On Elliott's conjecture and applications

Joni Teräväinen
University of Turku
Będlewo, June 2023

joint work with Oleksiy Klurman and Alexander P. Mangerel

Multiplicative functions

A function $g: \mathbb{N} \rightarrow \mathbb{C}$ is called multiplicative if $g(m n)=g(m) g(n)$ whenever m and n are coprime.

Multiplicative functions

A function $g: \mathbb{N} \rightarrow \mathbb{C}$ is called multiplicative if $g(m n)=g(m) g(n)$ whenever m and n are coprime.

We concentrate on functions taking values in $\mathbb{D}:=\{z \in \mathbb{C}:|z| \leq 1\}$.

Multiplicative functions

A function $g: \mathbb{N} \rightarrow \mathbb{C}$ is called multiplicative if $g(m n)=g(m) g(n)$ whenever m and n are coprime.

We concentrate on functions taking values in $\mathbb{D}:=\{z \in \mathbb{C}:|z| \leq 1\}$. Examples:

- $\lambda(n)=(-1)^{\Omega(n)}$, where $\Omega(n)$ is the number of prime factors of n with multiplicities (Liouville function).

Multiplicative functions

A function $g: \mathbb{N} \rightarrow \mathbb{C}$ is called multiplicative if $g(m n)=g(m) g(n)$ whenever m and n are coprime.
We concentrate on functions taking values in $\mathbb{D}:=\{z \in \mathbb{C}:|z| \leq 1\}$. Examples:

- $\lambda(n)=(-1)^{\Omega(n)}$, where $\Omega(n)$ is the number of prime factors of n with multiplicities (Liouville function).
- $\mu(n)=\lambda(n) 1_{n \text { squarefree }}$ (Möbius function).

Multiplicative functions

A function $g: \mathbb{N} \rightarrow \mathbb{C}$ is called multiplicative if $g(m n)=g(m) g(n)$ whenever m and n are coprime.
We concentrate on functions taking values in $\mathbb{D}:=\{z \in \mathbb{C}:|z| \leq 1\}$. Examples:

- $\lambda(n)=(-1)^{\Omega(n)}$, where $\Omega(n)$ is the number of prime factors of n with multiplicities (Liouville function).
- $\mu(n)=\lambda(n) 1_{n \text { squarefree }}$ (Möbius function).
- $(-1)^{\Omega_{\mathcal{P}}(n)}$, where $\Omega_{\mathcal{P}}(n)$ is the number of prime factors of n from $\mathcal{P} \subset \mathbb{P}$ with multiplicities.

Multiplicative functions

A function $g: \mathbb{N} \rightarrow \mathbb{C}$ is called multiplicative if $g(m n)=g(m) g(n)$ whenever m and n are coprime.
We concentrate on functions taking values in $\mathbb{D}:=\{z \in \mathbb{C}:|z| \leq 1\}$.
Examples:

- $\lambda(n)=(-1)^{\Omega(n)}$, where $\Omega(n)$ is the number of prime factors of n with multiplicities (Liouville function).
- $\mu(n)=\lambda(n) 1_{n}$ squarefree (Möbius function).
- $(-1)^{\Omega_{\mathcal{P}}(n)}$, where $\Omega_{\mathcal{P}}(n)$ is the number of prime factors of n from $\mathcal{P} \subset \mathbb{P}$ with multiplicities.
- $\chi(n) n^{i t}$ with χ a Dirichlet character and $t \in \mathbb{R}$ $(\chi(m n)=\chi(m) \chi(n)$ for all m, n and χ is periodic of some period q and $\chi(n)=0$ if $\operatorname{gcd}(n, q)>1)$.

Mean values and correlations

Given a multiplicative function $g: \mathbb{N} \rightarrow \mathbb{D}$, we wish to understand the mean values

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n)
$$

and the correlations

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)
$$

Mean values and correlations

Given a multiplicative function $g: \mathbb{N} \rightarrow \mathbb{D}$, we wish to understand the mean values

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n)
$$

and the correlations

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)
$$

Introduce a distance function on the space of multiplicative functions (pretentious distance):

$$
\mathbb{D}(f, g ; x):=\left(\sum_{p \leq x} \frac{1-\operatorname{Re}(f(p) \overline{g(p)})}{p}\right)^{1 / 2} .
$$

We say that f pretends to be g if $\mathbb{D}(f, g ; \infty)<\infty$.

