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General setting

For any standard probability space (X ,X , µ), measure preserving map T ,
sequences a1(n), ..., ak(n) of integers and functions f1, ..., fk ∈ L∞(µ), we
want to study the L2-limit of the averages

1
N

N∑
n=1

T a1(n)f1 . . .T
ak (n)fk .

The most important case when the sequences a1(n), ..., ak(n) are integer
polynomials was established by Host-Kra (with some exceptional cases) and
Leibman in full generality in 2005.

Goal
Establish the mean convergence of multiple ergodic averages along other
sparse subsequences of the integers, which do not grow faster than
polynomials. When do these averages converge to the product of the
integrals of the functions f1, ..., fk?
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Sequences that we study

Example
Some examples that we want to study are:

All integer polynomial sequences like n2, n4 + n3 + 2. We can also
include real polynomials using the integer part function, such as
⌊n
√

2⌋ and ⌊n3

3 + n
√

5⌋.
Sequences of fractional powers like ⌊n3/2⌋, ⌊nπ⌋.
More generally, if f : R → R is a "well-behaved" function with
f (t) = O(tk) for some k ∈ N, we consider the sequence ⌊f (n)⌋.
Examples are the sequences ⌊n2 log n⌋ and ⌊n log n + e

√
log n⌋.

The function f (t) has to be smooth, have polynomial growth and not
oscillate substantially for large values of t for our methods to work.



Hardy field functions

The main class of functions that satisfies the above conditions are
functions that belong to a Hardy field.

Definitions
Consider the set B of germs at infinity of real valued functions defined on a
half-line [x ,+∞]. Then, (B,+,×) is a ring. A sub-field H of B that is
closed under differentiation is called a Hardy field.

The prototypical example is the field LE of logarithmico-exponential
functions (Hardy 1912). These are functions defined by a finite
combination of the basic algebraic operations and the functions exp
and log acting on a real variable.
Examples of functions that do not belong in H are those that contain
the trigonometric functions, such as the function t → t sin t.
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Hardy field functions

Functions in H behave "nicely" as t → +∞.

For functions f ∈ H, we have that the limit of f , as t → +∞, exists
(possibly ∞).
Functions in H are smooth and eventually monotone.
Any two functions f , g ∈ H are comparable, meaning the limit of the
ratio f (t)/g(t) at +∞ exists. Therefore, it makes sense to compare
the growth rates of any two functions in H.
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The k = 1 case

Assume that a function a ∈ H has polynomial growth. What can we
say about the single averages

1
N

N∑
n=1

T ⌊a1(n)⌋f ?

Using the spectral theorem, we can find a bounded measure v on the
torus, such that

∫
f̄ · T nf dµ =

∫
T e(na) dv(a). Then, we have

∥∥ 1
N

N∑
n=1

T ⌊a1(n)⌋f
∥∥2
L2(µ)

=

∫
T

∣∣ 1
N

N∑
n=1

e(⌊a1(n)⌋a)
∣∣2dv(a).

Thus, we need to study equidistribution (mod 1) of the sequence
⌊a1(n)⌋a for a ∈ [0, 1).
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The k = 1 case

Boshernitzan-1994
Assume the function a ∈ H has polynomial growth. Then, the sequence
a(n) is uniformly distributed (mod 1) iff for every polynomial p ∈ Q[t], we
have

lim
t→+∞

|a(t)− p(t)|
log t

= +∞.

Example
The fractional parts of the sequences nc ( for non-integer c > 0),
n log n and n2

√
2 + n

√
3 are uniformly distributed in [0, 1), while the

fractional parts of the sequences log n and n2 +
√
log n are not.

An important implication is that if the function a ∈ H stays
"logarithmically" away from real multiples of integer polynomials, then
the corresponding ergodic averages converge to the integral

∫
f dµ in

ergodic systems.
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The jointly ergodic setting

A natural generalization of the previous conditions suffices for convergence
to the product of the integrals in the general case.

T.-2021
Assume that the functions a1, ..., ak ∈ H have polynomial growth and that
every non-trivial linear combination a ∈ H of them satisfies

lim
t→+∞

|a(t)− p(t)|
log t

= +∞ for every p(t) ∈ Q[t].

Then, for any ergodic measure preserving system (X , µ,T ) and functions
f1, ..., fk ∈ L∞(µ), we have

1
N

N∑
n=1

T ⌊a1(n)⌋f1 . . .T
⌊ak (n)⌋fk

L2(µ)−→
∫

f1dµ · · ·
∫

fkdµ.
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Some previous results

Frantzikinakis-2010
The previous theorem holds in the case of distinct fractional powers, that is
when ai (t) = tci for pairwise distinct positive non-integers ci . The fact
that ci is not an integer is necessary, otherwise there are ergodic, but not
totally ergodic systems, where the limit is not the product of the integrals.

