) = t(e0)t(e0 + e1)t(e0 + e2)t(e0 + e1 + e2).

For Thue�Morse such e and e′ can be constructed by an ad hoc argument. The key
di�culty in generalising to other (invertible) sequences is to deal with this step.
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Recurrence (4/4)

Back to general case: The sequence a is given by a(n) = χ(λ(n)),

λ(n) = λ (ul) · λ (ul−1) · · · · · λ (u0) where ulul−1 . . . u0 = (n)k ∈ Σ∗
k, (†)

and χ : G → C is a homomorphism. Again, we have recurrence:

∥a∥4U2[N ] ≃ E
e∈[0,kl)3

µ(e) ⟨ae
00, a

e
10, a

e
01, a

e
11⟩U2[N/2l] ,

where ae
ω are shifts of a. If e is such that ae

ω = a for all ω ∈ {0, 1}2 then

µ(e) =
∏

ω∈{0,1}2
χ(λ(e0 + ω1e1 + ω2e2)).

We want to �nd e(0), e(1), . . . , e(m−1) ∈ [0, kl)3 such that
∑m−1

j=0 µ(e(j)) = 0.

Key construction: the �cube group� Q[2] ⊂ G4,

Q[2] = Q[2](G,λ) :=

{(
λ(e0 + ω1e1 + ω2e2)

)
ω∈{0,1}2

∈ G4 : e ∈ N3

}
.

Fact: Q[2] is a group. The rest of the argument hinges on describing Q[2].
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Cube groups

Host�Kra cube groups: groups generated by �upper faces�:

HK[2](G) = ⟨(g, g, g, g), (id, id, g, g), (id, g, id, g) : g ∈ G⟩ < G4.

We may freely assume that λ (1) , . . . , λ (k − 1) generate G. Then HK[2](G) ⊂ Q[2].

Example

Let G = Z/mZ m | k − 1 and λ (i) = i for all i ∈ Σk. Then

HK[2](G) = Q[2](G,λ).

De�nition: A pair (H,κ) (where H is a group and κ : Σk → H, κ(0) = idH) is a
factor of (G,λ) if there exists a factor map π : H → G such that

π is a group epimorphism;

κ = π ◦ λ.
We always have the inclusion π[2]

(
Q[2](G,λ)

)
⊆ Q[2](H,κ).

We call (H,κ) characteristic if Q[2](G,λ) =
(
π[2]

)−1 (
Q[2](H,κ)

)
.

Goal: Find a characteristic factor of the form (Z/mZ, id).
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Characteristic factors

Lemma

There is a maximal normal subgroup K < G such that the factor (G/K, λ̄) is
characteristic. It is the group generated by h ∈ G such that (h, idG, idG, idG) ∈ Q[2].

Let r = |G|, and let n ∈ N be arbitrary. For notational clarity, suppose k = 10.

Put e0 = 102rn+ 1, e1 = 102r − 10r, e2 = 10r − 1.

We can compute the group labels:

λ(e0) = λ((n)10 0 . . . 00︸ ︷︷ ︸
r

0 . . . 01︸ ︷︷ ︸
r

) = λ(n)λ(1)

λ(e0 + e1) = λ((n)10 9 . . . 99︸ ︷︷ ︸
r

0 . . . 01︸ ︷︷ ︸
r

) = λ(n)λ(1)

λ(e0 + e2) = λ((n)10 0 . . . 01︸ ︷︷ ︸
r

0 . . . 00︸ ︷︷ ︸
r

) = λ(n)λ(1)

λ(e0 + e1 + e2) = λ((n+ 1)10 0 . . . 00︸ ︷︷ ︸
r

0 . . . 00︸ ︷︷ ︸
r

) = λ(n+ 1).

As a consequence, λ(n+1)(λ(n)λ(1))−1 ∈ K and by induction: λ(n)λ(1)−n ∈ K.

This means that G/K = Z/mZ and λ̄(n) = n mod m, as needed.
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Let r = |G|, and let n ∈ N be arbitrary. For notational clarity, suppose k = 10.

Put e0 = 102rn+ 1, e1 = 102r − 10r, e2 = 10r − 1.

We can compute the group labels:

λ(e0) = λ((n)10 0 . . . 00︸ ︷︷ ︸
r

0 . . . 01︸ ︷︷ ︸
r

) = λ(n)λ(1)

λ(e0 + e1) = λ((n)10 9 . . . 99︸ ︷︷ ︸
r

0 . . . 01︸ ︷︷ ︸
r

) = λ(n)λ(1)

λ(e0 + e2) = λ((n)10 0 . . . 01︸ ︷︷ ︸
r

0 . . . 00︸ ︷︷ ︸
r

) = λ(n)λ(1)

λ(e0 + e1 + e2) = λ((n+ 1)10 0 . . . 00︸ ︷︷ ︸
r

0 . . . 00︸ ︷︷ ︸
r

) = λ(n+ 1).

As a consequence, λ(n+1)(λ(n)λ(1))−1 ∈ K and by induction: λ(n)λ(1)−n ∈ K.

This means that G/K = Z/mZ and λ̄(n) = n mod m, as needed.
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Thank you for your attention!