Mean values and correlations

Given a multiplicative function $g: \mathbb{N} \rightarrow \mathbb{D}$, we wish to understand the mean values

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n)
$$

and the correlations

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)
$$

Introduce a distance function on the space of multiplicative functions (pretentious distance):

$$
\mathbb{D}(f, g ; x):=\left(\sum_{p \leq x} \frac{1-\operatorname{Re}(f(p) \overline{g(p)})}{p}\right)^{1 / 2} .
$$

We say that f pretends to be g if $\mathbb{D}(f, g ; \infty)<\infty$.
If g pretends to be g^{\prime}, their mean value and correlation behaviours should be similar.

Thanks to a theorem of Halász, we understand mean values of multiplicative functions.

Thanks to a theorem of Halász, we understand mean values of multiplicative functions.

Halász's theorem, 1968

Let $g: \mathbb{N} \rightarrow \mathbb{D}$ be a multiplicative function. Suppose that g does not pretend to be $n^{i t}$ for any $t \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n)=0
$$

Thanks to a theorem of Halász, we understand mean values of multiplicative functions.

Halász's theorem, 1968

Let $g: \mathbb{N} \rightarrow \mathbb{D}$ be a multiplicative function. Suppose that g does not pretend to be $n^{i t}$ for any $t \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n)=0
$$

If instead g pretends to be 1 , then the mean value exists and can be computed (Delange's theorem), but if g pretends to be $n^{i t}$ with $t \neq 0$, the limit usually does not exist.

Elliott's conjecture, 1990

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

Elliott's conjecture, 1990

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

- $\forall \chi, t: \mathbb{D}\left(g_{1}, \chi(n) n^{i t}, \infty\right)=\infty \Longleftrightarrow g_{1}$ is aperiodic: g_{1} has mean value 0 in every arithmetic progression.

Elliott's conjecture, 1990

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

- $\forall \chi, t: \mathbb{D}\left(g_{1}, \chi(n) n^{i t}, \infty\right)=\infty \Longleftrightarrow g_{1}$ is aperiodic: g_{1} has mean value 0 in every arithmetic progression.
- The case $g_{1}=\cdots=g_{k}=\lambda$ is Chowla's conjecture.

Elliott's conjecture, 1990

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

- $\forall \chi, t: \mathbb{D}\left(g_{1}, \chi(n) n^{i t}, \infty\right)=\infty \Longleftrightarrow g_{1}$ is aperiodic: g_{1} has mean value 0 in every arithmetic progression.
- The case $g_{1}=\cdots=g_{k}=\lambda$ is Chowla's conjecture.
- One needs to exclude functions pretending to be characters, since if $g(n)=\chi(n) n^{i t}$ with $\chi(\bmod q)$ a character and $t \in \mathbb{R}$, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n) \overline{g(n+q)}=\frac{\varphi(q)}{q} \neq 0
$$

Elliott's conjecture, 1990

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

- $\forall \chi, t: \mathbb{D}\left(g_{1}, \chi(n) n^{i t}, \infty\right)=\infty \Longleftrightarrow g_{1}$ is aperiodic: g_{1} has mean value 0 in every arithmetic progression.
- The case $g_{1}=\cdots=g_{k}=\lambda$ is Chowla's conjecture.
- One needs to exclude functions pretending to be characters, since if $g(n)=\chi(n) n^{i t}$ with $\chi(\bmod q)$ a character and $t \in \mathbb{R}$, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n) \overline{g(n+q)}=\frac{\varphi(q)}{q} \neq 0
$$

- If g_{j} pretends to be $\chi_{j}(n) n^{i t_{j}}$ for $1 \leq j \leq k$, then there is an asymptotic formula for the correlations due to Klurman (2016).

MRT formulation of Elliott's conjecture

In 2015, Matomäki, Radziwiłł and Tao gave a technical counterexample to Elliott's conjecture: a multiplicative function that looks like $n^{i t}$ up to x, with t varying with the scale x.

