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@ 1(n) = A(n)1, squarefree (MBbius function).

o (—1)27("N where Qp(n) is the number of prime factors of n from
P C P with multiplicities.

@ x(n)n' with x a Dirichlet character and t € R
(x(mn) = x(m)x(n) for all m,n and x is periodic of some period ¢
and x(n) = 0 if gcd(n, q) > 1).
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Mean values and correlations

Given a multiplicative function g : N — ID, we wish to understand

the mean values
lim — E g(n
X—00 X

n<x

and the correlations

XILngOXnZ;g (n+4 hy)---g(n+ hy).
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the mean values
lim — E g(n
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n<x

and the correlations

XILngOXnZ;g (n+h1)---g(n+ hy).
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and the correlations

XILngO;Zg (n+h1)---g(n+ hy).

n<x

Introduce a distance function on the space of multiplicative
functions (pretentious distance):

N\ 1/2
Bt g0 = (Z 1—R<fp<p)gw>>) |
We say that f pretends to be g if D(f, g; 00) < 0.

If g pretends to be g/, their mean value and correlation behaviours

should be similar.
3/18



Halasz's theorem

Thanks to a theorem of Halasz, we understand mean values of
multiplicative functions.

4/18



Halasz's theorem

Thanks to a theorem of Halasz, we understand mean values of
multiplicative functions.

Halasz's theorem, 1968

Let g : N — D be a multiplicative function. Suppose that g
does not pretend to be n' for any t € R. Then

4/18



Halasz's theorem

Thanks to a theorem of Halasz, we understand mean values of
multiplicative functions.

Halasz's theorem, 1968

Let g : N — D be a multiplicative function. Suppose that g
does not pretend to be n' for any t € R. Then

If instead g pretends to be 1, then the mean value exists and can
be computed (Delange's theorem), but if g pretends to be n'* with
t # 0, the limit usually does not exist.
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Elliott's conjecture

Elliott’s conjecture, 1990

Let k > 1, and let g1,..., 8« : N — D be multiplicative functions.
Let hy,..., hx € N be distinct. Suppose that g; does not pretend
to be x(n)n" for any Dirichlet character x and t € R. Then

.1
i S ot ) stn ) 0

n<x

5/18



Elliott's conjecture

Elliott’s conjecture, 1990

Let k > 1, and let g1,..., 8« : N — D be multiplicative functions.
Let hy,..., hx € N be distinct. Suppose that g; does not pretend
to be x(n)n" for any Dirichlet character x and t € R. Then

.1
Jim ~ > ai(n+m)-g(n+ h) =0.

n<x

@ Vx,t: D(g1,x(n)n"t, 00) = 0o <= g is aperiodic: g; has mean
value 0 in every arithmetic progression.

5/18



Elliott's conjecture

Elliott’s conjecture, 1990

Let k > 1, and let g1,..., 8« : N — D be multiplicative functions.
Let hy,..., hx € N be distinct. Suppose that g; does not pretend
to be x(n)n" for any Dirichlet character x and t € R. Then

.1
Jim ~ > ai(n+m)-g(n+ h) =0.

n<x

@ Vx,t: D(g1,x(n)n"t, 00) = 0o <= g is aperiodic: g; has mean
value 0 in every arithmetic progression.

@ The case gt = --- = gx = A is Chowla’s conjecture.

5/18



Elliott's conjecture

Elliott’s conjecture, 1990

Let k > 1, and let g1,..., 8« : N — D be multiplicative functions.
Let hy,..., hx € N be distinct. Suppose that g; does not pretend
to be x(n)n" for any Dirichlet character x and t € R. Then

.1
X|l_>moo X Zg1(n + hy)---ge(n+ he) = 0.

n<x

@ Vx,t: D(g1,x(n)n"t, 00) = 0o <= g is aperiodic: g; has mean
value 0 in every arithmetic progression.

@ The case gt = --- = gx = A is Chowla’s conjecture.

