Automatic sequences from the point of view of Higher order Fourier analysis

Jakub Konieczny
Camille Jordan Institute Claude Bernard University Lyon 1

Nilpotent structures in topological dynamics, ergodic theory and combinatorics

Będlewo, 04-10 June 2023

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil. (i.e., sum of binary digits is even) } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(3) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(4) Automatic sequence:

(2) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then

$$
t\left(2^{\alpha} n+m\right)=t(n) t(m)
$$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
\square if n is evil (i.e., sum of binary digits is even)
(1) Explicit formula: $t(n)=\{$ if n is odious (i.e., sum of binary digits is odd)
(2) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(3) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(4) Automatic sequence:

(2) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then

$$
t\left(2^{\alpha} n+m\right)=t(n) t(m)
$$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(3) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(4) Automatic sequence:

(2) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then
$t\left(2^{\alpha} n+m\right)=t^{\prime}(n) t(m)$.

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(3) Fixed point of a substitution:
(4) Automatic sequence:

(5) Strongly 2 -multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then
$t\left(2^{a} n+m\right)=t(n) t(m)$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(3) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(4) Automatic sequence:

(5) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then
$t\left(2^{\alpha} n+m\right)=t(n) t(m)$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(3) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(4) Automatic sequence:

(8) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(3) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(4) Automatic sequence:

(5) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then

$$
t\left(2^{\alpha} n+m\right)=t(n) t(m)
$$

Automatic sequences via finite automata
Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w. finite k-automaton consists of:
- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Fxtend δ to a man $S \times \sum_{*}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$. Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata
Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$. Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Computing the sequence:

e Fxtend δ to a man $S \times \Sigma_{*}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;

- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n) k\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Computing the sequence:

- Extend δ to a map
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n) k\right)\right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n) k\right)\right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998)/folklore)
Is which ways is the Thue-Morse sequence uniform/pseudorandom?

Structure:

(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{l}: w\right.$ appears in $\left.t\right\}=O(l)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2$.
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0$.

Uniformity:
(1) Maximal arithmetical subword complexity: For each $l \in \mathbb{N}$ and $w \in\{+1,-1\}$ there exist $n, m \in \mathbb{N}_{0}$ such that $w=t(n), t(n+m), \ldots, t(n+(l-1) m)$.
(2) $\sum t(n)=O(1)$ (not very hard).
(3) $\sum t(a n+b)=O\left(N^{1-c}\right)$ with $c>0$.
\longrightarrow Gelfond (1968)
(1) Level of distribution equal to 1: For each $\varepsilon>0$ there exists $\delta>0$ such that

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998)/folklore)

Is which ways is the Thue-Morse sequence uniform/pseudorandom?

Structure:

(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{l}: w\right.$ appears in $\left.t\right\}=O(l)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) \# $\{n<N: t(n)=t(n+1)=t(n+2)\}=0$. \longrightarrow in general: t is cube-free

Uniformity:

(1) Maximal arithmetical subword complexity: For each $l \in \mathbb{N}$ and $w \in\{+1,-1\}^{\prime}$ there exist $n, m \in \mathbb{N}_{0}$ such that $w=t(n), t(n+m)$,
 $t(n)=O(1)($ not very hard $)$.

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998)/folklore)

Is which ways is the Thue-Morse sequence uniform/pseudorandom?

Structure:

(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{l}: w\right.$ appears in $\left.t\right\}=O(l)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

Uniformity:

(1) Maximal arithmetical subword complexity: For each $l \in \mathbb{N}$ and $w \in\{+1,-1\}^{l}$ there exist $n, m \in \mathbb{N}_{0}$ such that $w=t(n), t(n+m), \ldots, t(n+(l-1) m)$.
(4) Level of distribution equal to 1 : For each $\varepsilon>0$ there exists $\delta>0$ such that

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998)/folklore)

Is which ways is the Thue-Morse sequence uniform/pseudorandom?

Structure:

(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{l}: w\right.$ appears in $\left.t\right\}=O(l)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

Uniformity:

(1) Maximal arithmetical subword complexity: For each $l \in \mathbb{N}$ and $w \in\{+1,-1\}^{l}$ there exist $n, m \in \mathbb{N}_{0}$ such that $w=t(n), t(n+m), \ldots, t(n+(l-1) m)$.
(2) $\sum_{n<N} t(n)=O(1)$ (not very hard).

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998)/folklore)

Is which ways is the Thue-Morse sequence uniform/pseudorandom?

Structure:

(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{l}: w\right.$ appears in $\left.t\right\}=O(l)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

Uniformity:

(1) Maximal arithmetical subword complexity: For each $l \in \mathbb{N}$ and $w \in\{+1,-1\}^{l}$ there exist $n, m \in \mathbb{N}_{0}$ such that $w=t(n), t(n+m), \ldots, t(n+(l-1) m)$.
(2) $\sum_{n<N} t(n)=O(1)$ (not very hard).
(3) $\sum_{n<N} t(a n+b)=O\left(N^{1-c}\right)$ with $c>0$.

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998)/folklore)

Is which ways is the Thue-Morse sequence uniform/pseudorandom?

Structure:

(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{l}: w\right.$ appears in $\left.t\right\}=O(l)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

Uniformity:

(1) Maximal arithmetical subword complexity: For each $l \in \mathbb{N}$ and $w \in\{+1,-1\}^{l}$ there exist $n, m \in \mathbb{N}_{0}$ such that $w=t(n), t(n+m), \ldots, t(n+(l-1) m)$.
(2) $\sum_{n<N} t(n)=O(1)$ (not very hard).
(3) $\sum_{n<N} t(a n+b)=O\left(N^{1-c}\right)$ with $c>0$.
(4) Level of distribution equal to 1: For each $\varepsilon>0$ there exists $\delta>0$ such that
$\sum_{d<N^{1-\varepsilon}} \max _{a \bmod d}\left|\sum_{\substack{n<N \\ n \equiv a \bmod d}} t(n)\right|=O\left(N^{1-\delta}\right)$.
\longrightarrow Spiegelhofer (2020)

Gelfond problems
(1) Thue-Morse does not correlate with the primes: \longrightarrow Mauduit \& Rivat (2010)

$$
\#\{p<N: p \text { is prime, } t(p)=+1\}=\frac{1}{2} \pi(N)+O\left(N^{1-c}\right) .
$$

(2) Thue-Morse does not correlate with polynomials $p(x) \in \mathbb{Q}[x]$ such that $p(\mathbb{N}) \subseteq \mathbb{N}$:

$$
\#\{n<N: t(p(n))=+1\}=\frac{1}{2} N+O\left(N^{1-c}\right)
$$

Known for $p(n)=n^{2}$; open for $\operatorname{deg} p \geq 3 . \quad \longrightarrow$ Mauduit \& Rivat (2009)
(3) Thue-Morse does not correlate with Piatetski-Shapiro sequences:

$$
\#\left\{n<N: t\left(\left\lfloor n^{\alpha}\right\rfloor\right)=+1\right\}=\frac{1}{2} N+O\left(N^{1-c}\right)
$$

Known for $\alpha<2$; open for $\alpha>2$.
\longrightarrow Spiegelhofer (2018)

Gelfond problems

(1) Thue-Morse does not correlate with the primes: \longrightarrow Mauduit \& Rivat (2010)

$$
\#\{p<N: p \text { is prime, } t(p)=+1\}=\frac{1}{2} \pi(N)+O\left(N^{1-c}\right)
$$

(2) Thue-Morse does not correlate with polynomials $p(x) \in \mathbb{Q}[x]$ such that $p(\mathbb{N}) \subseteq \mathbb{N}$:

$$
\#\{n<N: t(p(n))=+1\}=\frac{1}{2} N+O\left(N^{1-c}\right) .
$$

Known for $p(n)=n^{2} ;$ open for $\operatorname{deg} p \geq 3$.
\longrightarrow Mauduit \& Rivat (2009)
(8) Thue-Morse does not correlate with Piatetski-Shapiro sequences:

Known for $\alpha<2$; open for $\alpha>2$.
\longrightarrow Spiegelhofer (2018)

Gelfond problems

(1) Thue-Morse does not correlate with the primes:

$$
\#\{p<N: p \text { is prime, } t(p)=+1\}=\frac{1}{2} \pi(N)+O\left(N^{1-c}\right)
$$