MRT formulation of Elliott's conjecture

In 2015, Matomäki, Radziwiłł and Tao gave a technical counterexample to Elliott's conjecture: a multiplicative function that looks like $n^{i t}$ up to x, with t varying with the scale x.

MRT conjecture that Elliott's conjecture is true if one assumes g_{1} is strongly non-pretentious (strongly aperiodic): for every character χ

$$
\inf _{|t| \leq x} \mathbb{D}\left(g_{1}, \chi(n) n^{i t} ; x\right) \xrightarrow{x \rightarrow \infty} \infty
$$

MRT formulation of Elliott's conjecture

In 2015, Matomäki, Radziwiłł and Tao gave a technical counterexample to Elliott's conjecture: a multiplicative function that looks like $n^{i t}$ up to x, with t varying with the scale x.

MRT conjecture that Elliott's conjecture is true if one assumes g_{1} is strongly non-pretentious (strongly aperiodic): for every character χ

$$
\inf _{|t| \leq x} \mathbb{D}\left(g_{1}, \chi(n) n^{i t} ; x\right) \xrightarrow{x \rightarrow \infty} \infty
$$

Thus,
(1) g pretentious: explicit formula for autocorrelations.
(2) g strongly non-pretentious: autocorrelations converge to 0 .
(3) g non-pretentious but not strongly non-pretentious: ??

MRT formulation of Elliott's conjecture

In 2015, Matomäki, Radziwiłł and Tao gave a technical
counterexample to Elliott's conjecture: a multiplicative function that looks like $n^{i t}$ up to x, with t varying with the scale x.

MRT conjecture that Elliott's conjecture is true if one assumes g_{1} is strongly non-pretentious (strongly aperiodic): for every character χ

$$
\inf _{|t| \leq x} \mathbb{D}\left(g_{1}, \chi(n) n^{i t} ; x\right) \xrightarrow{x \rightarrow \infty} \infty
$$

Thus,
(1) g pretentious: explicit formula for autocorrelations.
(2) g strongly non-pretentious: autocorrelations converge to 0 .
(3) g non-pretentious but not strongly non-pretentious: ??

There is an interesting class of non-pretentious multiplicative functions that are not strongly non-pretentious (the MRT class), recently studied by Gomilko-Lemańczyk-de la Rue and Frantzikinakis-Lemańczyk-de la Rue.

A modified Elliott conjecture

We pose another way to correct Elliott's conjecture that does not involve strengthening the assumptions on the functions:

A modified Elliott conjecture

We pose another way to correct Elliott's conjecture that does not involve strengthening the assumptions on the functions:

Conjecture (A modified Elliott conjecture)

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then there exists some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 , such that

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

A modified Elliott conjecture

We pose another way to correct Elliott's conjecture that does not involve strengthening the assumptions on the functions:

Conjecture (A modified Elliott conjecture)

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then there exists some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 , such that

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

Here, if $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ with $x_{1}<x_{2}<\cdots$, then $\lim _{x \rightarrow \infty, x \in \mathcal{X}} f(x):=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$.

A modified Elliott conjecture

We pose another way to correct Elliott's conjecture that does not involve strengthening the assumptions on the functions:

Conjecture (A modified Elliott conjecture)

Let $k \geq 1$, and let $g_{1}, \ldots, g_{k}: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative functions. Let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g_{1} does not pretend to be $\chi(n) n^{i t}$ for any Dirichlet character χ and $t \in \mathbb{R}$. Then there exists some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 , such that

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)=0
$$

Here, if $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ with $x_{1}<x_{2}<\cdots$, then $\lim _{x \rightarrow \infty, x \in \mathcal{X}} f(x):=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$.
The upper logarithmic density is $\lim \sup _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n \leq x, n \in \mathcal{X}} 1 / n$.

Main theorems

Theorem (Klurman-Mangerel-T., 2023)

Let $g: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative and let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g does not pretend to be $\chi(n) n^{i t}$ for any χ and t.
(i) We have

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \bar{g}\left(n+h_{2}\right)=0
$$

for some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 .

