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Multiplicative functions

A function g : N → C is called multiplicative if g(mn) = g(m)g(n)
whenever m and n are coprime.

We concentrate on functions taking values in D := {z ∈ C : |z | ≤ 1}.
Examples:

λ(n) = (−1)Ω(n), where Ω(n) is the number of prime factors of n
with multiplicities (Liouville function).

µ(n) = λ(n)1n squarefree (Möbius function).

(−1)ΩP (n), where ΩP(n) is the number of prime factors of n from
P ⊂ P with multiplicities.

χ(n)nit with χ a Dirichlet character and t ∈ R
(χ(mn) = χ(m)χ(n) for all m, n and χ is periodic of some period q
and χ(n) = 0 if gcd(n, q) > 1).
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Mean values and correlations
Given a multiplicative function g : N → D, we wish to understand
the mean values

lim
x→∞

1
x

∑
n≤x

g(n)

and the correlations

lim
x→∞

1
x

∑
n≤x

g(n + h1) · · · g(n + hk).

Introduce a distance function on the space of multiplicative
functions (pretentious distance):

D(f , g ; x) :=

∑
p≤x

1 − Re(f (p)g(p))
p

1/2

.

We say that f pretends to be g if D(f , g ;∞) < ∞.

If g pretends to be g ′, their mean value and correlation behaviours
should be similar.
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Halász’s theorem

Thanks to a theorem of Halász, we understand mean values of
multiplicative functions.

Halász’s theorem, 1968

Let g : N → D be a multiplicative function. Suppose that g
does not pretend to be nit for any t ∈ R. Then

lim
x→∞

1
x

∑
n≤x

g(n) = 0.

If instead g pretends to be 1, then the mean value exists and can
be computed (Delange’s theorem), but if g pretends to be nit with
t ̸= 0, the limit usually does not exist.
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Elliott’s conjecture

Elliott’s conjecture, 1990

Let k ≥ 1, and let g1, . . . , gk : N → D be multiplicative functions.
Let h1, . . . , hk ∈ N be distinct. Suppose that g1 does not pretend
to be χ(n)nit for any Dirichlet character χ and t ∈ R. Then

lim
x→∞

1
x

∑
n≤x

g1(n + h1) · · · gk(n + hk) = 0.

∀χ, t : D(g1, χ(n)n
it ,∞) = ∞ ⇐⇒ g1 is aperiodic: g1 has mean

value 0 in every arithmetic progression.

The case g1 = · · · = gk = λ is Chowla’s conjecture.

One needs to exclude functions pretending to be characters, since if
g(n) = χ(n)nit with χ (mod q) a character and t ∈ R, then

lim
x→∞

1
x

∑
n≤x

g(n)g(n + q) =
φ(q)

q
̸= 0.

If gj pretends to be χj(n)n
itj for 1 ≤ j ≤ k , then there is an

asymptotic formula for the correlations due to Klurman (2016).
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MRT formulation of Elliott’s conjecture
In 2015, Matomäki, Radziwiłł and Tao gave a technical
counterexample to Elliott’s conjecture: a multiplicative function
that looks like nit up to x , with t varying with the scale x .

MRT conjecture that Elliott’s conjecture is true if one assumes g1 is
strongly non-pretentious (strongly aperiodic): for every character χ

inf
|t|≤x

D(g1, χ(n)n
it ; x)

x→∞−−−→ ∞.

Thus,
1 g pretentious: explicit formula for autocorrelations.
2 g strongly non-pretentious: autocorrelations converge to 0.
3 g non-pretentious but not strongly non-pretentious: ??

There is an interesting class of non-pretentious multiplicative
functions that are not strongly non-pretentious (the MRT class),
recently studied by Gomilko–Lemańczyk–de la Rue and
Frantzikinakis–Lemańczyk–de la Rue.
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A modified Elliott conjecture
We pose another way to correct Elliott’s conjecture that does not
involve strengthening the assumptions on the functions:

Conjecture (A modified Elliott conjecture)

Let k ≥ 1, and let g1, . . . , gk : N → D be multiplicative
functions. Let h1, . . . , hk ∈ N be distinct. Suppose that g1
does not pretend to be χ(n)nit for any Dirichlet character χ
and t ∈ R. Then there exists some set X ⊂ N of upper
logarithmic density 1, such that

lim
x→∞
x∈X

1
x

∑
n≤x

g1(n + h1) · · · gk(n + hk) = 0.