(2) Thue-Morse does not correlate with polynomials $p(x) \in \mathbb{Q}[x]$ such that $p(\mathbb{N}) \subseteq \mathbb{N}$:

$$
\#\{n<N: t(p(n))=+1\}=\frac{1}{2} N+O\left(N^{1-c}\right)
$$

Known for $p(n)=n^{2}$; open for $\operatorname{deg} p \geq 3$.
\longrightarrow Mauduit \& Rivat (2009)
(3) Thue-Morse does not correlate with Piatetski-Shapiro sequences:

$$
\#\left\{n<N: t\left(\left\lfloor n^{\alpha}\right\rfloor\right)=+1\right\}=\frac{1}{2} N+O\left(N^{1-c}\right)
$$

Known for $\alpha<2$; open for $\alpha>2$.
\longrightarrow Spiegelhofer (2018)

Higher order Fourier analysis: first glance
Definition (Gowers norm)
Fix $k \geq 2$. Let $f:[N] \rightarrow \mathbb{R}$. Then $\|f\|_{U^{k}[N]} \geq 0$ is defined by:

$$
\|f\|_{U^{k}[N]}^{2^{k}}=\underset{\mathbf{n}}{\mathbb{E}} \prod_{\omega \in\{0,1\}^{k}} C^{|\omega|} f\left(n_{0}+\omega_{1} n_{1}+\ldots \omega_{k} n_{k}\right),
$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n}=\left(n_{0}, \ldots, n_{k}\right) \in \mathbb{Z}^{k+1}$ such that $n_{0}+\omega_{1} n_{1}+\ldots \omega_{k} n_{k} \in[N]$ for all $\omega \in\{0,1\}^{k}$.
\square

Corollary: If $A \subset[N], \# A=\alpha N$ and $\left\|1_{A}-\alpha 1_{[N]}\right\|_{U^{s+1}[N]} \leq \varepsilon$ then then A contains almost as many $(s+2)$-term APs as a random set of the same size,

Higher order Fourier analysis: first glance

Definition (Gowers norm)

Fix $k \geq 2$. Let $f:[N] \rightarrow \mathbb{R}$. Then $\|f\|_{U^{k}[N]} \geq 0$ is defined by:

$$
\|f\|_{U^{k}[N]}^{2^{k}}=\underset{\mathbf{n}}{\mathbb{E}} \prod_{\omega \in\{0,1\}^{k}} C^{|\omega|} f\left(n_{0}+\omega_{1} n_{1}+\ldots \omega_{k} n_{k}\right),
$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n}=\left(n_{0}, \ldots, n_{k}\right) \in \mathbb{Z}^{k+1}$ such that $n_{0}+\omega_{1} n_{1}+\ldots \omega_{k} n_{k} \in[N]$ for all $\omega \in\{0,1\}^{k}$.

Theorem (Generalised von Neumann Theorem)

Fix $s \geq 1$ and let $f_{0}, f_{1}, \ldots, f_{s+1}:[N] \rightarrow \mathbb{C}$ be 1 -bounded. Then

$$
\left|\underset{n, m}{\mathbb{E}} f_{0}(n) f_{1}(n+m) f_{2}(n+2 m) \ldots f_{s+1}(n+(s+1) m)\right| \ll \min _{i}\left\|f_{i}\right\|_{U^{s+1}[N]}
$$

Corollary: If $A \subset[N], \# A=\alpha N$ and $\left\|1_{A}-\alpha 1_{[N]}\right\|_{U^{s+1}[N]} \leq \varepsilon$ then then A contains almost as many $(s+2)$-term APs as a random set of the same size,

$$
\#\left\{(n, m) \in[N]^{2}: n, n+m, \ldots, n+(s+1) m \in A\right\}=\alpha^{s+2} N^{2} / 2(s+1)+O\left(\varepsilon N^{2}\right) .
$$

Higher order Fourier analysis meets Thue-Morse

Recall: $\|f\|_{U^{2}} \simeq\|\hat{f}\|_{\ell^{4}} \simeq\|\hat{f}\|_{\infty}$. Hence, the result of Gelfond (1968) implies that the Thue-Morse sequence is U^{2}-uniform, $\|t\|_{U^{2}[N]} \ll N^{-c}$.
Corollary: The number of 3 -term APs in $\{n \in[N]: t(n)=+1\}$ is $\sim N^{2} / 32$.

The Thue-Morse sequence is Gowers uniform of all orders. More precisely, for each $s \geq 1$ there exists $c=c_{s}>0$ such that

Higher order Fourier analysis meets Thue-Morse

Recall: $\|f\|_{U^{2}} \simeq\|\hat{f}\|_{\ell^{4}} \simeq\|\hat{f}\|_{\infty}$. Hence, the result of Gelfond (1968) implies that the Thue-Morse sequence is U^{2}-uniform, $\|t\|_{U^{2}[N]} \ll N^{-c}$.
Corollary: The number of 3 -term APs in $\{n \in[N]: t(n)=+1\}$ is $\sim N^{2} / 32$.

Theorem (K.)

The Thue-Morse sequence is Gowers uniform of all orders. More precisely, for each $s \geq 1$ there exists $c=c_{s}>0$ such that $\|t\|_{U^{s+1}[N]} \ll N^{-c}$.

Corollary: The number of $(s+2)$-term APs in $\{n \in[N]: t(n)=+1\}$ is $\sim N^{2} / 2^{s+3}(s+1)$.

Uniform "digital" sequences

A sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is k-multiplicative if

$$
f(n+m)=f(n) f(m) \quad \text { for all } n, m \geq 0 \text { such that } m<k^{i}, k^{i} \mid n \text {. }
$$

Theorem (Fan \& K.) If f is bounded and k-multiplicative, and $s \geq 1$ then

$$
\|f\|_{U^{s+1}[N]} \rightarrow 0 \text { as } N \rightarrow \infty \text { if and only if }\|f\|_{U^{2}[N]} \rightarrow 0 \text { as } N \rightarrow \infty .
$$

Nota bene: The same equivalence holds for multiplicative sequences, i.e., $f: \mathbb{N} \rightarrow \mathbb{C}$ such that $f(n m)=f(n) f(m)$ if $\operatorname{gcd}(n, m)=1 . \quad \longrightarrow$ Frantzikinakis \& Host (2017)

Rudin-Shapiro sequence: $r: \mathbb{N} \rightarrow\{-1,+1\}$

- Explicit formula:

- Recurrence: $r(0)=+1, r(2 n)=r(n), r(2 n+1)=(-1)^{n} r(n)$.

Theorem (K.) For each $s>1$ there exists $c>0$ such that $\|r\|_{\text {Ts+1i } N}<N^{-c}$ Remark: The same applies to other sequences defined by "counting patterns".

Uniform "digital" sequences

A sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is k-multiplicative if

$$
f(n+m)=f(n) f(m) \quad \text { for all } n, m \geq 0 \text { such that } m<k^{i}, k^{i} \mid n \text {. }
$$

Theorem (Fan \& K.) If f is bounded and k-multiplicative, and $s \geq 1$ then

$$
\|f\|_{U^{s+1}[N]} \rightarrow 0 \text { as } N \rightarrow \infty \text { if and only if }\|f\|_{U^{2}[N]} \rightarrow 0 \text { as } N \rightarrow \infty .
$$

Nota bene: The same equivalence holds for multiplicative sequences, i.e., $f: \mathbb{N} \rightarrow \mathbb{C}$ such that $f(n m)=f(n) f(m)$ if $\operatorname{gcd}(n, m)=1 . \quad \longrightarrow$ Frantzikinakis \& Host (2017)

Rudin-Shapiro sequence: $r: \mathbb{N} \rightarrow\{-1,+1\}$.

- Explicit formula:

$$
r(n)=\left\{\begin{array}{l}
+1 \text { if } 11 \text { appears an even number of times in the binary expansion of } n, \\
-1 \text { if } 11 \text { appears an odd number of times in the binary expansion of } n
\end{array}\right.
$$

- Recurrence: $r(0)=+1, r(2 n)=r(n), r(2 n+1)=(-1)^{n} r(n)$.

Theorem (K.) For each $s \geq 1$ there exists $c>0$ such that $\|r\|_{U^{s+1}[N]} \ll N^{-c}$. Remark: The same applies to other sequences defined by "counting patterns".

Higher order Fourier analysis meets automatic sequences
Question
Which among k-automatic sequences are Gowers uniform?
Basic classes of non-uniform sequences:
(1) periodic, such as $n \mapsto n \bmod 3$;
(2) forward synchronising, such as $n \vdash>\nu_{2}(n) \bmod 2$;
(8) backwards synchronising, such as $n \mapsto\left\lfloor\log _{2}(n)\right\rfloor \bmod 2$.