Karageorgos,Koutsogiannis-2017
The previous theorem holds in the case when the functions are non-integer
polynomials that are linearly independent over Q.



Some previous results

Bergelson,Moreira,Richter-2020
Let ∇− span{a1, ..., ak} denote the set of linear combinations of the
functions a1, ..., ak ∈ H and their derivatives. Then, the previous theorem
holds in the case that every function f ∈ ∇− span{a1, ..., ak} and every
polynomial p ∈ R[t], we have

lim
t→+∞

|f (t)− p(t)|
log t

= +∞.



A note on multiple recurrence

As a corollary of our main theorem, we have that, for any
measure-preserving system (X , µ,T ) and set A of positive measure, the
following relation holds:

lim
n→+∞

1
N

N∑
n=1

µ(A ∩ T−⌊a1(n)⌋A ∩ · · · ∩ T−⌊ak (n)⌋A) ≥ (µ(A))k+1.

Corollary
If the set Λ ⊂ N has positive upper density, then

lim inf
n→+∞

1
N

N∑
n=1

d∗(Λ ∩ (Λ− ⌊a1(n)⌋) ∩ · · · ∩ (Λ− ⌊ak(n)⌋)
)
≥

(
d∗(Λ)

)k+1
.

A similar result was obtained by Bergelson-Moreira-Richter with lim sup in
place of lim inf. They include a larger class of sequences, for which we have
nice multiple recurrence results, but not a mean convergence result.
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Joint ergodicity of sequences

In order to prove multiple convergence results, we use techniques to reduce
the original convergence problem to the Host-Kra factors then, solve the
problem in the case of nilsystems. Often, this second property is difficult to
establish, but we can avoid it in the case where we study convergence to
the product of the integrals.

Definition
The sequences a1(n), ..., ak(n) of integers are called jointly ergodic, iff for
any ergodic system (X , µ,T ) and functions f1, ..., fk ∈ L∞(µ) we have

1
N
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L2(µ)−→
∫

f1dµ · · ·
∫

fkdµ.

A recent theorem of Frantzikinakis gives necessary and sufficient
conditions for general sequences of integers to be jointly ergodic.



Joint ergodicity of sequences

In order to prove multiple convergence results, we use techniques to reduce
the original convergence problem to the Host-Kra factors then, solve the
problem in the case of nilsystems. Often, this second property is difficult to
establish, but we can avoid it in the case where we study convergence to
the product of the integrals.

Definition
The sequences a1(n), ..., ak(n) of integers are called jointly ergodic, iff for
any ergodic system (X , µ,T ) and functions f1, ..., fk ∈ L∞(µ) we have

1
N

N∑
n=1

T a1(n)f1 . . .T
ak (n)fk

L2(µ)−→
∫

f1dµ · · ·
∫

fkdµ.

A recent theorem of Frantzikinakis gives necessary and sufficient
conditions for general sequences of integers to be jointly ergodic.



Joint ergodicity of sequences

In order to prove multiple convergence results, we use techniques to reduce
the original convergence problem to the Host-Kra factors then, solve the
problem in the case of nilsystems. Often, this second property is difficult to
establish, but we can avoid it in the case where we study convergence to
the product of the integrals.

Definition
The sequences a1(n), ..., ak(n) of integers are called jointly ergodic, iff for
any ergodic system (X , µ,T ) and functions f1, ..., fk ∈ L∞(µ) we have

1
N

N∑
n=1

T a1(n)f1 . . .T
ak (n)fk

L2(µ)−→
∫

f1dµ · · ·
∫

fkdµ.

A recent theorem of Frantzikinakis gives necessary and sufficient
conditions for general sequences of integers to be jointly ergodic.



Joint ergodicity of sequences

Definition
i) The sequences a1(n), ..., ak(n) of integers are called good for seminorm
estimates if there exists s ∈ N such that for any system (X , µ,T ) and
functions f1, ..., fk ∈ L∞(µ) with |||fi |||s = 0 for some i ∈ {1, ..., k}, we have

1
N

N∑
n=1

T a1(n)f1 . . .T
ak (n)fk

L2(µ)−→ 0.

ii) The sequences a1(n), ..., ak(n) of integers are called good for
equidistribution if for any t1, ..., tk ∈ [0, 1) (not all zero), we have

lim
N→+∞

1
N

N∑
n=1

e(t1a1(n) + · · ·+ tkak(n)) = 0.



