Distribution of translation orbits along good averaging sequences speaker: Máté Wierdl

Nilpotent structures in topological dynamics, ergodic theory and combinatorics Będlewo, June 9, 2023

Aleksander Rajchman

Plan

Reminders

- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law
- Wiener-Wintner
- Single α All α
- $\times 2 \times 3$

June 9, 2023

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
- Non-Rajchman measures, 0 1 law
- Limit in Wiener-Wintner's theorem
- Remaining questions
- Single

Plan

Reminders

- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law

Questions Single a All a Proof

 $\times 2 \times 3$

June 9, 2023

Reminders Definition of a good sequence (set)

- 3) Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
 - Remaining questions
- Single

Plan

Reminders

- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law
- Questions Single a All a Proof
- $\times 2 \times 3$

June 9, 2023

UofM

Reminders Definition of a good sequence (set) Main question

- Fourier coefficients of a measure
- Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
 - Remaining questions
- Single

- Plan

1 Reminders 2 Definition of a good sequence (set) **3** Main question • Fourier coefficients of a measure • Appreciating the question

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law Wiener-Wintr
- Questions Single a All a Proof
- $\times 2 \times 3$

Reminders Definition of a good sequence (set)

- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
 - Result
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
 - Remaining questions

June 9, 2023 UofM

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law Wiener-Wint
- Questions ^{Single a} All a Proof
- $\times 2 \times 3$

June 9, 2023

UofM

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
 - Remaining questions
- Single

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law Wiener-Wintt
- Questions Single a All a Proof
- $\times 2 \times 3$

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
 - Remaining questions

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law Wiener-Wintt
- Questions Single a All a Proof
- $\times 2 \times 3$

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
 - **Remaining questions**

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law Wiener-Wintr
- Question: Single α All α Proof
- $\times 2 \times 3$

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
- Remaining questions

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law
- Questions Single α All α Proof

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
- Remaining questions
- Single α

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law
- Wiener-Wintn
- Question Single α All α
- Proof $x^2 \times 3$

June 9, 2023

Reminders

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
- Remaining questions
 - Single α

UofM

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law
- 0 1 law Wiener-Wintn
- **Question** Single α All α
- Proof

- Definition of a good sequence (set)
- Main question

Reminders

- Fourier coefficients of a measure
- Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
- 6 Remaining questions
 - Single α
 - All a

Remarks on the proo

3

- Plan

Results • Rational α

Reminders

• Irrational α

Main question

- Example: how to have an interval to be the RN derivative
- Non-Rajchman measures, 0 1 law

Definition of a good sequence (set)

• Fourier coefficients of a measure

• Appreciating the question

- Limit in Wiener-Wintner's theorem
- 5 Remaining questions
 - Single α
 - All α

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example
- 0 1 law Wiener-Wintne
- **Question** Single α All α
- Proof

1 Reminders

- Definition of a good sequence (set)
- Main question
 - Fourier coefficients of a measure
 - Appreciating the question
- 4 Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
- 6 Remaining questions
 - Single α
 - All α

Remarks on the proof

- Plan

Reminders

- Definition of a good sequence (set)
- Main question 3
 - Fourier coefficients of a measure
 - Appreciating the question
- Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
- 5 Remaining questions
 - Single α
 - All α

Remarks on the proof

UofM June 9, 2023

- Plan

Reminders

- Definition of a good sequence (set)
- Main question 3
 - Fourier coefficients of a measure
 - Appreciating the question
- Results
 - Rational α
 - Irrational α
 - Example: how to have an interval to be the RN derivative
 - Non-Rajchman measures, 0 1 law
 - Limit in Wiener-Wintner's theorem
- 5 Remaining questions
 - Single α
 - All α

Remarks on the proof

UofM June 9, 2023

Plan

Reminders

Good sequence

- Main question Fourier coefficients Appreciation
- Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$ ergodic theorem (MET) In a dynamical system (X, m, T) and $f \in L^2(X)$ we have $\lim_N A_{n \in [0,N)} f \circ T^n = Pf$ where $A_{n \in [0,N)} f_n \coloneqq \frac{1}{N} \sum_{n \in [0,N)} f_n$, so A is the "average operator", and Pf is the *T*-invariant part of *f*. By the *spectral theorem* and using Weyl's notation $e(\theta) \coloneqq e^{2\pi i \theta}$, MET is a consequence of $\lim_N A_{n \in [0,N)} e(n\alpha)$ existing for every real α and being equal 0 if $\alpha \notin \mathbb{Z}$ and 1 if $\alpha \in \mathbb{Z}$.

MET along squares says lim_N A_{n∈[0,N}∫ ◦ T^{n²} exists for f ∈ L²(X). By the spectral theorem, it's a consequence of lim_N A_{n∈[0,N}) e(n²α) existing for every α, which is true by Weyl's result. For irrational α the limit is 0 and for rational α = a/q, (a, q) = 1, it's A_{n∈[0,q}) e(r²a/q).

We have MET along many other sequences, such as primes, and the limit for irrational *α* is usually 0.