Theorem (Byszewski, K. \& Müllner)
Each automatic sequence $a: \mathbb{N}_{0} \rightarrow \mathbb{C}$ has n decomposition $a=a_{\text {str }}+a_{\text {uni }}$, where
(1) a_{uni} is uniform in the sense that for each $s \geq 1$ there exists $c_{s}>0$ such that

$$
\left\|a_{\text {uni }}\right\|_{U^{s+1}[N]} \ll N^{-c_{s}} .
$$

(2) a_{str} is structured in the sense that there exist $a_{\text {per }}, a_{\mathrm{fs}}, a_{\mathrm{bs}}: \mathbb{N}_{0} \rightarrow \Omega_{\mathrm{per}}, \Omega_{\mathrm{fs}}, \Omega_{\mathrm{bs}}$ which are periodic, forward synchronising and backward synchronising respectively and a map $F: \Omega_{\mathrm{per}} \times \Omega_{\mathrm{fs}} \times \Omega_{\mathrm{bs}} \rightarrow \mathbb{C}$ such that
$a_{\mathrm{str}}(n)=F\left(a_{\text {per }}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)$

Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform?

Basic classes of non-uniform sequences:

(1) periodic, such as $n \mapsto n \bmod 3$;
(2) forward synchronising, such as $n \mapsto \nu_{2}(n) \bmod 2$;
(3) backwards synchronising, such as $n \mapsto\left\lfloor\log _{2}(n)\right\rfloor \bmod 2$.

(2) a_{str} is structured in the sense that there exist $a_{\mathrm{per}}, a_{\mathrm{fs}}, a_{\mathrm{bs}}: \mathbb{N}_{0} \rightarrow \Omega_{\mathrm{per}}, \Omega_{\mathrm{fs}}, \Omega_{\mathrm{bs}}$ which are periodic, forward sunchronising and backward sunchronising respectively and a map $F: \Omega_{\mathrm{per}} \times \Omega_{\mathrm{fs}} \times \Omega_{\mathrm{bs}} \rightarrow \mathbb{C}$ such that

Higher order Fourier analysis meets automatic sequences

Question

Which among k-automatic sequences are Gowers uniform?
Basic classes of non-uniform sequences:
(1) periodic, such as $n \mapsto n \bmod 3$;
(2) forward synchronising, such as $n \mapsto \nu_{2}(n) \bmod 2$;
(3) backwards synchronising, such as $n \mapsto\left\lfloor\log _{2}(n)\right\rfloor \bmod 2$.

Theorem (Byszewski, K. \& Müllner)

Each automatic sequence $a: \mathbb{N}_{0} \rightarrow \mathbb{C}$ has a decomposition $a=a_{\mathrm{str}}+a_{\mathrm{uni}}$, where
(1) $a_{\text {uni }}$ is uniform in the sense that for each $s \geq 1$ there exists $c_{s}>0$ such that

$$
\left\|a_{\mathrm{uni}}\right\|_{U^{s+1}[N]} \ll N^{-c_{s}}
$$

(2) $a_{\text {str }}$ is structured in the sense that there exist $a_{\mathrm{per}}, a_{\mathrm{fs}}, a_{\mathrm{bs}}: \mathbb{N}_{0} \rightarrow \Omega_{\mathrm{per}}, \Omega_{\mathrm{fs}}, \Omega_{\mathrm{bs}}$ which are periodic, forward synchronising and backward synchronising respectively and a map $F: \Omega_{\mathrm{per}} \times \Omega_{\mathrm{fs}} \times \Omega_{\mathrm{bs}} \rightarrow \mathbb{C}$ such that

$$
a_{\mathrm{str}}(n)=F\left(a_{\mathrm{per}}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)
$$

Arithmetic regularity lemma

Theorem (Green \& Tao (2010))
Fix $s \geq 1, \varepsilon>0$ and a growth function $\mathcal{F}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Each sequence $a:[N] \rightarrow[0,1]$ has a decomposition $a=a_{\text {nil }}+a_{\mathrm{sml}}+a_{\mathrm{uni}}$, where $M=O(1)$ and
(1) $a_{\text {uni }}$ is uniform in the sense that $\left\|a_{\text {uni }}\right\|_{U^{s+1}[N]} \leq 1 / \mathcal{F}(M)$.
(2) a_{sml} is small in the sense that $\left\|a_{\mathrm{sml}}\right\|_{L^{2}[N]} \leq \varepsilon$.
(3) $a_{\text {nil }}$ is a $(\mathcal{F}(M), N)$-irrational virtual degree s nilsequence of complexity $\leq M$.
\square
Recall: If a is automatic, then $a_{\mathrm{str}}(n)=F\left(a_{\mathrm{per}}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)$, where

- a_{per} is neriodic;
- a_{fs} is essentially periodic;
- a_{bs} is constant on long intervals.

Hence, $a_{\text {str }}=[1$-sten nilsequence $]+\lceil$ small error $]$.
Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma

Theorem (Green \& Tao (2010))

Fix $s \geq 1, \varepsilon>0$ and a growth function $\mathcal{F}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Each sequence $a:[N] \rightarrow[0,1]$ has a decomposition $a=a_{\text {nil }}+a_{\mathrm{sml}}+a_{\mathrm{uni}}$, where $M=O(1)$ and
(1) $a_{\text {uni }}$ is uniform in the sense that $\left\|a_{\text {uni }}\right\|_{U^{s+1}[N]} \leq 1 / \mathcal{F}(M)$.
(2) a_{sml} is small in the sense that $\left\|a_{\mathrm{sml}}\right\|_{L^{2}[N]} \leq \varepsilon$.
(3) $a_{\text {nil }}$ is a $(\mathcal{F}(M), N)$-irrational virtual degree s nilsequence of complexity $\leq M$.

Recall: If a is automatic, then $a_{\text {str }}(n)=F\left(a_{\text {per }}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)$, where

- $a_{\text {per }}$ is periodic;
- a_{fs} is essentially periodic;

$$
\longrightarrow a_{\mathrm{fs}}=\left[k^{i} \text {-periodic }\right]+O\left(1 / k^{i \eta}\right) \text { in } L^{2}[N]
$$

- $a_{\text {bs }}$ is constant on long intervals.

Hence, $a_{\text {str }}=[1$-step nilsequence $]+[$ small error $]$.
Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma

Theorem (Green \& Tao (2010))

Fix $s \geq 1, \varepsilon>0$ and a growth function $\mathcal{F}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Each sequence $a:[N] \rightarrow[0,1]$ has a decomposition $a=a_{\text {nil }}+a_{\mathrm{sml}}+a_{\mathrm{uni}}$, where $M=O(1)$ and
(1) $a_{\text {uni }}$ is uniform in the sense that $\left\|a_{\text {uni }}\right\|_{U^{s+1}[N]} \leq 1 / \mathcal{F}(M)$.
(2) a_{sml} is small in the sense that $\left\|a_{\mathrm{sml}}\right\|_{L^{2}[N]} \leq \varepsilon$.
(3) $a_{\text {nil }}$ is a $(\mathcal{F}(M), N)$-irrational virtual degree s nilsequence of complexity $\leq M$.

Recall: If a is automatic, then $a_{\text {str }}(n)=F\left(a_{\text {per }}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)$, where

- $a_{\text {per }}$ is periodic;
- a_{fs} is essentially periodic;

$$
\longrightarrow a_{\mathrm{fs}}=\left[k^{i} \text {-periodic }\right]+O\left(1 / k^{i \eta}\right) \text { in } L^{2}[N]
$$

- $a_{\text {bs }}$ is constant on long intervals.

Hence, $a_{\text {str }}=[1$-step nilsequence $]+[$ small error $]$.
Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Application: Popular differences

Fix $l \in \mathbb{N}, \alpha>0$ and $\varepsilon>0$. Let $A \subset[N]$ be a set with $\# A \geq \alpha N$. We will call an integer $m \in[N]$ a popular difference if A contains at least $\left(\alpha^{l}-\varepsilon\right) N$ length- l arithmetic progressions with difference m.

Corollary: Suppose that $A=\tilde{A} \cap[N]$ for some automatic set \tilde{A} (with complexity bounded as $N \rightarrow \infty)$. Then for each $l \in \mathbb{N}$, there are $\gg N$ popular differences. Proof ideas:
 - Put $P=\left\{m \in \mathbb{N}: m \equiv 0 \bmod d, m \equiv 0 \bmod k^{M}, m<k^{L-M}\right\}$.

- Hope: Many $m \in P$ are popular differences,

- By generalised von Neumann, we only need

- Because $1_{A, \text { str }}$ is structured, we almost always have $1_{A, \text { str }}(n+i m)=1_{A, \text { str }}(n)$.

