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Let G be a countable abelian group.
d∗ denotes upper Banach density in G .
Given a set A ⊂ G with d∗(A) > 0, we want to understand the
difference set A− A := {a− a′ : a, a′ ∈ A}.

Definition

Let d ∈ N, ρ : G → Td a homomorphism, and U ⊂ Td an open
neighborhood of 0 ∈ Td . The Bohr neighborhood in G determined
by these parameters is ρ−1(U).

A Bohr neighborhood of g ∈ G has the form g + B , where B is a
Bohr neighborhood of 0. The Bohr topology on G is the smallest
topology containing all Bohr neighborhoods.

Theorem (Følner 1954)

If A ⊂ G and d∗(A) > 0, then A− A contains B \ E , where B is a
Bohr neighborhood of 0 in G and d∗(E ) = 0.

Ruzsa asked [Ruz82]: if d∗(A) > 0, must A− A contain a Bohr
neighborhood of 0? (Can E be eliminated in Følner’s thm?)
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Lack of structure in A− A

Kriz (1987) showed that there are sets A ⊂ Z with d∗(A) > 0
where A− A does not contain a Bohr neighborhood of 0.

Problem
Classify the sets A ⊂ Z with d∗(A) > 0 such that A− A does not
contain a Bohr neighborhood of 0.

Ruzsa [Ruz85], Ruzsa [GR09], G. [Gri12] Bergelson and Ruzsa
[BR09], Hegyvári and Ruzsa [HR16] asked:

Question
If A ⊂ Z and d∗(A) > 0, must A− A contain a Bohr neighborhood
of some n ∈ Z?

G. [Gri21]: no.

Problem
Classify the sets A ⊂ Z with d∗(A) > 0 such that A− A does not
contain a Bohr neighborhood of any n ∈ Z.
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A− A contains no Bohr nhood - a finite analogue

F2 = Z/2Z.
In Fd

2 , e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc.
E = {ei : i = 1, . . . , d} ⊂ Fd

2 .
Subgroups (= subspaces) play the role of Bohr nhoods in Fd

2 .

Lemma

Fix K ∈ N and δ < 1/2. For all large enough d , there is an A ⊂ Fd
2

with |A| > δ2d such that A− A does not contain any coset of any
subspace of codimension K .

Setup: for x = (x1, . . . , xd) ∈ Fd
2 , w(x) = |{i ≤ d : xi 6= 0}|.

The Hamming ball of radius k around y ∈ Fd
2 is

H(y; k) := {x ∈ Fd
2 : w(x− y) ≤ k}

Note that H(0; k) = {0} ∪ E ∪ (E + E) ∪ · · · ∪ (
∑k

i=1 E)
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Claim (in Fd
2 )

(i) Let SK := H(1;K ). Then SK ∩ V 6= ∅ when V is a coset of a
subspace of codimension K .

(ii) For δ < 1
2 and large enough d , AK := H(0; d2 − K ) > δ|Fd

2 |.
(iii) (AK − AK ) ∩ SK = ∅.

(i) and (iii) =⇒ AK − AK contains no coset of a subspace of
codimension K .
Proof of (i). The property is translation invariant, so it suffices to
prove the statement for H(0;K ) instead.
Equivalent to: if ρ : Fd

2 → FK
2 is surjective, then ρ(H(0;K )) = FK

2 .
But ρ(E) spans FK

2 , and

ρ(H(0;K )) = ρ(0) ∪ ρ(E) ∪ ρ(E + E) ∪ · · · ∪ ρ(
K∑
i=1

E) �

IS THERE A FUNDAMENTALLY DIFFERENT WAY TO
CONSTRUCT DENSE SETS WHOSE DIFFERENCE SETS LACK

STRUCTURE?
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Let G be a countable abelian group. A ⊂ G is syndetic if there is a
finite set F such that A+ F = G . (So d∗(A) ≥ 1/|F |).

Question (Veech [Vee68], Landstad [Lan71], Ruzsa [Ruz85],
Glasner [Gla98], Katznelson [Kat01])

If A ⊂ G is syndetic, must A− A contain a Bohr neighborhood of
0?

The answer is unknown in every countably infinite abelian group G .

Problems on difference sets are equivalent to problems about sets
of recurrence in various categories of dynamical systems.

If d∗(A) > 0, there is a probability measure preserving G -system
(X , µ,T ) and Ã ⊂ X with µ(Ã) = d∗(A) such that A− A contains
{g ∈ G : Ã ∩ T−1

g Ã 6= ∅}.

If A is syndetic there is a minimal topological G -system (X ,T ) and
an open U ⊂ X such that A− A contains {g : U ∩ T−1

g U 6= ∅},
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We want to understand single recurrence in various categories of
dynamical systems.