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintto

Questions Single α All α Proof $\times 2 \times 3$ Mean ergodic theorem (MET) In a dynamical system (X, \mathfrak{m}, T) and $f \in L^2(X)$ we have $\lim_N A_{n \in [0,N)} f \circ T^n = Pf$ where $A_{n \in [0,N)} f_n \coloneqq \frac{1}{N} \sum_{n \in [0,N)} f_n$, so A is the "average operator", and Pf is the T-invariant part of f. By the *spectral theorem* and using Weyl's notation $e(\theta) \coloneqq e^{2\pi i \theta}$, MET is a consequence of $\lim_N A_{n \in [0,N)} e(n\alpha)$ existing for every real α and being equal 0 if $\alpha \notin \mathbb{Z}$ and 1 if $\alpha \in \mathbb{Z}$.

MET along squares says $\lim_N A_{n \in [0,N)} f \circ T^{n^2}$ exists for $f \in L^2(X)$. By the spectral theorem, it's a consequence of $\lim_N A_{n \in [0,N)} e(n^2 \alpha)$ existing for every α , which is true by Weyl's result. For irrational α the limit is 0 and for rational $\alpha = a/q$, (a, q) = 1, it's $A_{r \in [0,q)} e(r^2 a/q)$.

We have MET along many other sequences, such as primes, and the limit for irrational α is usually 0.

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$ Mean ergodic theorem (MET) In a dynamical system (X, \mathfrak{m}, T) and $f \in L^2(X)$ we have $\lim_N A_{n \in [0,N]} f \circ T^n = Pf$ where $A_{n \in [0,N]} f_n \coloneqq \frac{1}{N} \sum_{n \in [0,N]} f_n$, so A is the "average operator", and Pf is the T-invariant part of f. By the *spectral theorem* and using Weyl's notation $e(\theta) \coloneqq e^{2\pi i \theta}$, MET is a consequence of $\lim_N A_{n \in [0,N]} e(n\alpha)$ existing for every real α and being equal 0 if $\alpha \notin \mathbb{Z}$ and 1 if $\alpha \in \mathbb{Z}$.

MET along squares says $\lim_N \mathbb{A}_{n \in [0,N)} f \circ T^{n^2}$ exists for $f \in L^2(X)$. By the spectral theorem, it's a consequence of $\lim_N \mathbb{A}_{n \in [0,N)} e(n^2 \alpha)$ existing for every α , which is true by Weyl's result. For irrational α the limit is 0 and for rational $\alpha = a/q$, (a, q) = 1, it's $\mathbb{A}_{r \in [0,q)} e(r^2 a/q)$.

We have MET along many other sequences, such as primes, and the limit for irrational *α* is usually 0.

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$ Mean ergodic theorem (MET) In a dynamical system (X, \mathfrak{m}, T) and $f \in L^2(X)$ we have $\lim_N A_{n \in [0,N]} f \circ T^n = Pf$ where $A_{n \in [0,N]} f_n \coloneqq \frac{1}{N} \sum_{n \in [0,N]} f_n$, so A is the "average operator", and Pf is the T-invariant part of f. By the *spectral theorem* and using Weyl's notation $e(\theta) \coloneqq e^{2\pi i \theta}$, MET is a consequence of $\lim_N A_{n \in [0,N]} e(n\alpha)$ existing for every real α and being equal 0 if $\alpha \notin \mathbb{Z}$ and 1 if $\alpha \in \mathbb{Z}$.

MET along squares says $\lim_N A_{n \in [0,N)} f \circ T^{n^2}$ exists for $f \in L^2(X)$. By the spectral theorem, it's a consequence of $\lim_N A_{n \in [0,N)} e(n^2 \alpha)$ existing for every α , which is true by Weyl's result. For irrational α the limit is 0 and for rational $\alpha = a/q$, (a, q) = 1, it's $A_{r \in [0,q)} e(r^2 a/q)$.

We have MET along many other sequences, such as primes, and the limit for irrational α is usually 0.

Plan

Reminders

Good sequence

Main questio Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$ Mean ergodic theorem (MET) In a dynamical system (X, \mathfrak{m}, T) and $f \in L^2(X)$ we have $\lim_N \mathbb{A}_{n \in [0,N)} f \circ T^n = Pf$ where $\mathbb{A}_{n \in [0,N)} f_n \coloneqq \frac{1}{N} \sum_{n \in [0,N)} f_n$, so \mathbb{A} is the "average operator", and Pf is the *T*-invariant part of *f*. By the *spectral theorem* and using Weyl's notation $\mathbf{e}(\theta) \coloneqq e^{2\pi i \theta}$, MET is a consequence of $\lim_N \mathbb{A}_{n \in [0,N)} \mathbf{e}(n\alpha)$ existing for every real α and being equal 0 if $\alpha \notin \mathbb{Z}$ and 1 if $\alpha \in \mathbb{Z}$.

MET along squares says $\lim_N A_{n \in [0,N)} f \circ T^{n^2}$ exists for $f \in L^2(X)$. By the spectral theorem, it's a consequence of $\lim_N A_{n \in [0,N)} e(n^2 \alpha)$ existing for every α , which is true by Weyl's result. For irrational α the limit is 0 and for rational $\alpha = a/q$, (a, q) = 1, it's $A_{r \in [0,q)} e(r^2 a/q)$.

We have MET along many other sequences, such as primes, and the limit for irrational α is usually 0.