@ One needs to exclude functions pretending to be characters, since if
g(n) = x(n)n" with x (mod q) a character and t € R, then

w(q)
l f§: 0.
Xlr)‘nOOX g n+q q #

n<x

5/18



Elliott's conjecture

Elliott’s conjecture, 1990

Let k > 1, and let g1,..., 8« : N — D be multiplicative functions.
Let hy,...,he €N be distinct. Suppose that g; does not pretend
to be x(n)n" for any Dirichlet character x and t € R. Then

.1
X|l_>moo X Zg1(n + hy)---ge(n+ he) = 0.

n<x

@ Vx,t: D(g1,x(n)n"t, 00) = 0o <= g is aperiodic: g; has mean
value 0 in every arithmetic progression.

@ The case gt = --- = gx = A is Chowla’s conjecture.

@ One needs to exclude functions pretending to be characters, since if
g(n) = x(n)n" with x (mod q) a character and t € R, then

lim fZg g(n+q) = (q)yéo.
XHOOXn<X q

@ If gj pretends to be xj(n)n’tf for 1 < j < k, then there is an
asymptotic formula for the correlations due to Klurman (2016).
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counterexample to Elliott's conjecture: a multiplicative function
that looks like n'* up to x, with t varying with the scale x.
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MRT conjecture that Elliott's conjecture is true if one assumes gy is
strongly non-pretentious (strongly aperiodic): for every character x

inf D(g1, x(n)n'; x) =2 .
|t]<x

Thus,
@ g pretentious: explicit formula for autocorrelations.
@ g strongly non-pretentious: autocorrelations converge to 0.
© g non-pretentious but not strongly non-pretentious: 77

There is an interesting class of non-pretentious multiplicative
functions that are not strongly non-pretentious (the MRT class),
recently studied by Gomilko—Lemanczyk—de la Rue and

Frantzikinakis—Lemanczyk—de la Rue.
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does not pretend to be x(n)n' for any Dirichlet character x
and t € R. Then there exists some set X C N of upper
logarithmic density 1, such that

1
lim fZgl(n—i— h1)---gk(n+ hg) =0.

H
);ESYO X n<x
Here, if X = {x1,x2,...} with xy < xp < ---, then
limy— o0 xex F(x) 1= limp_so0 F(Xn).

The upper logarithmic density is limsup,_, @ > n<xnex 1/n.
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Main theorems

Theorem (Klurman—Mangerel-T., 2023)

Let g : N — D be multiplicative and let hy, ..., hy € N be distinct.
Suppose that g does not pretend to be x(n)n™ for any x and t.
(i) We have

XILmOOfZg (n+ h)g(n+ h)=0

xeX n<x

for some set X C N of upper logarithmic density 1.

.

This strengthens earlier work of Tao (2016) and Tao—T. (2019), where
for (i) we had to assume that g is strongly non-pretentious and for (ii)
that limsup, _,.. D(g, x; x)?/ log log x > 0.



Main theorems

Theorem (Klurman—Mangerel-T., 2023)

Let g : N — D be multiplicative and let hy, ..., hy € N be distinct.

Suppose that g does not pretend to be x(n)n' for any x and t.
(i) We have

lim fZg (n+ h)g(n+ h)=0

X—>00
xeX n<x

for some set X C N of upper logarithmic density 1.
(i) If k is odd and g : N — [—1, 1], we have

XI|_>mOOfZgn+h1 -g(n+h)=0

xeX n<x

for some set X C N of upper logarithmic density 1.

8/18



Main theorems

Theorem (Klurman—Mangerel-T., 2023)

Let g : N — D be multiplicative and let hy, ..., hy € N be distinct.
Suppose that g does not pretend to be x(n)n™ for any x and t.
(i) We have

XILmOOfZg (n+ h)g(n+ h)=0

xeX n<x

for some set X C N of upper logarithmic density 1.
(i) If k is odd and g : N — [—1, 1], we have

lim fZgn—i—hl -g(n+h)=0

X—> 00
xXeX n<x

for some set X C N of upper logarithmic density 1.

.

This strengthens earlier work of Tao (2016) and Tao—T. (2019), where
for (i) we had to assume that g is strongly non-pretentious and for (ii)
that limsup, _,.. D(g, x; x)?/ log log x > 0.
8/18



We can also show that a class of multiplicative functions satisfies Elliott’s
conjecture to any order.
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conjecture to any order.