Definition
Let G be a countable abelian group and S ⊂ G .
• S is a set of measurable recurrence if for every probability

measure preserving G -system (X , µ,T ) and every A ⊂ X with
µ(A) > 0, there is a g ∈ S such that A ∩ T−1

g A 6= ∅.
• S is a set of topological recurrence if for every minimal

topological G -system (X ,T ) and every nonempty open
A ⊂ X , there is a g ∈ S such that A ∩ T−1

g A 6= ∅.
• S is a set of Bohr recurrence if for every minimal group

rotation system (Kronecker system) (K ,T ) and every open
A ⊂ K , there is a g ∈ S such that A ∩ T−1

g A 6= ∅.

S is a set of measurable rec. =⇒ S is a set of top. rec. =⇒ S is
a set of Bohr rec.
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Sets of measurable recurrence: examples

S ⊂ G is a set of measurable recurrence if ∀ G -systems (X , µ,T )
and A ⊂ X with µ(A) > 0, ∃ g ∈ S such that A ∩ T−1

g A 6= ∅.

Examples:
• In any group: if E ⊂ G is infinite, then {a− b : a 6= b ∈ E} is

a set of measurable recurrence. (Poincaré)
• In Z: {n2 : n ∈ N} (Furstenberg, Sárközy)
• {bn5/2c : n ∈ N}

Non-examples:
• {n2 + 1 : n ∈ N} is not a set of measurable recurrence. Also

not a set of Bohr recurrence.
• {n! : n ∈ N} is not a set of measurable recurrence. Also not a

set of Bohr recurrence.
Is there some common structure underlying all sets of measurable
recurrence? Something common to all sets of topological
recurrence? Bohr recurrence?
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Kriz’s example

• S ⊂ G is a set of measurable recurrence if ∀ G -systems
(X , µ,T ) and A ⊂ X with µ(A) > 0, ∃ g ∈ S such that
A ∩ T−1

g A 6= ∅.
• S is a set of topological recurrence if ∀ min. top. G -systems
(X ,T ) and open A ⊂ X ∃ g ∈ S such that A ∩ T−1

g A 6= ∅.

(Early ’80s) Bergelson, Furstenberg, and Ruzsa asked: is every set
of topological recurrence a set of measurable recurrence?

Theorem (Kriz [Kri87])

In Z, there is a set of topological recurrence which is not a set of
measurable recurrence.
Moreover: if E ⊂ Z is infinite, then there is a subset of E − E
which is a set of topological but not measurable recurrence.

The second statement is implicit in [Kri87]. Proved explicitly in
[Gri23a] “Separating topological recurrence from measurable
recurrence”. 9 / 33



Classifying Kriz-type examples

Can we classify the systems that separate topological recurrence for
measurable recurrence?
What can we say about an ergodic MPS (X , µ,T ) admitting an A
with µ(A) > 0 and A ∩ T−nA = ∅ for all n in a set of topological
recurrence? Bohr recurrence?

Question
Is every set of topological recurrence also a set of measurable
recurrence for distal systems (i.e. inverse limits of compact
extensions)?

(I believe the Kriz example can be done with (X , µ,T ) weak
mixing.)

Problem (Chandgotia and Weiss 2020)

Prove or disprove: if S is a set of measurable recurrence for all zero
entropy measure preserving systems then S is a set of measurable
recurrence.
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Measurable vs. topological recurrence in other groups

Fω
p is the countably infinite vector space over Fp.

Alan Forrest [For91] constructed examples of topological but not
measurable recurrence in Fω

2 .

Such examples can be lifted from subgroups and quotients.

Question
Let p be an odd prime. Is there a subset of Fω

p with which is a set
of topological but not measurable recurrence?
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Hereditary separation

Question
Let S ⊂ Z be a set of measurable recurrence. Must there be a set
S ′ ⊂ S which is a set of topological recurrence and not measurable
recurrence?

This is true for S = {n2 : n ∈ N} and other familiar, explicit
examples. Can be done by modifying Kriz’s construction.

[Gri23b] constructs a set S ⊂ {n2 : n ∈ N} which is a set of Bohr
recurrence but not measurable recurrence.

But for a completely arbitrary set of recurrence S , new techniques
may be required.

The same question makes sense for any other pair of recurrence
properties.
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Katznelson’s problem

• S ⊂ G is a set of topological recurrence if ∀ min. top.
G -systems (X ,T ) and open A ⊂ X ∃ g ∈ S such that
A ∩ T−1

g A 6= ∅.
• S is a set of Bohr recurrence if for all min. Kronecker systems
(K ,T ) and open A ⊂ K ∃ g ∈ S such that A ∩ T−1

g A 6= ∅.