Plan

Reminders

Good sequence

Main questio Fourier coefficients Appreciation Results

Rational α Irrational α Example 0 - 1 law Wiener-Wintt

Questions Single α All α Proof $\times 2 \times 3$

Definition

Let $s_1 < s_2 < \cdots < s_n < \ldots$ be a strictly increasing sequence of positive integers. We say $S := (s_n)$ is good if for every real α the sequence $\left(\mathbb{A}_{n \in [1,N]} e(s_n \alpha)\right)_N$ converges.

■ Equivalently, the sequence $\left(\mathbb{A}_{n\in[1,N]}\delta_{s,a}\right)_N$ converges weakly. $\left(\mathbb{A}_{n\in[1,N]}\delta_{s,a}\right)_{s,a}$ is a discrete probability measure on the torus T.) We denote $\mu_{S,a} := \lim_N \mathbb{A}_{n\in[1,N]}\delta_{s,a}$.

Plan

Reminders

Good sequence

Main questio Fourier coefficient Appreciation Results Rational α Irrational α Example 0 - 1 law

Wiener-Wintne

Single α All α Proof $\times 2 \times 3$

$$\begin{array}{l} \mathbb{A}_{S}f = \mathbb{A}_{s \in S}f(s) \coloneqq \frac{1}{\#S}\sum_{s \in S}f(s) \\ \mathbf{e}(\theta) \coloneqq \mathbf{e}^{2\pi i\theta} \end{array}$$

Definition

Let $s_1 < s_2 < \cdots < s_n < \ldots$ be a strictly increasing sequence of positive integers. We say $S := (s_n)$ is good if for every real α the sequence $(\mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n \alpha))_N$ converges.

 Equivalently, the sequence (A_{n∈[1,N]}δ_{s_nα})_N converges weakly. (A_{n∈[1,N]}δ_{s_nα} is a discrete probability measure on the torus T.) We denote μ_{S,α} := lim_N A_{n∈[1,N]}δ_{s_nα}.

• Equivalently (by the spectral theorem), in every dynamical system (X, \mathfrak{m}, T) and $f \in L^2(X)$ the sequence $\left(\mathbb{A}_{n \in [1,N]} f(T^{s_n} x)\right)_{x_1}$ converges in L^2 -norm.

Plan

Reminders

Good sequence

Main questi Fourier coefficien Appreciation Results Rational α Irrational α Example 0 - 1 law Wiener-Winther

Questions Single α All α Proof

 $\begin{aligned} \mathbf{A}_{\mathcal{S}} f &= \mathbf{A}_{s \in \mathcal{S}} f(s) \coloneqq \frac{1}{\# S} \sum_{s \in \mathcal{S}} f(s) \\ \mathbf{e}(\theta) &\coloneqq \mathbf{e}^{2\pi i \theta} \end{aligned}$

Definition

Let $s_1 < s_2 < \cdots < s_n < \ldots$ be a strictly increasing sequence of positive integers. We say $S := (s_n)$ is good if for every real α the sequence $\left(\mathbb{A}_{n \in [1,N]} e(s_n \alpha)\right)_N$ converges.

- Equivalently, the sequence $\left(\mathbb{A}_{n\in[1,N]}\delta_{s_n\alpha}\right)_N$ converges weakly. $\left(\mathbb{A}_{n\in[1,N]}\delta_{s_n\alpha}\right)$ is a discrete probability measure on the torus T.) We denote $\mu_{S,\alpha} := \lim_N \mathbb{A}_{n\in[1,N]}\delta_{s_n\alpha}$.
- Equivalently (by the spectral theorem), in every dynamical system (X, \mathfrak{m}, T) and $f \in L^2(X)$ the sequence $\left(\mathbb{A}_{n \in [1,N]} f(T^{s_n} x)\right)_N$ converges in L^2 -norm.

Plan

Reminders

Good sequence

Main questi Fourier coefficien Appreciation Results Rational a Irrational a Example 0 – 1 law Wiener-Wintner

Questions Single α All α Proof

 $\begin{aligned} \mathbf{A}_{\mathcal{S}} f &= \mathbf{A}_{s \in \mathcal{S}} f(s) \coloneqq \frac{1}{\# S} \sum_{s \in \mathcal{S}} f(s) \\ \mathbf{e}(\theta) &\coloneqq \mathbf{e}^{2\pi i \theta} \end{aligned}$

Definition

Let $s_1 < s_2 < \cdots < s_n < \ldots$ be a strictly increasing sequence of positive integers. We say $S := (s_n)$ is good if for every real α the sequence $\left(\mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n \alpha)\right)_N$ converges.

- Equivalently, the sequence $\left(\mathbb{A}_{n\in[1,N]}\delta_{s_n\alpha}\right)_N$ converges weakly. $\left(\mathbb{A}_{n\in[1,N]}\delta_{s_n\alpha}\right)$ is a discrete probability measure on the torus \mathbb{T} .) We denote $\mu_{S,\alpha} := \lim_N \mathbb{A}_{n\in[1,N]}\delta_{s_n\alpha}$.
- Equivalently (by the spectral theorem), in every dynamical system (X, \mathfrak{m}, T) and $f \in L^2(X)$ the sequence $\left(\mathbb{A}_{n \in [1,N]} f(T^{s_n} x)\right)_N$ converges in L^2 -norm.

Plan Reminde Good

Main question Fourier coefficients

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$ For a good set $S = (s_n)$, denote $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$. Being the weak limit of Borel probability measures on \mathbb{T} , $\mu_{S,\alpha}$ is a Borel probability measure on \mathbb{T} .