Application: Popular differences

Fix $l \in \mathbb{N}, \alpha>0$ and $\varepsilon>0$. Let $A \subset[N]$ be a set with $\# A \geq \alpha N$. We will call an integer $m \in[N]$ a popular difference if A contains at least $\left(\alpha^{l}-\varepsilon\right) N$ length- l arithmetic progressions with difference m.

Theorem (Bergelson, Host \& Kra (2005); Green \& Tao (2010))
If $l \leq 4$ then there are $\gg N$ popular differences. This is no longer true for $l \geq 5$.

Corollary: Suppose that $A=\tilde{A} \cap[N]$ for some automatic set \tilde{A} (with complexity bounded as $N \rightarrow \infty)$. Then for each $l \in \mathbb{N}$, there are $\gg N$ popular differences. Proof ideas

- Let $M \in \mathbb{N}$ be large, let $d \in \mathbb{N}$ multiplicatively rich. Suppose that $N=k^{L}$. - Put $P=\left\{m \in \mathbb{N}: m \equiv 0 \bmod d, m \equiv 0 \bmod k^{M}, m<k^{L-M}\right\}$
- Hope: Many $m \in P$ are popular differences,

- By generalised von Neumann, we only need

- Because $1_{A, s t r}$ is structured, we almost always have $A, \mathrm{str}(n+i m)=1_{A, \mathrm{str}}(n)$.

Application: Popular differences

Fix $l \in \mathbb{N}, \alpha>0$ and $\varepsilon>0$. Let $A \subset[N]$ be a set with $\# A \geq \alpha N$. We will call an integer $m \in[N]$ a popular difference if A contains at least $\left(\alpha^{l}-\varepsilon\right) N$ length-l arithmetic progressions with difference m.

Theorem (Bergelson, Host \& Kra (2005); Green \& Tao (2010))

If $l \leq 4$ then there are $\gg N$ popular differences. This is no longer true for $l \geq 5$.
Corollary: Suppose that $A=\tilde{A} \cap[N]$ for some automatic set \tilde{A} (with complexity bounded as $N \rightarrow \infty)$. Then for each $l \in \mathbb{N}$, there are $\gg N$ popular differences.

Proof ideas

- Hope: Many $m \in P$ are popular differences,
- By generalised von Neumann, we only need
- Because $1_{A, \text { str }}$ is structured, we almost always have $1_{A, \text { str }}(n+i m)=1_{A, \text { str }}(n)$.

Application: Popular differences

Fix $l \in \mathbb{N}, \alpha>0$ and $\varepsilon>0$. Let $A \subset[N]$ be a set with $\# A \geq \alpha N$. We will call an integer $m \in[N]$ a popular difference if A contains at least $\left(\alpha^{l}-\varepsilon\right) N$ length-l arithmetic progressions with difference m.

Theorem (Bergelson, Host \& Kra (2005); Green \& Tao (2010))

If $l \leq 4$ then there are $\gg N$ popular differences. This is no longer true for $l \geq 5$.
Corollary: Suppose that $A=\tilde{A} \cap[N]$ for some automatic set \tilde{A} (with complexity bounded as $N \rightarrow \infty)$. Then for each $l \in \mathbb{N}$, there are $\gg N$ popular differences.
Proof ideas:

- Let $M \in \mathbb{N}$ be large, let $d \in \mathbb{N}$ multiplicatively rich. Suppose that $N=k^{L}$.
- Put $P=\left\{m \in \mathbb{N}: m \equiv 0 \bmod d, m \equiv 0 \bmod k^{M}, m<k^{L-M}\right\}$.
- Hope: Many $m \in P$ are popular differences, $\underset{m \in P}{\mathbb{E}} \underset{n \in[N]}{\mathbb{E}} \prod_{i=0}^{l-1} 1_{A}(n+i m) \gtrsim \alpha^{l}$.
- By generalised von Neumann, we only need $\underset{m \in P}{\mathbb{E}} \underset{n \in[N]}{\mathbb{E}} \prod_{i=0}^{l-1} 1_{A, \operatorname{str}}(n+i m) \gtrsim \alpha^{l}$.
- Because $1_{A, \text { str }}$ is structured, we almost always have $1_{A, s t r}(n+i m)=1_{A, s t r}(n)$.

Application: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)
Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \rightarrow \mathbb{C}$ be k - and ℓ-automatic, respectively. Then

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each ℓ-automatic sequence b,

Application: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b,

Application: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \rightarrow \mathbb{C}$ be k - and ℓ-automatic, respectively. Then

$$
\sum_{n<N} a(n) b(n)=\sum_{n<N} a_{\mathrm{str}}(n) b_{\mathrm{str}}(n)+O\left(N^{1-c}\right)
$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each ℓ-automatic sequence b,

Application: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \rightarrow \mathbb{C}$ be k - and ℓ-automatic, respectively. Then

$$
\sum_{n<N} a(n) b(n)=\sum_{n<N} a_{\mathrm{str}}(n) b_{\mathrm{str}}(n)+O\left(N^{1-c}\right)
$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each ℓ-automatic sequence b,

$$
\sum_{n<N} a(n) b(n)=O\left(N^{1-c}\right)
$$

Group extensions of automata

Two "extreme" classes of k-automatic sequences:

(1) Synchronising (forwards): There exists a synchronising word $w \in \Sigma_{k}^{*}$ such that

$$
a(u w v)=a(w v) \text { for all words } u, v \in \Sigma_{k}^{*} .
$$

In particular, a is almost periodic.
(2) Invertible: There is a group $G, \lambda: \Sigma_{k} \rightarrow G, \lambda(0)=\mathrm{id}_{G}$, and a map $\chi: G \rightarrow \mathbb{C}$ such that

$$
a(n)=\chi\left(\lambda\left(u_{l}\right) \cdot \lambda\left(u_{l-1}\right) \cdots \cdot \lambda\left(u_{0}\right)\right) \text { for } u_{l} u_{l-1} \ldots u_{0}=(n)_{k} \in \Sigma_{k}^{*}
$$

Idea:

Simplifying assumptions:

(1) The sequence a is invertible and given by (\dagger). \longrightarrow significantly simpler case
(2) The map $\chi: G \rightarrow \mathbb{S}^{1} \subset \mathbb{C}$ is a group homomorphism.

Goal: The sequence a is either highly Gowers uniform of all orders or periodic.

Group extensions of automata

Two "extreme" classes of k-automatic sequences:

(1) Synchronising (forwards): There exists a synchronising word $w \in \Sigma_{k}^{*}$ such that

$$
a(u w v)=a(w v) \text { for all words } u, v \in \Sigma_{k}^{*} .
$$

In particular, a is almost periodic.
(2) Invertible: There is a group $G, \lambda: \Sigma_{k} \rightarrow G, \lambda(0)=\mathrm{id}_{G}$, and a map $\chi: G \rightarrow \mathbb{C}$ such that

$$
a(n)=\chi\left(\lambda\left(u_{l}\right) \cdot \lambda\left(u_{l-1}\right) \cdots \cdots \lambda\left(u_{0}\right)\right) \text { for } u_{l} u_{l-1} \cdots u_{0}=(n)_{k} \in \Sigma_{k}^{*} .
$$

Idea:

$$
\left\{\begin{array}{c}
\text { Arbitrary } \\
\text { automaton }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { Synchronising } \\
\text { automaton }
\end{array}\right\} \oplus\left\{\begin{array}{c}
\text { Group } \\
\text { labels }
\end{array}\right\} .
$$

Simplifying assumptions:

4. The sequence a is invertible and given by (\dagger)
(2) The map $\chi: G \rightarrow \mathbb{S}^{1} \subset \mathbb{C}$ is a group homomorphism.

Goal: The sequence a is either highly Gowers uniform of all orders or periodic.