Veech [Vee68] asked: is every set of Bohr recurrence a set of
topological recurrence?

Reiterated by Landstad [Lan71], Ruzsa [Ruz82], Glasner [Gla98],
Katznelson [Kat01].
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Known special cases

Katznelson’s problem: is every set of Bohr recurrence also a set of
topological recurrence?

Kunen and Rudin [KR99]: if E ⊂ Z is lacunary and S ⊂ E − E is a
set of Bohr recurrence, then S is a set of topological recurrence.
Extended to countable abelian groups in [Gri23c].

Note: E − E is a set of measurable recurrence, and (by Kriz)
contains a set of topological but not measurable recurrence.

Host, Kra, Maass [HKM16]: if S is a set of Bohr recurrence, then
S is a set of recurrence for minimal nilsystems.

Glasscock, Koutsogiannis, Richter [GKR22]: if S is a set of Bohr
recurrence, then S is a set of recurrence for a special class of
minimal skew product systems.
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Examples with unknown recurrence properties

Given a countable abelian group G , ε > 0, a homomorphism
ρ : G → Td , and a neighborhood U of 0 in Td , the Bohr
neighborhood of 0 determined by these parameters is

{g ∈ G : ρ(g) ∈ U}.

S is a set of Bohr recurrence if and only if S ∩ B 6= ∅ for every
Bohr neighborhood of 0.

Fp = Z/pZ, Fω
p = Fp ⊕ Fp ⊕ Fp ⊕ · · ·

The Bohr neighborhoods of 0 in Fω
p are the finite index subgroups.

Observation
S ⊂ Fω

p is a set of Bohr recurrence iff for every d ∈ N and every
homomorphism ρ : Fω

p → Fd
p , ∃g ∈ S such that ρ(g) = 0.
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Bohr recurrence in Fω3
e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . , ), . . .
E = {ei : i ∈ N} is the standard basis of Fω

3 .

E is not a set of Bohr recurrence
ρ : Fω

3 → F3, ρ((x1, x2, . . . , )) :=
∑

xi maps E to {1}.

E3 := {ei + ej + ek : i , j , k mutually distinct}
E3 is a set of Bohr recurrence.
Proof. If ρ : Fω

3 → Fd
3 is a homomorphism, choose i , j , k so that

ρ(ei ) = ρ(ej) = ρ(ek). Then

ρ(ei + ej + ek) = ρ(ei ) + ρ(ej) + ρ(ek) = 3ρ(ei ) = 0.

Which subsets of E3 are sets of Bohr recurrence?
Let F be a collection of subsets of N. Say F is partition regular if
for every partition N = C1 ∪ · · · ∪ Cr , F ⊂ Ci for some F ∈ F ,
i ≤ r .
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Lemma (Givens [Giv03], Givens and Kunen [GK03])

Let F be a collection of 3-element subsets of N, let

EF := {ei + ej + ek : {i , j , k} ∈ F} ⊂ Fω
3

EF is a set of Bohr recurrence if and only if F is partition regular.

S3AP := {en + en+d + en+2d : n, d ∈ N}
SSchur := {ea + eb + ea+b : a, b ∈ N}
Are these sets of topological recurrence? Measurable recurrence?

Proposition (G. [Gri23c])

If every subset of E3 which is a set of Bohr recurrence is a set of
topological recurrence, then every subset of Fω

3 which is a set of
Bohr recurrence is a set of topological recurrence.

So we only need to look among subsets of E3 to resolve
Katznelson’s question for Fω

3 .
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One more example

{k!2n3m : k, n,m ∈ N}

is a set of Bohr recurrence in Z
(asserted by Frantzikinakis and McCutcheon 2009).

Is it a set of topological recurrence? Measurable recurrence?
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Translates with recurrence properties

A sequence (gn)n∈N in G is Hartman uniformly distributed if

lim
N→∞

1
N

N∑
n=1

χ(gn) = 0.

for every nontrivial homomorphism χ : G → S1 (= unit circle in C).
In Z this means 1

N

∑N
n=1 exp(gnt)→ 0 for every t ∈ (0, 2π).

Hartman-u.d. implies limN→∞
1
N

∑N
n=1 µ(A ∩ T−1

gn A) ≥ µ(A)2.

So if a sequence of elements of S is Hartman-u.d., then S is a set
of measurable recurrence.
Every translate (gn + t) of a Hartman-u.d. sequence is
Hartman-u.d.
So every translate of S is a set of measurable recurrence (and
therefore a set of topological recurrence and a set of Bohr
recurrence).
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Katznelson [Kat73] constructed a set S ⊂ Z where every translate
of S is a set of Bohr rec., but no sequence from S is Hartman-u.d.

Construction: define a1 = 1, an+1 = nan + 1.
S := the IP set generated by an: S = {

∑
n∈F an : F ⊂ N finite}.