Theorem (Klurman—Mangerel-T., 2023)

Let P C P be any subset of the primes of relative density 0 and
such that 35, 2 = oo Let g(n) = (—1)?7("). Then, for any
distinct hy,..., he €N,

. 1
Jim =3 g+ b)) g(n+ h) = 0.

n<x

This solves a problem of de la Rue.

As a consequence, it follows that g : N — D above satisfies Sarnak’s
conjecture: if (Y, T) is any topological dynamical system of zero entropy
and f : Y — C is continuous and yp € Y/, then

Jm_ 3 3 (Tv) =0

n<x
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Furstenberg systems of multiplicative functions

By the Furstenberg correspondence principle, to any sequence
g : N — ID we can associate a measure-preserving dynamical
system (X, v, T) (not necessarily unique).
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g : N — ID we can associate a measure-preserving dynamical
system (X, v, T) (not necessarily unique).

Chowla's conjecture <= the Furstenberg system of \ is Bernoulli.

Frantzikinakis (2017): Furstenberg system of \ is ergodic —
Chowla’s conjecture.

Conjecture (Frantzikinakis—Host, 2017)

Any multiplicative function g : N — [—1,1] has a unique
Furstenberg system, which is ergodic and isomorphic to the
direct product of an ergodic odometer (an inverse limit of
periodic systems) and a Bernoulli system.

Frantzikinakis and Host proved that these Furstenberg systems
have as their ergodic components direct products of infinite-step

nilsystems and Bernoulli systems.
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Question: can we construct multiplicative g : N — [—1, 1] with a
given (unique) Furstenberg system? In particular, can we construct
a multiplicative function whose unique Furstenberg system is
Bernoulli?

Theorem (Klurman—Mangerel-T., 2023)

Let f : N — {0,1} be a pretentious multiplicative function.
Let v be its unique Furstenberg measure. Then there is (an
explicit) multiplicative function g : N — {—1,0,+1} whose
unique Furstenberg system is isomorphic to the direct product
of v and a Bernoulli system.

We also show that assuming the corrected Elliott conjecture this is
a complete characterisation of Furstenberg systems of multiplicative
functions taking values in {—1,0,+1}.

Bergelson—Kutaga-Przymus—Lemanczyk—Richter and
Frantzikinakis—Lemancyzk—de la Rue give characterisations of
Furstenberg systems of pretentious functions. 11/18
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Question: Given some sign pattern, can we can we characterise
completely multiplicative functions g : N — {—1,+1} that omit
that sign pattern?

Theorem (Schur, 1973)

There exists a collection F3 of 2 completely multiplicative
functions such that the following holds. Let g : N —
{—1,41} be completely multiplicative. Then (g(n),g(n +
1),g(n+2)) = (+1,+1, +1) for infinitely many n iff g & F3.

Explicitly, 73 = {g5 , g5 }, where g3i(p) = x3(p) for p # 3 and
gf(3) = +1 g5 (3) = ~L
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Hudson's conjecture

Conjecture (Hudson, 1974)

There exists a collection F; of 13 completely multiplica-
tive functions such that the following holds. Let g : N —
{—1,+1} be completely multiplicative. Then
(g(n),g(n+1),g(n+2),g(n+3)) = (+1,+1,+1,+1) for
infinitely many n if and only if g & F4.

13/18



Hudson's conjecture

Conjecture (Hudson, 1974)

There exists a collection F; of 13 completely multiplica-
tive functions such that the following holds. Let g : N —
{—1,+1} be completely multiplicative. Then
(g(n),g(n+1),g(n+2),g(n+3)) = (+1,+1,+1,+1) for
infinitely many n if and only if g & F4.

Theorem (Klurman—Mangerel-T., 2023)

Hudson's conjecture is true.

13/18



Hudson's conjecture
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There exists a collection F; of 13 completely multiplica-
tive functions such that the following holds. Let g : N —
{—1,+1} be completely multiplicative. Then
(g(n),g(n+1),g(n+2),g(n+3)) = (+1,+1,+1,+1) for
infinitely many n if and only if g & F4.

Theorem (Klurman—Mangerel-T., 2023)

Hudson's conjecture is true.