Group extensions of automata

Two "extreme" classes of k-automatic sequences:
(1) Synchronising (forwards): There exists a synchronising word $w \in \Sigma_{k}^{*}$ such that

$$
a(u w v)=a(w v) \text { for all words } u, v \in \Sigma_{k}^{*} .
$$

In particular, a is almost periodic.
(2) Invertible: There is a group $G, \lambda: \Sigma_{k} \rightarrow G, \lambda(0)=\mathrm{id}_{G}$, and a map $\chi: G \rightarrow \mathbb{C}$ such that

$$
a(n)=\chi\left(\lambda\left(u_{l}\right) \cdot \lambda\left(u_{l-1}\right) \cdots \cdots \lambda\left(u_{0}\right)\right) \text { for } u_{l} u_{l-1} \cdots u_{0}=(n)_{k} \in \Sigma_{k}^{*} .
$$

Idea:

$$
\left\{\begin{array}{c}
\text { Arbitrary } \\
\text { automaton }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Synchronising } \\
\text { automaton }
\end{array}\right\} \oplus\left\{\begin{array}{c}
\text { Group } \\
\text { labels }
\end{array}\right\}
$$

Simplifying assumptions:

(1) The sequence a is invertible and given by (\dagger).
(2) The map $\chi: G \rightarrow \mathbb{S}^{1} \subset \mathbb{C}$ is a group homomorphism.
\longrightarrow significantly simpler case
\longrightarrow Peter-Weyl, dim $=1$

Group extensions of automata

Two "extreme" classes of k-automatic sequences:
(1) Synchronising (forwards): There exists a synchronising word $w \in \Sigma_{k}^{*}$ such that

$$
a(u w v)=a(w v) \text { for all words } u, v \in \Sigma_{k}^{*} .
$$

In particular, a is almost periodic.
(2) Invertible: There is a group $G, \lambda: \Sigma_{k} \rightarrow G, \lambda(0)=\mathrm{id}_{G}$, and a map $\chi: G \rightarrow \mathbb{C}$ such that

$$
a(n)=\chi\left(\lambda\left(u_{l}\right) \cdot \lambda\left(u_{l-1}\right) \cdots \cdots \lambda\left(u_{0}\right)\right) \text { for } u_{l} u_{l-1} \cdots u_{0}=(n)_{k} \in \Sigma_{k}^{*} .
$$

Idea: $\quad\left\{\begin{array}{c}\text { Arbitrary } \\ \text { automaton }\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { Synchronising } \\ \text { automaton }\end{array}\right\} \oplus\left\{\begin{array}{c}\text { Group } \\ \text { labels }\end{array}\right\}$.
Simplifying assumptions:
(1) The sequence a is invertible and given by (\dagger).
\longrightarrow significantly simpler case
(2) The map $\chi: G \rightarrow \mathbb{S}^{1} \subset \mathbb{C}$ is a group homomorphism.
\longrightarrow Peter-Weyl, dim =1
Goal: The sequence a is either highly Gowers uniform of all orders or periodic.

Group extensions of automata

Definition: A group extension \mathcal{T} of an automaton $\mathcal{A}=\left(S, s_{0}, \delta\right)$ (without output) by a group G consists of \mathcal{A} and

- a label function $\lambda: S \times \Sigma_{k} \rightarrow G$.

In order to compute a sequence using \mathcal{T} :

- extend λ to $S \times \Sigma_{k}^{*}$ by $\lambda(s, u v)=\lambda(s, u) \lambda(\delta(s, u), v)$ for $u, v \in \Sigma_{k}^{*}$;
- pick an output function τ on $S \times G$ and put $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right), \lambda\left(s_{0},(n)_{k}\right)\right)$.

Example: Rudin-Shapiro sequence

Figure: Automaton
Figure: Group extension
Theorem (Müllner (2017)) Each primitive automatic sequence is produced by a group extension of a synchronising automaton.

Group extensions of automata

Definition: A group extension \mathcal{T} of an automaton $\mathcal{A}=\left(S, s_{0}, \delta\right)$ (without output) by a group G consists of \mathcal{A} and

- a label function $\lambda: S \times \Sigma_{k} \rightarrow G$.

In order to compute a sequence using \mathcal{T} :

- extend λ to $S \times \Sigma_{k}^{*}$ by $\lambda(s, u v)=\lambda(s, u) \lambda(\delta(s, u), v)$ for $u, v \in \Sigma_{k}^{*}$;
- pick an output function τ on $S \times G$ and put $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right), \lambda\left(s_{0},(n)_{k}\right)\right)$.

Example: Rudin-Shapiro sequence

- $G=\{+1,-1\}$
- $\tau(s, g)=g$

Figure: Automaton
Figure: Group extension

Group extensions of automata

Definition: A group extension \mathcal{T} of an automaton $\mathcal{A}=\left(S, s_{0}, \delta\right)$ (without output) by a group G consists of \mathcal{A} and

- a label function $\lambda: S \times \Sigma_{k} \rightarrow G$.

In order to compute a sequence using \mathcal{T} :

- extend λ to $S \times \Sigma_{k}^{*}$ by $\lambda(s, u v)=\lambda(s, u) \lambda(\delta(s, u), v)$ for $u, v \in \Sigma_{k}^{*}$;
- pick an output function τ on $S \times G$ and put $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right), \lambda\left(s_{0},(n)_{k}\right)\right)$.

Example: Rudin-Shapiro sequence

Figure: Automaton

- $G=\{+1,-1\}$
- $\tau(s, g)=g$

Theorem (Müllner (2017)) Each primitive automatic sequence is produced by a group extension of a synchronising automaton.

Recurrence (1/4)

Let us consider the U^{2}-norm of the Thue-Morse sequence t. Recall that

$$
\|f\|_{U^{2}[N]}^{4}=\langle f, f, f, f\rangle_{U^{2}[N]},
$$

where $\langle\cdot\rangle_{U^{2}[N]}$ is the Gowers product given by

$$
\left\langle f_{00}, f_{10}, f_{01}, f_{11}\right\rangle_{U^{2}[N]}=\underset{\mathbf{n} \sim N}{\mathbb{E}} f_{00}\left(n_{0}\right) \bar{f}_{10}\left(n_{0}+n_{1}\right) \bar{f}_{10}\left(n_{0}+n_{2}\right) f_{11}\left(n_{0}+n_{1}+n_{2}\right) .
$$

and the average is taken over all $\mathbf{n}=\left(n_{0}, n_{1}, n_{2}\right) \in \mathbb{Z}^{3}$ such that $n_{0}, n_{0}+n_{1}, n_{0}+n_{2}, n_{0}+n_{1}+n_{2} \in[N]=\{0,1, \ldots, N-1\}$.

> Idea: Write $\mathbf{n}=2 \mathbf{n}^{\prime}+\mathbf{e}$ with $\mathbf{e} \in\{0,1\}^{3}$ and replace $\underset{\mathbf{n} \sim N}{\mathbb{E}}$ with

Basic computation yields:

$$
t\left(n_{0}+\omega_{1} n_{1}+\omega_{2} n_{2}\right)=t\left(n_{0}^{\prime}+\omega_{1} n_{1}^{\prime}+\omega_{2} n_{2}^{\prime}+r_{\omega}\right) t\left(e_{0}+\omega_{1} e_{1}+\omega_{2} e_{2} \bmod 2\right)
$$

where $r_{\omega}=r_{\omega}\left(e_{0}, e_{1}, e_{2}\right)=\left\lfloor\left(e_{0}+\omega_{1} e_{1}+\omega_{2} e_{2}\right) / 2\right\rfloor$.

Recurrence (1/4)

Let us consider the U^{2}-norm of the Thue-Morse sequence t. Recall that

$$
\|f\|_{U^{2}[N]}^{4}=\langle f, f, f, f\rangle_{U^{2}[N]}
$$

where $\langle\cdot\rangle_{U^{2}[N]}$ is the Gowers product given by

$$
\left\langle f_{00}, f_{10}, f_{01}, f_{11}\right\rangle_{U^{2}[N]}=\underset{\mathbf{n} \sim N}{\mathbb{E}} f_{00}\left(n_{0}\right) \bar{f}_{10}\left(n_{0}+n_{1}\right) \bar{f}_{10}\left(n_{0}+n_{2}\right) f_{11}\left(n_{0}+n_{1}+n_{2}\right)
$$

and the average is taken over all $\mathbf{n}=\left(n_{0}, n_{1}, n_{2}\right) \in \mathbb{Z}^{3}$ such that $n_{0}, n_{0}+n_{1}, n_{0}+n_{2}, n_{0}+n_{1}+n_{2} \in[N]=\{0,1, \ldots, N-1\}$.

Idea: Write $\mathbf{n}=2 \mathbf{n}^{\prime}+\mathbf{e}$ with $\mathbf{e} \in\{0,1\}^{3}$ and replace $\underset{\mathbf{n} \sim N}{\mathbb{E}}$ with $\underset{\mathbf{n}^{\prime} \sim N / 2}{\mathbb{E}} \underset{\mathbf{e} \in\{0,1\}^{3}}{\mathbb{E}}$. Basic computation yields:

$$
t\left(n_{0}+\omega_{1} n_{1}+\omega_{2} n_{2}\right)=t\left(n_{0}^{\prime}+\omega_{1} n_{1}^{\prime}+\omega_{2} n_{2}^{\prime}+r_{\omega}\right) t\left(e_{0}+\omega_{1} e_{1}+\omega_{2} e_{2} \bmod 2\right)
$$

where $r_{\omega}=r_{\omega}\left(e_{0}, e_{1}, e_{2}\right)=\left\lfloor\left(e_{0}+\omega_{1} e_{1}+\omega_{2} e_{2}\right) / 2\right\rfloor$.