This strengthens earlier work of Tao (2016) and Tao-T. (2019), where for (i) we had to assume that g is strongly non-pretentious and for (ii) that $\lim \sup _{x \rightarrow \infty} \mathbb{D}(g, \chi ; x)^{2} / \log \log x>0$.

Main theorems

Theorem (Klurman-Mangerel-T., 2023)

Let $g: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative and let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g does not pretend to be $\chi(n) n^{i t}$ for any χ and t.
(i) We have

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \bar{g}\left(n+h_{2}\right)=0
$$

for some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 .
(ii) If k is odd and $g: \mathbb{N} \rightarrow[-1,1]$, we have

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)=0
$$

for some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 .

Theorem (Klurman-Mangerel-T., 2023)

Let $g: \mathbb{N} \rightarrow \mathbb{D}$ be multiplicative and let $h_{1}, \ldots, h_{k} \in \mathbb{N}$ be distinct. Suppose that g does not pretend to be $\chi(n) n^{i t}$ for any χ and t.
(i) We have

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \bar{g}\left(n+h_{2}\right)=0
$$

for some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 .
(ii) If k is odd and $g: \mathbb{N} \rightarrow[-1,1]$, we have

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)=0
$$

for some set $\mathcal{X} \subset \mathbb{N}$ of upper logarithmic density 1 .
This strengthens earlier work of Tao (2016) and Tao-T. (2019), where for (i) we had to assume that g is strongly non-pretentious and for (ii) that $\lim \sup _{x \rightarrow \infty} \mathbb{D}(g, \chi ; x)^{2} / \log \log x>0$.

Main theorems

We can also show that a class of multiplicative functions satisfies Elliott's conjecture to any order.

Main theorems

We can also show that a class of multiplicative functions satisfies Elliott's conjecture to any order.

Theorem (Klurman-Mangerel-T., 2023)

Let $\mathcal{P} \subset \mathbb{P}$ be any subset of the primes of relative density 0 and such that $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$. Let $g(n)=(-1)^{\Omega_{\mathcal{P}}(n)}$. Then, for any distinct $h_{1}, \ldots, h_{k} \in \mathbb{N}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)=0
$$

Main theorems

We can also show that a class of multiplicative functions satisfies Elliott's conjecture to any order.

Theorem (Klurman-Mangerel-T., 2023)

Let $\mathcal{P} \subset \mathbb{P}$ be any subset of the primes of relative density 0 and such that $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$. Let $g(n)=(-1)^{\Omega_{\mathcal{P}}(n)}$. Then, for any distinct $h_{1}, \ldots, h_{k} \in \mathbb{N}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)=0
$$

This solves a problem of de la Rue.

Main theorems

We can also show that a class of multiplicative functions satisfies Elliott's conjecture to any order.

Theorem (Klurman-Mangerel-T., 2023)

Let $\mathcal{P} \subset \mathbb{P}$ be any subset of the primes of relative density 0 and such that $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$. Let $g(n)=(-1)^{\Omega_{\mathcal{P}}(n)}$. Then, for any distinct $h_{1}, \ldots, h_{k} \in \mathbb{N}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \cdots g\left(n+h_{k}\right)=0
$$

This solves a problem of de la Rue.
As a consequence, it follows that $g: \mathbb{N} \rightarrow \mathbb{D}$ above satisfies Sarnak's conjecture: if (Y, T) is any topological dynamical system of zero entropy and $f: Y \rightarrow \mathbb{C}$ is continuous and $y_{0} \in Y$, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} g(n) f\left(T^{n} y_{0}\right)=0
$$

Furstenberg systems of multiplicative functions
By the Furstenberg correspondence principle, to any sequence $g: \mathbb{N} \rightarrow \mathbb{D}$ we can associate a measure-preserving dynamical system (X, ν, T) (not necessarily unique).

Furstenberg systems of multiplicative functions
By the Furstenberg correspondence principle, to any sequence $g: \mathbb{N} \rightarrow \mathbb{D}$ we can associate a measure-preserving dynamical system (X, ν, T) (not necessarily unique).

Chowla's conjecture \Longleftrightarrow the Furstenberg system of λ is Bernoulli.