Main Question

- Can $\mu_{S,\alpha}$ be any Borel probability measure on T?
- What $\mu_{S,\alpha}$ actually can be depends on α .
- The case of rational and irrational α are very different
- Note that, by Weyl's result, the Haar–Lebesgue probability measure λ of those $\alpha \in \mathbb{T}$ for which $\mu_{S,\alpha} \neq \lambda$ is 0.

Plan Reminde Good

sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 — 1 law

Questions Single α All α Proof For a good set $S = (s_n)$, denote $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$. Being the weak limit of Borel probability measures on \mathbb{T} , $\mu_{S,\alpha}$ is a Borel probability measure on \mathbb{T} .

Main Question

- **C**an $\mu_{S,\alpha}$ be any Borel probability measure on T?
- What $\mu_{S,\alpha}$ actually can be depends on α .
- The case of rational and irrational α are very different.
- Note that, by Weyl's result, the Haar-Lebesgue probability measure λ of those $\alpha \in \mathbb{T}$ for which $\mu_{S,\alpha} \neq \lambda$ is 0.

Plan Reminder Good sequence

Main question Fourier coefficients Appreciation Results

Rational α Irrational α Example 0 – 1 law Wiener-Wintt

Questions Single α All α Proof

For a good set $S = (s_n)$, denote $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$. Being the weak limit of Borel probability measures on \mathbb{T} , $\mu_{S,\alpha}$ is a Borel probability measure on \mathbb{T} .

Main Question

- **C**an $\mu_{S,\alpha}$ be any Borel probability measure on \mathbb{T} ?
- What $\mu_{S,\alpha}$ actually can be depends on α .
- The case of rational and irrational α are very different.
- Note that, by Weyl's result, the Haar–Lebesgue probability measure λ of those $\alpha \in \mathbb{T}$ for which $\mu_{S,\alpha} \neq \lambda$ is 0.

Plan Reminder Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Questions Single a All a Proof For a good set $S = (s_n)$, denote $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$. Being the weak limit of Borel probability measures on \mathbb{T} , $\mu_{S,\alpha}$ is a Borel probability measure on \mathbb{T} .

Main Question

- Can $\mu_{S,\alpha}$ be any Borel probability measure on \mathbb{T} ?
- What $\mu_{S,\alpha}$ actually can be depends on α .
- The case of rational and irrational α are very different.
- Note that, by Weyl's result, the Haar-Lebesgue probability measure λ of those $\alpha \in \mathbb{T}$ for which $\mu_{S,\alpha} \neq \lambda$ is 0.

Plan Reminder Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Questions Single α All α Proof For a good set $S = (s_n)$, denote $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$. Being the weak limit of Borel probability measures on \mathbb{T} , $\mu_{S,\alpha}$ is a Borel probability measure on \mathbb{T} .

Main Question

- Can $\mu_{S,\alpha}$ be any Borel probability measure on \mathbb{T} ?
- What $\mu_{S,\alpha}$ actually can be depends on α .
- The case of rational and irrational α are very different.
- Note that, by Weyl's result, the Haar-Lebesgue probability measure λ of those $\alpha \in \mathbb{T}$ for which $\mu_{S,\alpha} \neq \lambda$ is 0.

Plan Reminder Good sequence

Main question Fourier coefficients Appreciation

Rational α Irrational α Example

0 – 1 law Wiener-Wintr

Questions Single a All a Proof

 $\times 2 \times 3$

For a good set $S = (s_n)$, denote $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$. Being the weak limit of Borel probability measures on \mathbb{T} , $\mu_{S,\alpha}$ is a Borel probability measure on \mathbb{T} .

Main Question

- Can $\mu_{S,\alpha}$ be any Borel probability measure on \mathbb{T} ?
- What $\mu_{S,\alpha}$ actually can be depends on α .
- The case of rational and irrational α are very different.
- Note that, by Weyl's result, the Haar-Lebesgue probability measure λ of those $\alpha \in \mathbb{T}$ for which $\mu_{S,\alpha} \neq \lambda$ is 0.

- Plan
- Reminde
- Good sequence
- Main question Fourier coefficients Appreciation
- Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne
- Questions Single α All α Proof $\times 2 \times 3$

- For a Borel measure ν on \mathbb{T} and continuous $\mathbb{T} \to \mathbb{C}$ function ϕ , we use the functional notation $\nu(\phi) = \int_{\mathbb{T}} \phi \, d\nu$. In particular, $\nu(e^p)$ for $p \in \mathbb{Z}$ is the *p*th Fourier coefficient of ν .
- For the Haar-Lebesgue probability measure λ on \mathbb{T} we have $\lambda(e^p) = 0$ if $p \in \mathbb{Z}, p \neq 0$ and $\lambda(e^0) = \lambda(1) = 1$.
 - By Weierstrass' approximation theorem, μ_{S,e} = lim_N A_{n∈[1,N]}δ_{s,e} is a consequence of the existence of lim_N A_{n∈[1,N]} e^p(s_nα) for every $p \in \mathbb{Z}$. Note that
 - $\lim_{N \to \infty} \Lambda_{n \in [1,N]} \, \mathbf{e}^{p}(s_{\theta} \alpha) = \lim_{N} \Lambda_{n \in [1,N]} \, \mathbf{e}(s_{\eta} \alpha) = \mu_{S, \mu_{n}}(\mathbf{e}) \, .$