In fact, we prove that for g & Fj the pattern + + ++ is attained
with positive lower density.

13/18



The Erdés discrepancy theorem

In 2015, Tao used his logarithmic two-point Elliott conjecture to
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The Erdés discrepancy theorem

In 2015, Tao used his logarithmic two-point Elliott conjecture to
solve an old problem of Erdés:

Theorem (Tao)

Let g : N — {—1,+1} be arbitrary. Then

sup ’Zg(dn)| = 00.

d,x>1 e

In particular, if g : N — {—1,41} is completely multiplica-

tive,
sup | Zg(n)‘ = 00.

x21 n<x
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Density version of the Erd&s discrepancy theorem

Using our progress on Elliott's conjecture, we can prove:
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Density version of the Erd&s discrepancy theorem

Using our progress on Elliott's conjecture, we can prove:
Theorem (Klurman—Mangerel-T., 2023)

Let g : N — {—1,+1} be completely multiplicative and let
M > 1. Then the set

{xeN: |Zg(n)’ > M}

n<x

has positive upper logarithmic density.
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We prove an upper bound for correlations under a weak
non-pretentiousness hypothesis. Precisely, for any e > 0 and x > xo(¢)
we have

1
‘;Zgl("+h1)---gk(n+hk)\ <e,

n<x

provided that

1 — Re(gi(nm)xg(mn~") _ 1 1 — Re(gi(n)xj(n)n~")
> , >2 Y

psx X< <p<x p

<é

for some fixed x;, t;.
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non-pretentiousness hypothesis. Precisely, for any e > 0 and x > xo(¢)
we have

1
‘;Zgl("+h1)---gk(n+hk)\ <e,

n<x

provided that

> L=RelgTAn) L 1 5 1o Relglogin )

p<x x=<p<x P
for some fixed x;, t;.

The proof uses some sieve theory and Euler product estimates.
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For the proof of the k = 2 case, we prove the following strengthening of
the earlier result of Tao—T.: Let A(X) be any function tending to co and

suppose that

S:={xeN: inf min  D(g, x(n)n"; x) > A(x)}
[t|<x x (mod q)
q<A(x)

is infinite. Then there is a set X’ of upper logarithmic density 1 such that

lemfZgn+h1 (n+ hy)=0.
xeX n<x
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For the proof of the k = 2 case, we prove the following strengthening of
the earlier result of Tao—T.: Let A(X) be any function tending to co and
suppose that

S:={xeN: inf min  D(g, x(n)n"; x) > A(x)}
lt|<x x (mod q)
q<A(x)

is infinite. Then there is a set X’ of upper logarithmic density 1 such that

lemfZgn+h1 (n+ hy)=0.
xeX n<x

We prove this by adapting Tao's work on the logarithmic two-point
Elliott conjecture.

17/18



Now, by our second auxiliary result, we can find the desired set of
logarithmic density 1 unless for some xx and |t,| < x we have

D(g, Xx(n)nitx; x) < loglog log x.
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Now, by our second auxiliary result, we can find the desired set of
logarithmic density 1 unless for some xx and |t,| < x we have

D(g, Xx(n)nitx; x) < loglog log x.

We can show, using the theory of pretentiousness, that this implies
D(g, x(n)n'"t; x) < log log log x
for some fixed x, t and all x > 1.

By a pigeonholing argument, this implies that, for any ¢ > 0, for an
upper logarithmic density 1 of x € N we have
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for some fixed x, t and all x > 1.
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upper logarithmic density 1 of x € N we have
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But then by the first auxiliary result we have
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n<x

Letting ¢ — 0 concludes the proof.
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D(g, Xx(n)nitx; x) < loglog log x.

We can show, using the theory of pretentiousness, that this implies
D(g, x(n)n'; x) < log log log x

for some fixed x, t and all x > 1.
By a pigeonholing argument, this implies that, for any ¢ > 0, for an
upper logarithmic density 1 of x € N we have

> LRl s

x=<p<x

But then by the first auxiliary result we have
1
|;Zg1(n+ ) gi(n+ he)| < e.
n<x

Letting € — 0 concludes the proof. Thank you!
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