Recurrence (2/4)

We are now ready to compute that:

$$
\begin{aligned}
\|t\|_{U^{2}[N]}^{4} & =\underset{\mathbf{n} \sim N}{\mathbb{E}} t\left(n_{0}\right) t\left(n_{0}+n_{1}\right) t\left(n_{0}+n_{2}\right) t\left(n_{0}+n_{1}+n_{2}\right) \\
& \simeq \underset{\mathbf{e} \in\{0,1\}^{3}}{\mathbb{E}} t\left(e_{0} \bmod 2\right) t\left(e_{0}+e_{1} \bmod 2\right) t\left(e_{0}+e_{2} \bmod 2\right) t\left(e_{0}+e_{1}+e_{2} \bmod 2\right) \\
& \times \underset{\mathbf{n}^{\prime} \sim N / 2}{\mathbb{E}} t\left(n_{0}^{\prime}+r_{00}\right) t\left(n_{0}^{\prime}+n_{1}^{\prime}+r_{10}\right) t\left(n_{0}^{\prime}+n_{2}^{\prime}+r_{01}\right) t\left(n_{0}^{\prime}+n_{1}^{\prime}+n_{2}^{\prime}+r_{11}\right) \\
& =\underset{\mathbf{e} \in\{0,1\}^{3}}{\mathbb{E}} \mu(\mathbf{e})\left\langle t_{00}^{\mathbf{e}}, t_{10}^{\mathbf{e}}, t_{01}^{\mathbf{e}}, t_{11}^{\mathbf{e}}\right\rangle_{U^{2}[N / 2]},
\end{aligned}
$$

where the last line can be taken as the definition of $\mu(\mathbf{e})$ and t_{ω}^{e} for $\omega \in\{0,1\}^{2}$.
Iterate ($l \geq 0$ times) and collect:

Recurrence (2/4)

We are now ready to compute that:

$$
\begin{aligned}
\|t\|_{U^{2}[N]}^{4} & =\underset{\mathbf{n} \sim N}{\mathbb{E}} t\left(n_{0}\right) t\left(n_{0}+n_{1}\right) t\left(n_{0}+n_{2}\right) t\left(n_{0}+n_{1}+n_{2}\right) \\
& \simeq \underset{\mathbf{e} \in\{0,1\}^{3}}{\mathbb{E}} t\left(e_{0} \bmod 2\right) t\left(e_{0}+e_{1} \bmod 2\right) t\left(e_{0}+e_{2} \bmod 2\right) t\left(e_{0}+e_{1}+e_{2} \bmod 2\right) \\
& \times \underset{\mathbf{n}^{\prime} \sim N / 2}{\mathbb{E}} t\left(n_{0}^{\prime}+r_{00}\right) t\left(n_{0}^{\prime}+n_{1}^{\prime}+r_{10}\right) t\left(n_{0}^{\prime}+n_{2}^{\prime}+r_{01}\right) t\left(n_{0}^{\prime}+n_{1}^{\prime}+n_{2}^{\prime}+r_{11}\right) \\
& =\underset{\mathbf{e} \in\{0,1\}^{3}}{\mathbb{E}} \mu(\mathbf{e})\left\langle t_{00}^{\mathbf{e}}, t_{10}^{\mathbf{e}}, t_{01}^{\mathbf{e}}, t_{11}^{\mathbf{e}}\right\rangle_{U^{2}[N / 2]},
\end{aligned}
$$

where the last line can be taken as the definition of $\mu(\mathbf{e})$ and t_{ω}^{e} for $\omega \in\{0,1\}^{2}$.
Iterate ($l \geq 0$ times) and collect:

$$
\begin{aligned}
\|t\|_{U^{2}[N]}^{4} & \simeq \underset{\mathbf{e} \in\left[0,2^{l}\right)^{3}}{\mathbb{E}} \mu(\mathbf{e})\left\langle t_{00}^{\mathrm{e}}, t_{10}^{\mathrm{e}}, t_{01}^{\mathrm{e}}, t_{11}^{\mathrm{e}}\right\rangle_{U^{2}\left[N / 2^{l}\right]} \\
& =\sum_{\mathbf{t}} w_{l}(\mathbf{t})\left\langle t_{00}, t_{10}, t_{01}, t_{11}\right\rangle_{U^{2}\left[N / 2^{2}\right]},
\end{aligned}
$$

where $\mathbf{t}=\left(t_{00}, t_{10}, t_{01}, t_{11}\right)$ and each $t_{\omega}, \omega \in\{0,1\}^{2}$, is a shift of t.

Recurrence (3/4)

Recall: $\|t\|_{U^{2}[N]}^{4} \simeq \sum_{\mathbf{t}} w_{l}(\mathbf{t})\left\langle t_{00}, t_{10}, t_{01}, t_{11}\right\rangle_{U^{2}\left[N / 2^{l}\right]}$.
Trivial bound: $\sum_{\mathbf{t}}\left|w_{l}(\mathbf{t})\right| \leq 1$. Need: any improvement.
If $\sum_{\mathbf{t}}\left|w_{l}(\mathbf{t})\right| \leq 1-c$ then $\|t\|_{U^{2}[N]}^{4} \ll(1-c)^{\log N / l \log 2} \ll N^{-c^{\prime}}$, as claimed.

Non-trivial part of the argument: Find some $l \geq 0$ and $\mathbf{e}, \mathbf{e}^{\prime} \in\left[0,2^{l}\right)^{3}$ such that

- $\mu(\mathbf{e})=+1$ and $\mu\left(\mathbf{e}^{\prime}\right)=-1$;
- $t_{\omega}^{\mathrm{e}}=t_{\omega}^{\mathrm{e}^{\prime}}=t$ for all $\omega \in\{0,1\}^{2}$.

Recall that in this situation we have

$$
\mu^{\prime}(\mathrm{e})=t\left(e_{0}\right) t\left(e_{0}+e_{1}\right) t\left(e_{0}+e_{2}\right) t\left(e_{0}+e_{1}+e_{2}\right) .
$$

For Thue-Morse such e and \mathbf{e}^{\prime} can be constructed by an ad hoc argument. The key difficulty in generalising to other (invertible) sequences is to deal with this step.

Recurrence (3/4)

Recall: $\|t\|_{U^{2}[N]}^{4} \simeq \sum_{\mathbf{t}} w_{l}(\mathbf{t})\left\langle t_{00}, t_{10}, t_{01}, t_{11}\right\rangle_{U^{2}\left[N / 2^{l}\right]}$.
Trivial bound: $\sum_{\mathbf{t}}\left|w_{l}(\mathbf{t})\right| \leq 1$. Need: any improvement.
If $\sum_{\mathbf{t}}\left|w_{l}(\mathbf{t})\right| \leq 1-c$ then $\|t\|_{U^{2}[N]}^{4} \ll(1-c)^{\log N / l \log 2} \ll N^{-c^{\prime}}$, as claimed.

Non-trivial part of the argument: Find some $l \geq 0$ and $\mathbf{e}, \mathbf{e}^{\prime} \in\left[0,2^{l}\right)^{3}$ such that

- $\mu(\mathbf{e})=+1$ and $\mu\left(\mathbf{e}^{\prime}\right)=-1$;
- $t_{\omega}^{\mathbf{e}}=t_{\omega}^{\mathbf{e}^{\prime}}=t$ for all $\omega \in\{0,1\}^{2}$.

Recall that in this situation we have

$$
\mu(\mathbf{e})=t\left(e_{0}\right) t\left(e_{0}+e_{1}\right) t\left(e_{0}+e_{2}\right) t\left(e_{0}+e_{1}+e_{2}\right)
$$

For Thue-Morse such e and \mathbf{e}^{\prime} can be constructed by an ad hoc argument. The key difficulty in generalising to other (invertible) sequences is to deal with this step.

Recurrence (3/4)

Recall: $\|t\|_{U^{2}[N]}^{4} \simeq \sum_{\mathbf{t}} w_{l}(\mathbf{t})\left\langle t_{00}, t_{10}, t_{01}, t_{11}\right\rangle_{U^{2}\left[N / 2^{l}\right]}$.
Trivial bound: $\sum_{\mathbf{t}}\left|w_{l}(\mathbf{t})\right| \leq 1$. Need: any improvement.
If $\sum_{\mathbf{t}}\left|w_{l}(\mathbf{t})\right| \leq 1-c$ then $\|t\|_{U^{2}[N]}^{4} \ll(1-c)^{\log N / l \log 2} \ll N^{-c^{\prime}}$, as claimed.