By the Furstenberg correspondence principle, to any sequence $g: \mathbb{N} \rightarrow \mathbb{D}$ we can associate a measure-preserving dynamical system (X, ν, T) (not necessarily unique).

Chowla's conjecture \Longleftrightarrow the Furstenberg system of λ is Bernoulli.
Frantzikinakis (2017): Furstenberg system of λ is ergodic \Longrightarrow Chowla's conjecture.

Furstenberg systems of multiplicative functions

By the Furstenberg correspondence principle, to any sequence $g: \mathbb{N} \rightarrow \mathbb{D}$ we can associate a measure-preserving dynamical system (X, ν, T) (not necessarily unique).

Chowla's conjecture \Longleftrightarrow the Furstenberg system of λ is Bernoulli.
Frantzikinakis (2017): Furstenberg system of λ is ergodic \Longrightarrow Chowla's conjecture.

Conjecture (Frantzikinakis-Host, 2017)

Any multiplicative function $g: \mathbb{N} \rightarrow[-1,1]$ has a unique Furstenberg system, which is ergodic and isomorphic to the direct product of an ergodic odometer (an inverse limit of periodic systems) and a Bernoulli system.

Furstenberg systems of multiplicative functions

By the Furstenberg correspondence principle, to any sequence $g: \mathbb{N} \rightarrow \mathbb{D}$ we can associate a measure-preserving dynamical system (X, ν, T) (not necessarily unique).

Chowla's conjecture \Longleftrightarrow the Furstenberg system of λ is Bernoulli.
Frantzikinakis (2017): Furstenberg system of λ is ergodic \Longrightarrow Chowla's conjecture.

Conjecture (Frantzikinakis-Host, 2017)

Any multiplicative function $g: \mathbb{N} \rightarrow[-1,1]$ has a unique Furstenberg system, which is ergodic and isomorphic to the direct product of an ergodic odometer (an inverse limit of periodic systems) and a Bernoulli system.

Frantzikinakis and Host proved that these Furstenberg systems have as their ergodic components direct products of infinite-step nilsystems and Bernoulli systems.

Question: can we construct multiplicative $g: \mathbb{N} \rightarrow[-1,1]$ with a given (unique) Furstenberg system? In particular, can we construct a multiplicative function whose unique Furstenberg system is Bernoulli?

Question: can we construct multiplicative $g: \mathbb{N} \rightarrow[-1,1]$ with a given (unique) Furstenberg system? In particular, can we construct a multiplicative function whose unique Furstenberg system is Bernoulli?

Theorem (Klurman-Mangerel-T., 2023)

Let $f: \mathbb{N} \rightarrow\{0,1\}$ be a pretentious multiplicative function. Let ν be its unique Furstenberg measure. Then there is (an explicit) multiplicative function $g: \mathbb{N} \rightarrow\{-1,0,+1\}$ whose unique Furstenberg system is isomorphic to the direct product of ν and a Bernoulli system.

Question: can we construct multiplicative $g: \mathbb{N} \rightarrow[-1,1]$ with a given (unique) Furstenberg system? In particular, can we construct a multiplicative function whose unique Furstenberg system is Bernoulli?

Theorem (Klurman-Mangerel-T., 2023)

Let $f: \mathbb{N} \rightarrow\{0,1\}$ be a pretentious multiplicative function. Let ν be its unique Furstenberg measure. Then there is (an explicit) multiplicative function $g: \mathbb{N} \rightarrow\{-1,0,+1\}$ whose unique Furstenberg system is isomorphic to the direct product of ν and a Bernoulli system.

We also show that assuming the corrected Elliott conjecture this is a complete characterisation of Furstenberg systems of multiplicative functions taking values in $\{-1,0,+1\}$.

Question: can we construct multiplicative $g: \mathbb{N} \rightarrow[-1,1]$ with a given (unique) Furstenberg system? In particular, can we construct a multiplicative function whose unique Furstenberg system is Bernoulli?

Theorem (Klurman-Mangerel-T., 2023)

Let $f: \mathbb{N} \rightarrow\{0,1\}$ be a pretentious multiplicative function. Let ν be its unique Furstenberg measure. Then there is (an explicit) multiplicative function $g: \mathbb{N} \rightarrow\{-1,0,+1\}$ whose unique Furstenberg system is isomorphic to the direct product of ν and a Bernoulli system.