- For a Borel measure ν on \mathbb{T} and continuous $\mathbb{T} \to \mathbb{C}$ function ϕ , we use the functional notation $\nu(\phi) = \int_{\mathbb{T}} \phi \, d\nu$. In particular, $\nu(e^p)$ for $p \in \mathbb{Z}$ is the *p*th Fourier coefficient of ν .
- For the Haar-Lebesgue probability measure λ on \mathbb{T} we have $\lambda(e^p) = 0$ if $p \in \mathbb{Z}, p \neq 0$ and $\lambda(e^0) = \lambda(1) = 1$.
- By Weierstrass' approximation theorem, $\mu_{S,\alpha} = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$ is a consequence of the existence of $\lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} e^p(s_n \alpha)$ for every $p \in \mathbb{Z}$. Note that

$$\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha) = \mu_{S,p\alpha}(\mathbf{e})$$

• According to Wiener's theorem, the Borel measure ν on \mathbb{T} is continuous iff $\lim_{P} \mathbb{A}_{p \in [-P,P]} |\nu(\mathbf{e}^{p})| = 0.$

Fourier coefficients

- For a Borel measure ν on \mathbb{T} and continuous $\mathbb{T} \to \mathbb{C}$ function ϕ , we use the functional notation $\nu(\phi) = \int_{\mathbb{T}} \phi \, d\nu$. In particular, $\nu(e^p)$ for $p \in \mathbb{Z}$ is the *p*th Fourier coefficient of ν .
- For the Haar-Lebesgue probability measure λ on \mathbb{T} we have $\lambda(\mathbf{e}^p) = 0$ if $p \in \mathbb{Z}, p \neq 0$ and $\lambda(\mathbf{e}^0) = \lambda(1) = 1$.
- By Weierstrass' approximation theorem, $\mu_{S,\alpha} = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$ is a consequence of the existence of $\lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} e^p(s_n \alpha)$ for every $p \in \mathbb{Z}$. Note that

$$\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha) = \mu_{S,p\alpha}(\mathbf{e})$$

• According to Wiener's theorem, the Borel measure ν on \mathbb{T} is continuous iff $\lim_{P} \mathbb{A}_{p \in [-P,P]} |\nu(\mathbf{e}^p)| = 0.$

Main question Fourier coefficients

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintn

Questions Single α All α Proof $\times 2 \times 3$

- For a Borel measure ν on \mathbb{T} and continuous $\mathbb{T} \to \mathbb{C}$ function ϕ , we use the functional notation $\nu(\phi) = \int_{\mathbb{T}} \phi \, d\nu$. In particular, $\nu(e^p)$ for $p \in \mathbb{Z}$ is the *p*th Fourier coefficient of ν .
- For the Haar-Lebesgue probability measure λ on \mathbb{T} we have $\lambda(\mathbf{e}^p) = 0$ if $p \in \mathbb{Z}, p \neq 0$ and $\lambda(\mathbf{e}^0) = \lambda(1) = 1$.
- By Weierstrass' approximation theorem, $\mu_{S,\alpha} = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$ is a consequence of the existence of $\lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} e^p(s_n \alpha)$ for every $p \in \mathbb{Z}$. Note that

$$\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha) = \mu_{S,p\alpha}(\mathbf{e})$$

• According to Wiener's theorem, the Borel measure ν on \mathbb{T} is continuous iff $\lim_{p \in [-P,P]} |\nu(\mathbf{e}^p)| = 0.$

Reminder

Good sequenc

Main question Fourier coefficients

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Question Single α All α Proof $\times 2 \times 3$
Main question Fourier coefficients of a measure

- For a Borel measure ν on \mathbb{T} and continuous $\mathbb{T} \to \mathbb{C}$ function ϕ , we use the functional notation $\nu(\phi) = \int_{\mathbb{T}} \phi \, d\nu$. In particular, $\nu(e^p)$ for $p \in \mathbb{Z}$ is the *p*th Fourier coefficient of ν .
- For the Haar-Lebesgue probability measure λ on \mathbb{T} we have $\lambda(\mathbf{e}^p) = 0$ if $p \in \mathbb{Z}, p \neq 0$ and $\lambda(\mathbf{e}^0) = \lambda(1) = 1$.
- By Weierstrass' approximation theorem, $\mu_{S,\alpha} = \lim_{N \to \infty} A_{n \in [1,N]} \delta_{s_n \alpha}$ is a consequence of the existence of $\lim_{N \to \infty} A_{n \in [1,N]} e^p(s_n \alpha)$ for every $p \in \mathbb{Z}$. Note that

$$\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha) = \mu_{S,p\alpha}(\mathbf{e})$$

 According to Wiener's theorem, the Borel measure *ν* on T is continuous iff lim_P A_{p∈[-P,P]} |*ν*(e^p)| = 0.

Reminder

Good sequenc

Main question Fourier coefficients

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Question: Single α All α Proof

 $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$; equivalently $\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha)$ for every $p \in \mathbb{Z}$.