Joint ergodicity of sequences

Frantzikinakis-2021
The following are equivalent:
a) The sequences a1(n), ..., ak(n) are jointly ergodic.
b) The sequences a1(n), ..., ak(n) are good for seminorm estimates and
equidistribution.

In our problem, we have to establish that the sequences
⌊a1(n)⌋, ..., ⌊ak(n)⌋ (for Hardy field functions a1, ..., ak) are good for
seminorm estimates. The good for equidistribution property follows
easily from our hypothesis on the linear combinations and the
equidistribution results of Boshernitzan.
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The weak-mixing case

We can actually get seminorm estimates under weaker assumptions.

T.-2021
Let a1, ..., ak be functions in H such that a1, a1 − a2, ..., a1 − ak dominate
log t. Then, there exists a positive integer s such that for any measure
preserving system (X , µ,T ) and bounded functions f1, . . . , fk with
|||f1|||s = 0, we have

lim
N→+∞

∥∥ 1
N

N∑
n=1

T ⌊a1(n)⌋f1 . . .T
⌊ak (n)⌋fk

∥∥
L2(µ)

= 0.



The weak-mixing case

In the case of weak mixing systems, we get the following theorem, which
generalizes a result of Bergelson and Häland-Knutson.

T.-2021
Let a1, ..., ak be functions in H such that ai , ai − aj dominate log t for all
admissible values of i , j . Then, for any measure preserving system
(X , µ,T ) and bounded functions f1, . . . , fk , we have

lim
N→+∞

∥∥ 1
N

N∑
n=1

T ⌊a1(n)⌋f1 . . .T
⌊ak (n)⌋fk −

∫
f1dµ · · ·

∫
fkdµ

∥∥
L2(µ)

= 0.



Sketch of the proof

It is classical that polynomials (on any number of variables) are good
for seminorm estimates (Leibman-2005). It follows from repeated
applications of the van-der Corput inequality.

The main idea in our proof is to use the Taylor expansion to replace
the original functions by polynomials in appropriate short intervals.
The error terms arising from this approximation can be discarded
(morally).
We then apply the van der Corput inequality and use a PET induction
scheme that reduces the complexity of the polynomials appearing in
the averages.
Due to some technical obstructions we have to use a double-averaging
trick to separate slow-growing functions from faster growing functions.
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An example

Consider the averages En∈NT
⌊n log n⌋f · T ⌊n2/3⌋g . It suffices to show that

E
N≤n≤N+N0.51

T ⌊n log n⌋f · T ⌊n2/3⌋g

goes to 0, under the assumption that |||f |||s = 0. However, we can
approximate

(N + h) log(N + h) =
h2

2N
+ smaller degree terms + oN(1), 0 ≤ h ≤ N0.51

and

(N + h)2/3 =
2h

3N1/3 + smaller degree terms + oN(1), 0 ≤ h ≤ N0.51.

Thus, our problem reduces to showing that

E
0≤h≤N0.51

T ⌊ h2
2N+...⌋f · T ⌊ 2h

3N1/3 +...⌋
g → 0 (*)

and the iterates have polynomial form now.



An example

Choosing the length of the short interval appropriately (which was
N0.51 above) allowed us to find a polynomial approximation, but this
is not always the case.

For example, we cannot do that for the pair (n log n, log2 n). Any
choice for the length of that interval that gives a good polynomial
approximation for n log n will give an approximation of log2 n by a
constant quantity.
In general, if a function grows faster than some fractional power tδ,
while the second function grows slower than all the fractional powers
tδ, we encounter the same problem.
In order to combat this, we average again the averages over those
small intervals. In (*), we have to average over h ∈ [0,N0.51] and over
N ∈ N.
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Second example

Consider the averages E
n∈N

T ⌊n log n+log2 n⌋f · T ⌊n log n⌋g . Using an

elementary lemma, our result follows if we show

E
1≤r≤R

E
0≤h≤r0.51

T ⌊(r+h) log(r+h)+log2(r+h)⌋f · T ⌊(r+h) log(r+h)⌋g → 0.

We use the same Taylor expansion as before for the term (r + h) log(r + h).
We can show that max

0≤h≤r0.51
| log2(r + h)− log2 r | = or (1). Combining the

two, we want to bound the averages

E
1≤r≤R

E
0≤h≤r0.51

T ⌊ h2
2r +...⌋(g · T ⌊log2 r⌋f

)
= E

1≤r≤R
Ar , (1)

We set fr = g · T ⌊log2 r⌋f for convenience.