We also show that assuming the corrected Elliott conjecture this is a complete characterisation of Furstenberg systems of multiplicative functions taking values in $\{-1,0,+1\}$.
Bergelson-Kułaga-Przymus-Lemańczyk-Richter and Frantzikinakis-Lemańcyzk-de la Rue give characterisations of Furstenberg systems of pretentious functions.

Sign patterns

We say that g is completely multiplicative if $g(m n)=g(m) g(n)$ for all $m, n \geq 1$.

We say that g is completely multiplicative if $g(m n)=g(m) g(n)$ for all $m, n \geq 1$.

Question: Given some sign pattern, can we can we characterise completely multiplicative functions $g: \mathbb{N} \rightarrow\{-1,+1\}$ that omit that sign pattern?

We say that g is completely multiplicative if $g(m n)=g(m) g(n)$ for all $m, n \geq 1$.

Question: Given some sign pattern, can we can we characterise completely multiplicative functions $g: \mathbb{N} \rightarrow\{-1,+1\}$ that omit that sign pattern?

Theorem (Schur, 1973)

There exists a collection \mathcal{F}_{3} of 2 completely multiplicative functions such that the following holds. Let $g: \mathbb{N} \rightarrow$ $\{-1,+1\}$ be completely multiplicative. Then $(g(n), g(n+$ $1), g(n+2))=(+1,+1,+1)$ for infinitely many n iff $g \notin \mathcal{F}_{3}$.

We say that g is completely multiplicative if $g(m n)=g(m) g(n)$ for all $m, n \geq 1$.

Question: Given some sign pattern, can we can we characterise completely multiplicative functions $g: \mathbb{N} \rightarrow\{-1,+1\}$ that omit that sign pattern?

Theorem (Schur, 1973)

There exists a collection \mathcal{F}_{3} of 2 completely multiplicative functions such that the following holds. Let $g: \mathbb{N} \rightarrow$ $\{-1,+1\}$ be completely multiplicative. Then $(g(n), g(n+$ $1), g(n+2))=(+1,+1,+1)$ for infinitely many n iff $g \notin \mathcal{F}_{3}$.

Explicitly, $\mathcal{F}_{3}=\left\{g_{3}^{+}, g_{3}^{-}\right\}$, where $g_{3}^{ \pm}(p)=\chi_{3}(p)$ for $p \neq 3$ and $g_{3}^{+}(3)=+1, g_{3}^{-}(3)=-1$.

Conjecture (Hudson, 1974)

There exists a collection \mathcal{F}_{4} of 13 completely multiplicative functions such that the following holds. Let $g: \mathbb{N} \rightarrow$ $\{-1,+1\}$ be completely multiplicative. Then $(g(n), g(n+1), g(n+2), g(n+3))=(+1,+1,+1,+1)$ for infinitely many n if and only if $g \notin \mathcal{F}_{4}$.

Conjecture (Hudson, 1974)

There exists a collection \mathcal{F}_{4} of 13 completely multiplicative functions such that the following holds. Let $g: \mathbb{N} \rightarrow$ $\{-1,+1\}$ be completely multiplicative. Then
$(g(n), g(n+1), g(n+2), g(n+3))=(+1,+1,+1,+1)$ for infinitely many n if and only if $g \notin \mathcal{F}_{4}$.

Theorem (Klurman-Mangerel-T., 2023)

Hudson's conjecture is true.

Conjecture (Hudson, 1974)

There exists a collection \mathcal{F}_{4} of 13 completely multiplicative functions such that the following holds. Let $g: \mathbb{N} \rightarrow$ $\{-1,+1\}$ be completely multiplicative. Then
$(g(n), g(n+1), g(n+2), g(n+3))=(+1,+1,+1,+1)$ for infinitely many n if and only if $g \notin \mathcal{F}_{4}$.

Theorem (Klurman-Mangerel-T., 2023)

Hudson's conjecture is true.
In fact, we prove that for $g \notin \mathcal{F}_{4}$ the pattern ++++ is attained with positive lower density.