To appreciate the main question, note that for a given Borel probability measure ν on \mathbb{T} and irrational α we can construct a set $S \subset \mathbb{N}$ so that $\mu_{S,\alpha} = \nu$. This can be done in multiple ways. In case of a point mass, say, at 1/2, the construction is particularly simple since all we need is to have $\lim_{n \to \infty} s_n \alpha = 1/2$ mod 1 which can be achieved since $\{n\alpha \mid n \in \mathbb{N}\}$ is dense mod 1.

Definition (Representation of a measure)

Given a real number α and a Borel probability measure ν , we say ν is representable at α if there is a good set *S* with $\mu_{S,\alpha} = \nu$.

 $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$; equivalently $\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha)$ for every $p \in \mathbb{Z}$.

To appreciate the main question, note that for a given Borel probability measure ν on \mathbb{T} and irrational α we can construct a set $S \subset \mathbb{N}$ so that $\mu_{S,\alpha} = \nu$. This can be done in multiple ways. In case of a point mass, say, at 1/2, the construction is particularly simple since all we need is to have $\lim_{n \to \infty} s_n \alpha = 1/2$ mod 1 which can be achieved since $\{n\alpha \mid n \in \mathbb{N}\}$ is dense mod 1.

Definition (Representation of a measure)

Given a real number α and a Borel probability measure ν , we say ν is representable at α if there is a good set *S* with $\mu_{S,\alpha} = \nu$.

 $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$; equivalently $\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha)$ for every $p \in \mathbb{Z}$.

To appreciate the main question, note that for a given Borel probability measure ν on \mathbb{T} and irrational α we can construct a set $S \subset \mathbb{N}$ so that $\mu_{S,\alpha} = \nu$. This can be done in multiple ways. In case of a point mass, say, at 1/2, the construction is particularly simple since all we need is to have $\lim_{n \to \infty} s_n \alpha = 1/2$ mod 1 which can be achieved since $\{n\alpha \mid n \in \mathbb{N}\}$ is dense mod 1.

Definition (Representation of a measure)

Given a real number α and a Borel probability measure ν , we say ν is representable at α if there is a good set S with $\mu_{S,\alpha} = \nu$.

 $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$; equivalently $\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha)$ for every $p \in \mathbb{Z}$.

To appreciate the main question, note that for a given Borel probability measure ν on \mathbb{T} and irrational α we can construct a set $S \subset \mathbb{N}$ so that $\mu_{S,\alpha} = \nu$. This can be done in multiple ways. In case of a point mass, say, at 1/2, the construction is particularly simple since all we need is to have $\lim_{n \to \infty} s_n \alpha = 1/2$ mod 1 which can be achieved since $\{n\alpha \mid n \in \mathbb{N}\}$ is dense mod 1.

Definition (Representation of a measure)

Given a real number α and a Borel probability measure ν , we say ν is representable at α if there is a good set *S* with $\mu_{S,\alpha} = \nu$.

 $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}$; equivalently $\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}^p(s_n \alpha)$ for every $p \in \mathbb{Z}$.

To appreciate the main question, note that for a given Borel probability measure ν on \mathbb{T} and irrational α we can construct a set $S \subset \mathbb{N}$ so that $\mu_{S,\alpha} = \nu$. This can be done in multiple ways. In case of a point mass, say, at 1/2, the construction is particularly simple since all we need is to have $\lim_{n \to \infty} s_n \alpha = 1/2$ mod 1 which can be achieved since $\{n\alpha \mid n \in \mathbb{N}\}$ is dense mod 1.

Definition (Representation of a measure)

Given a real number α and a Borel probability measure ν , we say ν is representable at α if there is a good set *S* with $\mu_{S,\alpha} = \nu$.

Plan Remino Good

Main questio Fourier coefficients Appreciation Results

Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$ α is rational, $\alpha = \frac{a}{q}$, (a, q) = 1.

 $\mu_{S,a/q} \coloneqq \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n a/q}, \, \mu_{S,a/q}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \, \mathbf{e}\Big(s_n p_{\frac{q}{q}}\Big).$

 $\mu_{S,a/q}$ is supported on the set $\mathbb{T}_q = \left\{ \left. \frac{b}{q} \right| 0 \le b < q \right\}$ of qth roots of unity.

For example, by the prime number theorem in arithmetic progressions, if s_n is the th prime number then $\mu_{S,a/q}$ is the uniform probability measure on

 $\left| b \leq b < q, (b,q) = 1 \right| \subset \mathbb{T}_q$, so $\mu_{S,a/q}\{b/q\} = \frac{1}{\phi(q)}$ for every b where ϕ is a ler's totient function.

Remind Good

Main questic Fourier coefficients Appreciation Results Rational α Irrational α

Example 0 – 1 law Wiener-Wintner

Questions Single α All α Proof $\times 2 \times 3$

$$\alpha$$
 is rational, $\alpha = \frac{a}{q}$, $(a, q) = 1$.

 $\mu_{S,a/q} := \lim_{N} \mathbb{A}_{n \in [1,N]} \delta_{s_n a/q}, \, \mu_{S,a/q}(\mathbf{e}^p) = \lim_{N} \mathbb{A}_{n \in [1,N]} \, \mathbf{e}\left(s_n p_{\overline{q}}^{\underline{a}}\right).$

 $\mu_{\mathcal{S},a/q}$ is supported on the set $\mathbb{T}_q = \left\{ \left. \frac{b}{q} \right| 0 \le b < q \right\}$ of qth roots of unity.