Non-trivial part of the argument: Find some $l \geq 0$ and $\mathbf{e}, \mathbf{e}^{\prime} \in\left[0,2^{l}\right)^{3}$ such that

- $\mu(\mathbf{e})=+1$ and $\mu\left(\mathbf{e}^{\prime}\right)=-1$;
- $t_{\omega}^{\mathrm{e}}=t_{\omega}^{\mathrm{e}^{\prime}}=t$ for all $\omega \in\{0,1\}^{2}$.

Recall that in this situation we have

$$
\mu(\mathbf{e})=t\left(e_{0}\right) t\left(e_{0}+e_{1}\right) t\left(e_{0}+e_{2}\right) t\left(e_{0}+e_{1}+e_{2}\right)
$$

For Thue-Morse such \mathbf{e} and \mathbf{e}^{\prime} can be constructed by an ad hoc argument. The key difficulty in generalising to other (invertible) sequences is to deal with this step.

Recurrence (4/4)

Back to general case: The sequence a is given by $a(n)=\chi(\lambda(n))$,

$$
\lambda(n)=\lambda\left(u_{l}\right) \cdot \lambda\left(u_{l-1}\right) \cdots \cdots \lambda\left(u_{0}\right) \text { where } u_{l} u_{l-1} \cdots u_{0}=(n)_{k} \in \Sigma_{k}^{*},
$$

and $\chi: G \rightarrow \mathbb{C}$ is a homomorphism. Again, we have recurrence:

$$
\|a\|_{U^{2}[N]}^{4} \simeq \underset{\mathbf{e} \in\left[0, k^{l}\right)^{3}}{\mathbb{E}} \mu(\mathbf{e})\left\langle a_{00}^{\mathbf{e}}, a_{10}^{\mathbf{e}}, a_{01}^{\mathbf{e}}, a_{11}^{\mathbf{e}}\right\rangle_{U^{2}\left[N / 2^{l}\right]},
$$

where $a_{\omega}^{\mathbf{e}}$ are shifts of a. If \mathbf{e} is such that $a_{\omega}^{\mathbf{e}}=a$ for all $\omega \in\{0,1\}^{2}$ then

$$
\mu(\mathbf{e})=\prod_{\omega \in\{0,1\}^{2}} \chi\left(\lambda\left(e_{0}+\omega_{1} e_{1}+\omega_{2} e_{2}\right)\right) .
$$

We want to find $\mathbf{e}^{(0)}, \mathbf{e}^{(1)}, \ldots, \mathbf{e}^{(m-1)} \in\left[0, k^{l}\right)^{3}$ such that $\sum_{j=0}^{m-1} \mu\left(\mathbf{e}^{(j)}\right)=0$.
Key construction: the "cube group" $\mathcal{Q}^{[2]} \subset G^{4}$,

Recurrence (4/4)

Back to general case: The sequence a is given by $a(n)=\chi(\lambda(n))$,

$$
\lambda(n)=\lambda\left(u_{l}\right) \cdot \lambda\left(u_{l-1}\right) \cdots \cdots \lambda\left(u_{0}\right) \text { where } u_{l} u_{l-1} \ldots u_{0}=(n)_{k} \in \Sigma_{k}^{*} \text {, }
$$

and $\chi: G \rightarrow \mathbb{C}$ is a homomorphism. Again, we have recurrence:

$$
\|a\|_{U^{2}[N]}^{4} \simeq \underset{\mathbf{e} \in\left[0, k^{l}\right)^{3}}{\mathbb{E}} \mu(\mathbf{e})\left\langle a_{00}^{\mathbf{e}}, a_{10}^{\mathbf{e}}, a_{01}^{\mathbf{e}}, a_{11}^{\mathbf{e}}\right\rangle_{U^{2}\left[N / 2^{l}\right]}
$$

where $a_{\omega}^{\mathbf{e}}$ are shifts of a. If \mathbf{e} is such that $a_{\omega}^{\mathbf{e}}=a$ for all $\omega \in\{0,1\}^{2}$ then

$$
\mu(\mathbf{e})=\prod_{\omega \in\{0,1\}^{2}} \chi\left(\lambda\left(e_{0}+\omega_{1} e_{1}+\omega_{2} e_{2}\right)\right) .
$$

We want to find $\mathbf{e}^{(0)}, \mathbf{e}^{(1)}, \ldots, \mathbf{e}^{(m-1)} \in\left[0, k^{l}\right)^{3}$ such that $\sum_{j=0}^{m-1} \mu\left(\mathbf{e}^{(j)}\right)=0$.
Key construction: the "cube group" $\mathcal{Q}^{[2]} \subset G^{4}$,

$$
\mathcal{Q}^{[2]}=\mathcal{Q}^{[2]}(G, \lambda):=\left\{\left(\lambda\left(e_{0}+\omega_{1} e_{1}+\omega_{2} e_{2}\right)\right)_{\omega \in\{0,1\}^{2}} \in G^{4}: \mathbf{e} \in \mathbb{N}^{3}\right\} .
$$

Fact: $\mathcal{Q}^{[2]}$ is a group. The rest of the argument hinges on describing $\mathcal{Q}^{[2]}$.

Cube groups

Host-Kra cube groups: groups generated by "upper faces":

$$
\mathrm{HK}^{[2]}(G)=\langle(g, g, g, g),(\mathrm{id}, \mathrm{id}, g, g),(\mathrm{id}, g, \mathrm{id}, g): g \in G\rangle<G^{4}
$$

We may freely assume that $\lambda(1), \ldots, \lambda(k-1)$ generate G. Then $\operatorname{HK}^{[2]}(G) \subset \mathcal{Q}^{[2]}$.

Example

Let $G=\mathbb{Z} / m \mathbb{Z} m \mid k-1$ and $\lambda(i)=i$ for all $i \in \Sigma_{k}$. Then

$$
\operatorname{HK}^{[2]}(G)=\mathcal{Q}^{[2]}(G, \lambda)
$$

\square factor of (G, λ) if there exists a factor map $\pi: H \rightarrow G$ such that - π is a group epimorphism;
\square We call (H, κ) characteristic. if $Q^{[2]}(G, \lambda)=\left(\pi^{[2]}\right)^{-1}\left(Q^{[2]}(H, \kappa)\right)$

Goal: Find a characteristic factor of the form $(\mathbb{Z} / m \mathbb{Z}$, id $)$.

Cube groups

Host-Kra cube groups: groups generated by "upper faces":

$$
\mathrm{HK}^{[2]}(G)=\langle(g, g, g, g),(\mathrm{id}, \mathrm{id}, g, g),(\mathrm{id}, g, \mathrm{id}, g): g \in G\rangle<G^{4}
$$

We may freely assume that $\lambda(1), \ldots, \lambda(k-1)$ generate G. Then $\operatorname{HK}^{[2]}(G) \subset \mathcal{Q}^{[2]}$.

Example

Let $G=\mathbb{Z} / m \mathbb{Z} m \mid k-1$ and $\lambda(i)=i$ for all $i \in \Sigma_{k}$. Then

$$
\operatorname{HK}^{[2]}(G)=\mathcal{Q}^{[2]}(G, \lambda)
$$

Definition: A pair (H, κ) (where H is a group and $\kappa: \Sigma_{k} \rightarrow H, \kappa(0)=\operatorname{id}_{H}$) is a factor of (G, λ) if there exists a factor map $\pi: H \rightarrow G$ such that

- π is a group epimorphism;
- $\kappa=\pi \circ \lambda$.

We always have the inclusion $\pi^{[2]}\left(Q^{[2]}(G, \lambda)\right) \subseteq \mathcal{Q}^{[2]}(H, \kappa)$.
We call (H, κ) characteristic if $Q^{[2]}(G, \lambda)=\left(\pi^{[2]}\right)^{-1}\left(\mathcal{Q}^{[2]}(H, \kappa)\right)$.

Goal: Find a characteristic factor of the form $(\mathbb{Z} / m \mathbb{Z}, i d)$.

Cube groups

Host-Kra cube groups: groups generated by "upper faces":

$$
\mathrm{HK}^{[2]}(G)=\langle(g, g, g, g),(\mathrm{id}, \mathrm{id}, g, g),(\mathrm{id}, g, \mathrm{id}, g): g \in G\rangle<G^{4}
$$

We may freely assume that $\lambda(1), \ldots, \lambda(k-1)$ generate G. Then $\operatorname{HK}^{[2]}(G) \subset \mathcal{Q}^{[2]}$.