In 2015, Tao used his logarithmic two-point Elliott conjecture to solve an old problem of Erdős:

In 2015, Tao used his logarithmic two-point Elliott conjecture to solve an old problem of Erdős:

Theorem (Tao)

Let $g: \mathbb{N} \rightarrow\{-1,+1\}$ be arbitrary. Then

$$
\sup _{d, x \geq 1}\left|\sum_{n \leq x} g(d n)\right|=\infty
$$

In particular, if $g: \mathbb{N} \rightarrow\{-1,+1\}$ is completely multiplicative,

$$
\sup _{x \geq 1}\left|\sum_{n \leq x} g(n)\right|=\infty
$$

Density version of the Erdós discrepancy theorem

Using our progress on Elliott's conjecture, we can prove:

Density version of the Erdős discrepancy theorem

Using our progress on Elliott's conjecture, we can prove:

Theorem (Klurman-Mangerel-T., 2023)

Let $g: \mathbb{N} \rightarrow\{-1,+1\}$ be completely multiplicative and let $M \geq 1$. Then the set

$$
\left\{x \in \mathbb{N}:\left|\sum_{n \leq x} g(n)\right| \geq M\right\}
$$

has positive upper logarithmic density.

We prove an upper bound for correlations under a weak non-pretentiousness hypothesis. Precisely, for any $\varepsilon>0$ and $x \geq x_{0}(\varepsilon)$ we have

$$
\left|\frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)\right| \leq \varepsilon
$$

provided that

$$
\sum_{p \leq x} \frac{1-\operatorname{Re}\left(g_{j}(n) \overline{\chi_{j}}(n) n^{-i t_{j}}\right)}{p} \geq \frac{1}{\varepsilon}, \quad \sum_{x^{\varepsilon} \leq p \leq x} \frac{1-\operatorname{Re}\left(g_{j}(n) \overline{\chi_{j}}(n) n^{-i t_{j}}\right)}{p} \leq \varepsilon^{3}
$$

for some fixed χ_{j}, t_{j}.

We prove an upper bound for correlations under a weak non-pretentiousness hypothesis. Precisely, for any $\varepsilon>0$ and $x \geq x_{0}(\varepsilon)$ we have

$$
\left|\frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)\right| \leq \varepsilon
$$

provided that

$$
\sum_{p \leq x} \frac{1-\operatorname{Re}\left(g_{j}(n) \overline{\chi_{j}}(n) n^{-i t_{j}}\right)}{p} \geq \frac{1}{\varepsilon}, \quad \sum_{x^{\varepsilon} \leq p \leq x} \frac{1-\operatorname{Re}\left(g_{j}(n) \overline{\chi_{j}}(n) n^{-i t_{j}}\right)}{p} \leq \varepsilon^{3}
$$

for some fixed χ_{j}, t_{j}.
The proof uses some sieve theory and Euler product estimates.

For the proof of the $k=2$ case, we prove the following strengthening of the earlier result of Tao-T.: Let $A(X)$ be any function tending to ∞ and suppose that

$$
\mathcal{S}:=\left\{x \in \mathbb{N}: \inf _{|t| \leq x} \min _{\substack{(\text { mod } q) \\ q \leq A(x)}} \mathbb{D}\left(g, \chi(n) n^{i t} ; x\right) \geq A(x)\right\}
$$

is infinite. Then there is a set \mathcal{X} of upper logarithmic density 1 such that

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \bar{g}\left(n+h_{2}\right)=0 .
$$

For the proof of the $k=2$ case, we prove the following strengthening of the earlier result of Tao-T.: Let $A(X)$ be any function tending to ∞ and suppose that

$$
\mathcal{S}:=\left\{x \in \mathbb{N}: \inf _{|t| \leq x} \min _{\substack{(\text { mod } q)}} \mathbb{D}\left(g, \chi(n) n^{i t} ; x\right) \geq A(x)\right\}
$$

is infinite. Then there is a set \mathcal{X} of upper logarithmic density 1 such that

$$
\lim _{\substack{x \rightarrow \infty \\ x \in \mathcal{X}}} \frac{1}{x} \sum_{n \leq x} g\left(n+h_{1}\right) \bar{g}\left(n+h_{2}\right)=0 .
$$

We prove this by adapting Tao's work on the logarithmic two-point Elliott conjecture.