For example, by the prime number theorem in arithmetic progressions, if s_n is the *n*th prime number then $\mu_{S,a/q}$ is the uniform probability measure on

 $\left\{ \frac{b}{q} \mid 0 \le b < q, (b,q) = 1 \right\} \subset \mathbb{T}_q$, so $\mu_{S,a/q} \{ b/q \} = \frac{1}{\phi(q)}$ for every b where ϕ is Euler's totient function.

Reminder Good sequence Main ques Fourier coeffici Appreciation

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintner

Questions Single α All α Proof $\times 2 \times 3$

$$\alpha$$
 is rational, $\alpha = \frac{a}{q}$, $(a, q) = 1$.

$$\mu_{S,a/q} := \lim_N \mathbb{A}_{n \in [1,N]} \delta_{s_n a/q}, \, \mu_{S,a/q}(\mathbf{e}^p) = \lim_N \mathbb{A}_{n \in [1,N]} \, \mathbf{e}\Big(s_n p_q^{\underline{a}}\Big).$$

 $\mu_{S,a/q}$ is supported on the set $\mathbb{T}_q = \left\{ \frac{b}{q} \mid 0 \le b < q \right\}$ of *q*th roots of unity.

For example, by the prime number theorem in arithmetic progressions, if s_n is the *n*th prime number then $\mu_{S_ra/q}$ is the uniform probability measure on

 $\left\{ \frac{b}{q} \middle| 0 \le b < q, (b,q) = 1 \right\} \subset \mathbb{T}_q$, so $\mu_{S,a/q} \{ b/q \} = \frac{1}{\phi(q)}$ for every *b* where ϕ is Euler's totient function.

Plan Reminder Good sequence Main ques Fourier coeffici Appreciation Results Rational a

Irrational α Example 0 – 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$

$$\alpha$$
 is rational, $\alpha = \frac{a}{q}$, $(a, q) = 1$.

$$\mu_{S,a/q} \coloneqq \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n a/q}, \ \mu_{S,a/q}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}\left(s_n p_{\overline{q}}^{\underline{a}}\right).$$

$$\mu_{S,a/q} \text{ is supported on the set } \mathbb{T}_q = \left\{ \begin{array}{c} \underline{b} \\ \overline{a} \end{array} \middle| \ 0 \le b < q \end{array} \right\} \text{ of } q \text{th roots of unity}$$

For example, by the prime number theorem in arithmetic progressions, if s_n is the *n*th prime number then $\mu_{S,a/q}$ is the uniform probability measure on $\left\{ \begin{array}{c} \frac{b}{q} \ 0 \le b < q, (b,q) = 1 \end{array} \right\} \subset \mathbb{T}_q$, so $\mu_{S,a/q} \{ b/q \} = \frac{1}{\phi(q)}$ for every *b* where ϕ is Euler's totient function.

Plan Reminder Good sequence Main ques Fourier coeffic Appreciation Results Rational a

Irrational α Example 0 – 1 law Wiener-Wintn **Ouestions**

Single α All α Proof $\times 2 \times 3$

$$\alpha$$
 is rational, $\alpha = \frac{a}{q}$, $(a, q) = 1$.

$$\mu_{S,a/q} := \lim_N \mathbb{A}_{n \in [1,N]} \delta_{s_n a/q}, \, \mu_{S,a/q}(\mathbf{e}^p) = \lim_N \mathbb{A}_{n \in [1,N]} \, \mathbf{e}\left(s_n p_{\overline{q}}^{\underline{a}}\right).$$

 $\mu_{S,a/q}$ is supported on the set $\mathbb{T}_q = \left\{ \frac{b}{q} \mid 0 \le b < q \right\}$ of *q*th roots of unity.

For example, by the prime number theorem in arithmetic progressions, if s_n is the *n*th prime number then $\mu_{S,a/q}$ is the uniform probability measure on $\left\{ \begin{array}{c} \frac{b}{q} \ 0 \le b < q, (b,q) = 1 \end{array} \right\} \subset \mathbb{T}_q$, so $\mu_{S,a/q} \{ b/q \} = \frac{1}{\phi(q)}$ for every *b* where ϕ is Euler's totient function

Plan Remir

Main questic Fourier coefficients Appreciation

Records Rational α Irrational α Example 0 – 1 law Wiener-Wintner

Questions Single α All α Proof $\times 2 \times 3$

$$\begin{aligned} \alpha &= \frac{a}{q}, (a,q) = 1. \\ \mu_{S,a/q} &:= \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n a/q} \\ \mu_{S,a/q}(\mathbf{e}^p) &= \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}\left(s_n p \frac{a}{q}\right). \\ \mathbb{T}_q &= \left\{ \left. \frac{b}{q} \right| 0 \le b < q \right\}. \end{aligned}$$

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

Let v be any probability measure on \mathbb{T}_q and $\frac{a}{q} \in \mathbb{T}_q$. Then v is representable at $\frac{a}{q}$, that is, there is a good set S so that $\mu_{S,a/q} = v$.