Here, if X = {x1, x2, . . .} with x1 < x2 < · · · , then
limx→∞,x∈X f (x) := limn→∞ f (xn).

The upper logarithmic density is lim supx→∞
1

log x

∑
n≤x ,n∈X 1/n.
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Main theorems

Theorem (Klurman–Mangerel–T., 2023)

Let g : N → D be multiplicative and let h1, . . . , hk ∈ N be distinct.
Suppose that g does not pretend to be χ(n)nit for any χ and t.
(i) We have

lim
x→∞
x∈X

1
x

∑
n≤x

g(n + h1)g(n + h2) = 0

for some set X ⊂ N of upper logarithmic density 1.

(ii) If k is odd and g : N → [−1, 1], we have

lim
x→∞
x∈X

1
x

∑
n≤x

g(n + h1) · · · g(n + hk) = 0

for some set X ⊂ N of upper logarithmic density 1.

This strengthens earlier work of Tao (2016) and Tao–T. (2019), where
for (i) we had to assume that g is strongly non-pretentious and for (ii)
that lim supx→∞ D(g , χ; x)2/ log log x > 0.
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Main theorems
We can also show that a class of multiplicative functions satisfies Elliott’s
conjecture to any order.

Theorem (Klurman–Mangerel–T., 2023)

Let P ⊂ P be any subset of the primes of relative density 0 and
such that

∑
p∈P

1
p = ∞. Let g(n) = (−1)ΩP (n). Then, for any

distinct h1, . . . , hk ∈ N,

lim
x→∞

1
x

∑
n≤x

g(n + h1) · · · g(n + hk) = 0.

This solves a problem of de la Rue.

As a consequence, it follows that g : N → D above satisfies Sarnak’s
conjecture: if (Y ,T ) is any topological dynamical system of zero entropy
and f : Y → C is continuous and y0 ∈ Y , then

lim
x→∞

1
x

∑
n≤x

g(n)f (T ny0) = 0.
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distinct h1, . . . , hk ∈ N,

lim
x→∞

1
x

∑
n≤x

g(n + h1) · · · g(n + hk) = 0.

This solves a problem of de la Rue.

As a consequence, it follows that g : N → D above satisfies Sarnak’s
conjecture: if (Y ,T ) is any topological dynamical system of zero entropy
and f : Y → C is continuous and y0 ∈ Y , then

lim
x→∞

1
x

∑
n≤x

g(n)f (T ny0) = 0.
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Furstenberg systems of multiplicative functions
By the Furstenberg correspondence principle, to any sequence
g : N → D we can associate a measure-preserving dynamical
system (X , ν,T ) (not necessarily unique).

Chowla’s conjecture ⇐⇒ the Furstenberg system of λ is Bernoulli.

Frantzikinakis (2017): Furstenberg system of λ is ergodic =⇒
Chowla’s conjecture.

Conjecture (Frantzikinakis–Host, 2017)

Any multiplicative function g : N → [−1, 1] has a unique
Furstenberg system, which is ergodic and isomorphic to the
direct product of an ergodic odometer (an inverse limit of
periodic systems) and a Bernoulli system.

Frantzikinakis and Host proved that these Furstenberg systems
have as their ergodic components direct products of infinite-step
nilsystems and Bernoulli systems.
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Furstenberg systems of multiplicative functions
Question: can we construct multiplicative g : N → [−1, 1] with a
given (unique) Furstenberg system? In particular, can we construct
a multiplicative function whose unique Furstenberg system is
Bernoulli?

Theorem (Klurman–Mangerel–T., 2023)

Let f : N → {0, 1} be a pretentious multiplicative function.
Let ν be its unique Furstenberg measure. Then there is (an
explicit) multiplicative function g : N → {−1, 0,+1} whose
unique Furstenberg system is isomorphic to the direct product
of ν and a Bernoulli system.

We also show that assuming the corrected Elliott conjecture this is
a complete characterisation of Furstenberg systems of multiplicative
functions taking values in {−1, 0,+1}.