Now, by our second auxiliary result, we can find the desired set of logarithmic density 1 unless for some χ_{x} and $\left|t_{x}\right| \leq x$ we have $\mathbb{D}\left(g, \chi_{x}(n) n^{i t_{x}} ; x\right) \ll \log \log \log x$.

Now, by our second auxiliary result, we can find the desired set of logarithmic density 1 unless for some χ_{x} and $\left|t_{x}\right| \leq x$ we have

$$
\mathbb{D}\left(g, \chi_{x}(n) n^{i t_{x}} ; x\right) \ll \log \log \log x .
$$

We can show, using the theory of pretentiousness, that this implies

$$
\mathbb{D}\left(g, \chi(n) n^{i t} ; x\right) \ll \log \log \log x
$$

for some fixed χ, t and all $x \geq 1$.

Now, by our second auxiliary result, we can find the desired set of logarithmic density 1 unless for some χ_{x} and $\left|t_{x}\right| \leq x$ we have

$$
\mathbb{D}\left(g, \chi_{x}(n) n^{i t_{x}} ; x\right) \ll \log \log \log x .
$$

We can show, using the theory of pretentiousness, that this implies

$$
\mathbb{D}\left(g, \chi(n) n^{i t} ; x\right) \ll \log \log \log x
$$

for some fixed χ, t and all $x \geq 1$.
By a pigeonholing argument, this implies that, for any $\varepsilon>0$, for an upper logarithmic density 1 of $x \in \mathbb{N}$ we have

$$
\sum_{x^{\varepsilon} \leq p \leq x} \frac{1-\operatorname{Re}\left(g(n) \bar{\chi}(n) n^{-i t}\right)}{p} \leq \varepsilon^{3} .
$$

Now, by our second auxiliary result, we can find the desired set of logarithmic density 1 unless for some χ_{x} and $\left|t_{x}\right| \leq x$ we have

$$
\mathbb{D}\left(g, \chi_{x}(n) n^{i t_{x}} ; x\right) \ll \log \log \log x .
$$

We can show, using the theory of pretentiousness, that this implies

$$
\mathbb{D}\left(g, \chi(n) n^{i t} ; x\right) \ll \log \log \log x
$$

for some fixed χ, t and all $x \geq 1$.
By a pigeonholing argument, this implies that, for any $\varepsilon>0$, for an upper logarithmic density 1 of $x \in \mathbb{N}$ we have

$$
\sum_{x^{\varepsilon} \leq p \leq x} \frac{1-\operatorname{Re}\left(g(n) \bar{\chi}(n) n^{-i t}\right)}{p} \leq \varepsilon^{3} .
$$

But then by the first auxiliary result we have

$$
\left|\frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)\right| \leq \varepsilon
$$

Letting $\varepsilon \rightarrow 0$ concludes the proof.

Now, by our second auxiliary result, we can find the desired set of logarithmic density 1 unless for some χ_{x} and $\left|t_{x}\right| \leq x$ we have

$$
\mathbb{D}\left(g, \chi_{x}(n) n^{i t_{x}} ; x\right) \ll \log \log \log x .
$$

We can show, using the theory of pretentiousness, that this implies

$$
\mathbb{D}\left(g, \chi(n) n^{i t} ; x\right) \ll \log \log \log x
$$

for some fixed χ, t and all $x \geq 1$.
By a pigeonholing argument, this implies that, for any $\varepsilon>0$, for an upper logarithmic density 1 of $x \in \mathbb{N}$ we have

$$
\sum_{x^{\varepsilon} \leq p \leq x} \frac{1-\operatorname{Re}\left(g(n) \bar{\chi}(n) n^{-i t}\right)}{p} \leq \varepsilon^{3} .
$$

But then by the first auxiliary result we have

$$
\left|\frac{1}{x} \sum_{n \leq x} g_{1}\left(n+h_{1}\right) \cdots g_{k}\left(n+h_{k}\right)\right| \leq \varepsilon
$$

Letting $\varepsilon \rightarrow 0$ concludes the proof. Thank you!