Example

Let $G=\mathbb{Z} / m \mathbb{Z} m \mid k-1$ and $\lambda(i)=i$ for all $i \in \Sigma_{k}$. Then

$$
\operatorname{HK}^{[2]}(G)=\mathcal{Q}^{[2]}(G, \lambda)
$$

Definition: A pair (H, κ) (where H is a group and $\kappa: \Sigma_{k} \rightarrow H, \kappa(0)=\operatorname{id}_{H}$) is a factor of (G, λ) if there exists a factor map $\pi: H \rightarrow G$ such that

- π is a group epimorphism;
- $\kappa=\pi \circ \lambda$.

We always have the inclusion $\pi^{[2]}\left(Q^{[2]}(G, \lambda)\right) \subseteq \mathcal{Q}^{[2]}(H, \kappa)$.
We call (H, κ) characteristic if $Q^{[2]}(G, \lambda)=\left(\pi^{[2]}\right)^{-1}\left(\mathcal{Q}^{[2]}(H, \kappa)\right)$.
Goal: Find a characteristic factor of the form $(\mathbb{Z} / m \mathbb{Z}, \mathrm{id})$.

Characteristic factors

Lemma

There is a maximal normal subgroup $K<G$ such that the factor $(G / K, \bar{\lambda})$ is characteristic. It is the group generated by $h \in G$ such that $\left(h, \operatorname{id}_{G}, \operatorname{id}_{G}, \mathrm{id}_{G}\right) \in \mathcal{Q}^{[2]}$.

- Let $r=|G|$, and let $n \in \mathbb{N}$ be arbitrary. For notational clarity, suppose $k=10$.
- Put $e_{0}=10^{2 r} n+1, e_{1}=10^{2 r}-10^{r}, e_{2}=10^{r}-1$.
- We can compute the group labels:

- As a consequence, $\lambda(n+1)(\lambda(n) \lambda(1))^{-1} \in K$ and by induction: $\lambda(n) \lambda(1)^{-n} \in K$.
- This means that $G / K=\mathbb{Z} / m \mathbb{Z}$ and $\bar{\lambda}(n)=n \bmod m$, as needed.

Characteristic factors

Lemma

There is a maximal normal subgroup $K<G$ such that the factor $(G / K, \bar{\lambda})$ is characteristic. It is the group generated by $h \in G$ such that $\left(h, \operatorname{id}_{G}, \operatorname{id}_{G}, \mathrm{id}_{G}\right) \in \mathcal{Q}^{[2]}$.

- Let $r=|G|$, and let $n \in \mathbb{N}$ be arbitrary. For notational clarity, suppose $k=10$.
- We can compute the group labels:

- As a consequence, $\lambda(n+1)(\lambda(n) \lambda(1))^{-1} \in K$ and by induction: $\lambda(n) \lambda(1)^{-n} \in K$.
- This means that $G / K=\mathbb{T} / m \not \mathbb{Z}$ and $\lambda(n)=n \bmod m$ as needed.

Characteristic factors

Lemma

There is a maximal normal subgroup $K<G$ such that the factor $(G / K, \bar{\lambda})$ is characteristic. It is the group generated by $h \in G$ such that $\left(h, \operatorname{id}_{G}, \operatorname{id}_{G}, \mathrm{id}_{G}\right) \in \mathcal{Q}^{[2]}$.

- Let $r=|G|$, and let $n \in \mathbb{N}$ be arbitrary. For notational clarity, suppose $k=10$.
- Put $e_{0}=10^{2 r} n+1, e_{1}=10^{2 r}-10^{r}, e_{2}=10^{r}-1$.
- We can compute the group labels:

- This means that $G / K=\mathbb{Z} / m \mathbb{Z}$ and $\lambda(n)=n \bmod m$, as needed.

Characteristic factors

Lemma

There is a maximal normal subgroup $K<G$ such that the factor $(G / K, \bar{\lambda})$ is characteristic. It is the group generated by $h \in G$ such that $\left(h, \operatorname{id}_{G}, \operatorname{id}_{G}, \mathrm{id}_{G}\right) \in \mathcal{Q}^{[2]}$.

- Let $r=|G|$, and let $n \in \mathbb{N}$ be arbitrary. For notational clarity, suppose $k=10$.
- Put $e_{0}=10^{2 r} n+1, e_{1}=10^{2 r}-10^{r}, e_{2}=10^{r}-1$.
- We can compute the group labels:

$$
\begin{aligned}
\lambda\left(e_{0}\right) & =\lambda((n)_{10} \underbrace{0 \ldots 00}_{r} \underbrace{0 \ldots 01}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{1}\right) & =\lambda((n)_{10} \underbrace{9 \ldots 9}_{r} \underbrace{0 \ldots 01}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{2}\right) & =\lambda((n)_{10} \underbrace{0 \ldots 01}_{r} \underbrace{0 \ldots 00}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{1}+e_{2}\right) & =\lambda((n+1)_{10}^{0 \ldots} \underbrace{0}_{r} \underbrace{0 \ldots 00}_{r})=\lambda(n+1) .
\end{aligned}
$$

- As a consequence, $\lambda(n+1)(\lambda(n) \lambda(1))^{-1} \in K$ and by induction:
- This means that $G / K=\mathbb{T} / m \mathbb{Z}$ and $\bar{\lambda}(n)=n \bmod m$ as noeded.

Characteristic factors

Lemma

There is a maximal normal subgroup $K<G$ such that the factor $(G / K, \bar{\lambda})$ is characteristic. It is the group generated by $h \in G$ such that $\left(h, \mathrm{id}_{G}, \mathrm{id}_{G}, \mathrm{id}_{G}\right) \in \mathcal{Q}^{[2]}$.

- Let $r=|G|$, and let $n \in \mathbb{N}$ be arbitrary. For notational clarity, suppose $k=10$.
- Put $e_{0}=10^{2 r} n+1, e_{1}=10^{2 r}-10^{r}, e_{2}=10^{r}-1$.
- We can compute the group labels:

$$
\begin{aligned}
\lambda\left(e_{0}\right) & =\lambda((n)_{10} \underbrace{0 \ldots 00}_{r} \underbrace{0 \ldots 01}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{1}\right) & =\lambda((n)_{10} \underbrace{9 \ldots 9}_{r} \underbrace{0 \ldots 01}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{2}\right) & =\lambda((n)_{10} \underbrace{0 \ldots 01}_{r} \underbrace{0 \ldots 00}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{1}+e_{2}\right) & =\lambda((n+1)_{10}^{0} \underbrace{0 \ldots 00}_{r} \underbrace{0 \ldots 00}_{r})=\lambda(n+1) .
\end{aligned}
$$

- As a consequence, $\lambda(n+1)(\lambda(n) \lambda(1))^{-1} \in K$ and by induction: $\lambda(n) \lambda(1)^{-n} \in K$.

Characteristic factors

Lemma

There is a maximal normal subgroup $K<G$ such that the factor $(G / K, \bar{\lambda})$ is characteristic. It is the group generated by $h \in G$ such that $\left(h, \mathrm{id}_{G}, \mathrm{id}_{G}, \mathrm{id}_{G}\right) \in \mathcal{Q}^{[2]}$.

- Let $r=|G|$, and let $n \in \mathbb{N}$ be arbitrary. For notational clarity, suppose $k=10$.
- Put $e_{0}=10^{2 r} n+1, e_{1}=10^{2 r}-10^{r}, e_{2}=10^{r}-1$.
- We can compute the group labels:

$$
\begin{aligned}
\lambda\left(e_{0}\right) & =\lambda((n)_{10} \underbrace{0 \ldots 00}_{r} \underbrace{0 \ldots 01}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{1}\right) & =\lambda((n)_{10} \underbrace{9 \ldots 9}_{r} \underbrace{0 \ldots 01}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{2}\right) & =\lambda((n)_{10} \underbrace{0 \ldots 01}_{r} \underbrace{0 \ldots 00}_{r})=\lambda(n) \lambda(1) \\
\lambda\left(e_{0}+e_{1}+e_{2}\right) & =\lambda((n+1)_{10}^{0} \underbrace{0 \ldots 00}_{r} \underbrace{0 \ldots 00}_{r})=\lambda(n+1) .
\end{aligned}
$$

- As a consequence, $\lambda(n+1)(\lambda(n) \lambda(1))^{-1} \in K$ and by induction: $\lambda(n) \lambda(1)^{-n} \in K$.
- This means that $G / K=\mathbb{Z} / m \mathbb{Z}$ and $\bar{\lambda}(n)=n \bmod m$, as needed.

Thank you for your attention!