Bergelson–Kułaga-Przymus–Lemańczyk–Richter and
Frantzikinakis–Lemańcyzk–de la Rue give characterisations of
Furstenberg systems of pretentious functions.
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Sign patterns

We say that g is completely multiplicative if g(mn) = g(m)g(n)
for all m, n ≥ 1.

Question: Given some sign pattern, can we can we characterise
completely multiplicative functions g : N → {−1,+1} that omit
that sign pattern?

Theorem (Schur, 1973)

There exists a collection F3 of 2 completely multiplicative
functions such that the following holds. Let g : N →
{−1,+1} be completely multiplicative. Then (g(n), g(n +
1), g(n+2)) = (+1,+1,+1) for infinitely many n iff g ̸∈ F3.

Explicitly, F3 = {g+
3 , g−

3 }, where g±
3 (p) = χ3(p) for p ̸= 3 and

g+
3 (3) = +1, g−

3 (3) = −1.
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Hudson’s conjecture

Conjecture (Hudson, 1974)

There exists a collection F4 of 13 completely multiplica-
tive functions such that the following holds. Let g : N →
{−1,+1} be completely multiplicative. Then
(g(n), g(n + 1), g(n + 2), g(n + 3)) = (+1,+1,+1,+1) for
infinitely many n if and only if g ̸∈ F4.

Theorem (Klurman–Mangerel–T., 2023)

Hudson’s conjecture is true.

In fact, we prove that for g ̸∈ F4 the pattern ++++ is attained
with positive lower density.
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The Erdős discrepancy theorem

In 2015, Tao used his logarithmic two-point Elliott conjecture to
solve an old problem of Erdős:

Theorem (Tao)

Let g : N → {−1,+1} be arbitrary. Then

sup
d ,x≥1

∣∣∑
n≤x

g(dn)
∣∣ = ∞.

In particular, if g : N → {−1,+1} is completely multiplica-
tive,

sup
x≥1

∣∣∑
n≤x

g(n)
∣∣ = ∞.
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Density version of the Erdős discrepancy theorem

Using our progress on Elliott’s conjecture, we can prove:

Theorem (Klurman–Mangerel–T., 2023)

Let g : N → {−1,+1} be completely multiplicative and let
M ≥ 1. Then the set{

x ∈ N :
∣∣∑
n≤x

g(n)
∣∣ ≥ M

}
has positive upper logarithmic density.
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Proof ideas

We prove an upper bound for correlations under a weak
non-pretentiousness hypothesis. Precisely, for any ε > 0 and x ≥ x0(ε)
we have ∣∣1

x

∑
n≤x

g1(n + h1) · · · gk(n + hk)
∣∣ ≤ ε,

provided that∑
p≤x

1 − Re(gj(n)χj(n)n
−itj )

p
≥ 1

ε
,

∑
xε≤p≤x

1 − Re(gj(n)χj(n)n
−itj )

p
≤ ε3

for some fixed χj , tj .

The proof uses some sieve theory and Euler product estimates.
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Proof ideas

For the proof of the k = 2 case, we prove the following strengthening of
the earlier result of Tao–T.: Let A(X ) be any function tending to ∞ and
suppose that

S := {x ∈ N : inf
|t|≤x

min
χ (mod q)

q≤A(x)

D(g , χ(n)nit ; x) ≥ A(x)}

is infinite. Then there is a set X of upper logarithmic density 1 such that

lim
x→∞
x∈X

1
x

∑
n≤x

g(n + h1)g(n + h2) = 0.

We prove this by adapting Tao’s work on the logarithmic two-point
Elliott conjecture.
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Proof ideas
Now, by our second auxiliary result, we can find the desired set of
logarithmic density 1 unless for some χx and |tx | ≤ x we have

D(g , χx(n)n
itx ; x) ≪ log log log x .

We can show, using the theory of pretentiousness, that this implies

D(g , χ(n)nit ; x) ≪ log log log x

for some fixed χ, t and all x ≥ 1.
By a pigeonholing argument, this implies that, for any ε > 0, for an
upper logarithmic density 1 of x ∈ N we have∑

xε≤p≤x

1 − Re(g(n)χ(n)n−it)

p
≤ ε3.

But then by the first auxiliary result we have∣∣1
x

∑
n≤x

g1(n + h1) · · · gk(n + hk)
∣∣ ≤ ε.

Letting ε → 0 concludes the proof. Thank you!
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