Second example

We want to bound the inner average for fixed (large) r . We write
h = k⌊

√
2r⌋+ s for 0 ≤ h ≤ r0.51. After some simplifications, the inner

average takes the form

E
0≤k≤Cr0.01

T ⌊k2+smaller order monomials⌋fr

We apply the van der Corput inequality twice to bound Ar :

∥Ar∥4
L2(µ) ≪

1
M

+ E
−M≤m1,m2≤M

∣∣∣ ∫ f̄r · T 2m1m2fr

∣∣∣
+ or (1) (for any M > 0). (2)



Comment on the PET bounds

More generally, we can show a bound that "looks like"

∥∥ E
n≤r

T ⌊ark2⌋f
∥∥4
L2(m)

≪ 1
M

+ E
−M≤m1,m2≤M

∣∣∣ ∫ f̄ · T ⌊2m1m2ar ⌋f
∣∣∣+ or (1)

(for any M > 0).

The leading coefficients of the original polynomials and of their
pairwise differences dictate the polynomial bounds (the polynomials on
the shifts mi ) that we get above.
In general, the original polynomials have coefficients that depend on r ,
so one needs to keep track of them until the end. They have a
"specific" form, so they are removed using a special case of the main
theorem, which is proven independently.
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Putting the bound (2) in (1), we arrive at the expression

E
1≤r≤R

E
|m1|,|m2|≤M

∣∣ ∫ (g · T ⌊log2 r⌋f ) · T 2m1m2(g · T ⌊log2 r⌋f ) dµ
∣∣ =

E
|m1|,|m2|≤M

E
1≤r≤R

∣∣ ∫ (ḡ · T 2m1m2g) · T ⌊log2 r⌋(f̄ · T 2m1m2f ) dµ
∣∣.

In our example, we can simply use the k = 1 case of the theorem, to
deduce that the limit over R of the inner average is ≪ |||f̄ · T 2m1m2f |||2.
Thus, the original limit bounded (for any M > 0) by

E
|m1|,|m2|≤M

|||f̄ · T 2m1m2f |||2.

We send M → +∞ and expand the seminorm inside by the definition, and
we arrive at an iterated limit of polynomial averages. These are good for
seminorm estimates (Leibman) and we are done.
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The "linearly dependent" case

When there are linear dependencies between the functions a1, ..., ak ,
then we can expect mean convergence, but not to the correct limit (i.e
the product of the integrals). In this case, we cannot use the joint
ergodicity characterization of Frantzikinakis.

The simplest example is when our functions have the form
a(t), b(t), a(t) + b(t) (e.g. t log t, t1.5, t1.5 + t log t).
In this case, we get the seminorm estimates as above and then we
have to establish convergence results in nilmanifolds (namely, we will
rely on the Host-Kra structure theorem)
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The "linearly dependent" case

T.-2022
Let δ > 0 and suppose a1, ..., ak ∈ H have polynomial growth. Assume
that every non-trivial linear combination a satisfies either

lim
t→+∞

|a(t)− p(t)|
tδ

= +∞ for any polynomial p(t) ∈ Q[t]

or
lim

t→+∞
a(t) is a real number.

Then, for any measure preserving system (X , µ,T ) and any functions
f1, ..., fk ∈ L∞(µ), we have that the averages

1
N

N∑
n=1

T ⌊a1(n)⌋f1 . . .T
⌊ak (n)⌋fk

converge in L2(µ).



The "linearly dependent" case

The methods used to prove this theorem are similar to the ones above:
i) Simultaneously approximate the original functions by polynomials in
short intervals.
ii) Apply the quantitative equidistribution results of Green-Tao for
finite polynomial orbits on nilmanifolds.

This method, however, breaks down when there is one
"sub-fractional" function (i.e. O(tδ) for all δ > 0) and one "fast
growing" function (i.e ≫ tδ for some δ > 0).
This explains the appearance of the term tδ in the statement of the
previous theorem instead of the conjectured log t.
It is conjectured (Frantzikinakis) that we have mean convergence for
the functions a1, ..., ak , if and only if, for all t1, ..., tk ∈ [0, 1), the
averages

1
N

N∑
n=1

e(t1⌊a1(n)⌋+ · · ·+ tk⌊ak(n)⌋)

converge, i.e if we have mean convergence for rotations on the torus.
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Thank You!