Katznelson proved:
(i) Every translate of S is a set of Bohr recurrence.
(ii) There is a continuous probability measure σ on T such that
|σ̂(n)| > 1− ε for every element of S . This is impossible for
Hartman-u.d. sequences.

S is a set of measurable recurrence (it’s an IP set).
S + 1 is a set of Bohr recurrence.

Question
Is S + 1 a set of topological recurrence? Measurable recurrence?

Are there analogues of this construction in other groups?
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Badea, Grivaux, and Matheron [BGM19] refined Katznelson’s
example to construct rigidity sequences with interesting properties.

Saeki [Sae80], G. [Gri19], Ackelsberg [Ack22] studied recurrence
properties via Fourier transforms of measures on Ĝ .

Theorem ([Gri18])

(In Z) If every translate of S is a set of measurable recurrence, then
there is a set S ′ ⊂ S such that every translate of S ′ is a set of
measurable recurrence, and no sequence from S ′ is Hartman-u.d.

There seems to be some nontrivial structure common to sets S
where every translate of S is a set of measurable recurrence.
Is there some structure common to all sets of measurable
recurrence?
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More translates and recurrence

Ruzsa ([Ruz85], [GR09]), Bergelson and Ruzsa [BR09], G. [Gri12],
Hegyvári and Ruzsa [HR16], asked (in Z): if every translate of S is
a set of Bohr recurrence, must S be a set of measurable recurrence?

G. [Gri21]: No. Moreover, if S ⊂ Z and every translate of S is a set
of Bohr recurrence, then there is an S ′ ⊂ S such that every
translate of S ′ is a set of Bohr recurrence and S ′ is not a set of
measurable recurrence.

There seems to be some nontrivial structure common to sets which
are dense in the Bohr topology.
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Theorem ([Kri87])

There is a set S ⊂ Z which is a set of topological recurrence but is
not a set of measurable recurrence.

S is constructed from finite approximations. Here is a rough outline:

Definition
• S ⊂ G is δ-nonrecurrent if ∃ B ⊂ G with d∗(B) > δ such that
B ∩ (B + S) = ∅.
• S ⊂ G is k-chromatically recurrent if for every partition
G = B1 ∪ B2 ∪ · · · ∪ Bk , we have Bi ∩ (Bi + S) 6= ∅ for some
Bi .
Equivalently, the Cayley graph on G determined by S has
chromatic number > k .
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Lemma (gluing lemma)

In Z: if S1, S2 ⊂ Z are finite, S1 is δ1-nonrecurrent and S2 is
δ2-nonrecurrent, then for all sufficiently large m, S1 ∪mS2 is
2δ1δ2-nonrecurrent.

It suffices to find, for each k , a finite set Sk which is
(1
2 − εk)-nonrecurrent and k-chromatically recurrent (εk → 0

rapidly).

S = S0 ∪m1S1 ∪m2S2 ∪ · · ·

A compactness property of measurable recurrence says that S will
be δ-nonrecurrent for any δ < (1− 2ε1)(1− 2ε2) · · · .

S will be k-chromatically recurrent for every k , so will be a set of
topological recurrence.

These examples are essentially constructed in Fd
2 and “copied” into

Td , then into Z.
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Hamming balls in Fd
2

For x = (x1, . . . , xd) ∈ Fd
2 , w(x) = |{i : xi 6= 0}|.

For y ∈ Fd
2 , the Hamming ball around y of radius k is

H(y; k) := {x ∈ Fd
2 : w(y − x) ≤ k}

1 = (1, . . . , 1) ∈ Fd
2 .

When d > 2k , Sk := H(1; 2k) is k-chromatically recurrent.

Reason: the Cayley graph determined by H(1; 2k) contains a copy
of the Kneser Graph KG (d , d2 − k), which has chromatic number
k + 2 (Lovász).

When d is very large (k = o(
√
d)), H(1; 2k) is δ-nonrecurrent

(δ → 1/2 as d →∞.)

Reason: let A = H(0; d2 − 2k). A has density → 1
2 as d →∞.

Then A− A = H(0; d − 4k), which is disjoint from H(1; 2k).
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What about Fd
p for odd p?

We say S ⊂ G is k-Bohr recurrent if S ∩ B 6= ∅ for every Bohr
neighborhood B of 0 determined by a homomorphism ρ : G → Tk .
In Fd

p this means that S ∩ H 6= ∅ whenever H is a subgroup of
index pk .

If d > k , then H(1; p · k) is k-Bohr recurrent in Fd
p .

(k-chromatically recurrent?)

But H(1; p · k) is δ-nonrecurrent (δ → 1
2 −

1
2p as d →∞) [Gri21].
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