Plan

Good sequence Main ques

Fourier coefficients Appreciation Results

Rational α Irrational α Example 0 — 1 law Wiener-Wintner

Questions Single α All α Proof $\times 2 \times 3$

$$\begin{aligned} &\alpha = \frac{a}{q}, (a,q) = 1. \\ &\mu_{S,a/q} \coloneqq \lim_{N} \mathbb{A}_{n \in [1,N]} \delta_{s_n a/q} \\ &\mu_{S,a/q}(\mathbf{e}^p) = \lim_{N} \mathbb{A}_{n \in [1,N]} \mathbf{e}\left(s_n p_{\overline{q}}^a\right). \\ &\mathbb{T}_q = \left\{ \left. \frac{b}{q} \right| 0 \le b < q \right\}. \end{aligned}$$

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

Let ν be any probability measure on \mathbb{T}_q and $\frac{a}{q} \in \mathbb{T}_q$. Then ν is representable at $\frac{a}{q}$, that is, there is a good set S so that $\mu_{S,a/q} = \nu$.

Plan

Reminders

Good sequence

Main quest Fourier coefficier Appreciation Results Rational α Irrational α Example

0 – 1 law Wiener-Wintne

Single α All α Proof $\times 2 \times 3$ Let α be irrational. $\mu_{S,\alpha} := \lim_{n \to \infty} A_{n \in [1,N]} \delta_{s_n \alpha}$

 $S_{,\alpha}(\mathbf{e}^p) = \lim_{N \to \mathbb{N}} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha).$

Plan

Reminders

Good sequence

Main questic Fourier coefficients Appreciation Results Rational a Irrational a

Example 0 – 1 law Wiener-Wintn

Questions Single α All α Proof

Let α be irrational.

 $\iota_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}, \\ \iota_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha).$

If $s_n = n$, n^2 , $\lfloor n^3 \log n \rfloor$ or the *n*th prime number then $\mu_{S,\alpha} = \lambda$, since $\mu_{S,\alpha}(\mathbf{e}^p) = 0$ for every nonzero $p \in \mathbb{Z}$.

San we get the limit measure to be something other than λ ?

Let us try absolutely continuous measures.

Plan Remino

Good sequence Main quest Fourier coefficien Appreciation Results Rational a Irrational a Example 0 - 1 law

Questions Single α All α Proof $\times 2 \times 3$ Let α be irrational. $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha},$ $\mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha).$

If $s_n = n, n^2$, $\lfloor n^3 \log n \rfloor$ or the *n*th prime number then $\mu_{S,\alpha} = \lambda$, since $\mu_{S,\alpha}(\mathbf{e}^p) = 0$ for every nonzero $p \in \mathbb{Z}$.

Can we get the limit measure to be something other than λ ?

Let us try absolutely continuous measures.

Plan Remin

Good sequence Main questi Fourier coefficien Appreciation Results

Rational α **Irrational α** Example

0 – 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$

Let α be irrational.

 $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}, \\ \mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha).$

- If $s_n = n, n^2$, $\lfloor n^3 \log n \rfloor$ or the *n*th prime number then $\mu_{S,\alpha} = \lambda$, since $\mu_{S,\alpha}(\mathbf{e}^p) = 0$ for every nonzero $p \in \mathbb{Z}$.
- Can we get the limit measure to be something other than λ ?
- Let us try absolutely continuous measures.

Plan Damin

Good sequence Main ques

Appreciation

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$

Let α be irrational.

 $\mu_{S,\alpha} \coloneqq \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}, \\ \mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha).$

- If $s_n = n, n^2$, $\lfloor n^3 \log n \rfloor$ or the *n*th prime number then $\mu_{S,\alpha} = \lambda$, since $\mu_{S,\alpha}(\mathbf{e}^p) = 0$ for every nonzero $p \in \mathbb{Z}$.
- Can we get the limit measure to be something other than λ ?
- Let us try absolutely continuous measures.

Plan Pomin

Good sequence Main ques

Appreciation

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintn

Questions Single α All α Proof $\times 2 \times 3$

Let α be irrational.

 $\mu_{S,\alpha} := \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n \alpha}, \\ \mu_{S,\alpha}(\mathbf{e}^p) = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \mathbf{e}(s_n p \alpha).$

- If $s_n = n, n^2$, $\lfloor n^3 \log n \rfloor$ or the *n*th prime number then $\mu_{S,\alpha} = \lambda$, since $\mu_{S,\alpha}(\mathbf{e}^p) = 0$ for every nonzero $p \in \mathbb{Z}$.
- Can we get the limit measure to be something other than λ ?
- Let us try absolutely continuous measures.

Let $I \subset \mathbb{T}$ be an interval, and let $\nu = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$. For a given irrational α , Let us define the set $S \subset \mathbb{N}$ by

$$S := \{ n \mid n \in \mathbb{N}, n\alpha \in I \mod 1 \}$$

So if I = (A, B) and $\alpha = \sqrt{2} - 1$, then

$$0 5\alpha 3\alpha A \alpha 6\alpha B 4\alpha 2\alpha 1$$

Writing S as a sequence $s_1 < s_2 < \dots, \mu_{S,\beta} = \lim_N \mathbb{A}_{n \in [1,N]} \delta_{s_n\beta}$ exists for every β and $\mu_{S,\alpha} = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$ as can be seen by using Weyl's uniform distribution theorem

Let $I \subset \mathbb{T}$ be an interval, and let $\nu = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$. For a given irrational α , Let us define the set $S \subset \mathbb{N}$ by

$$S := \{ n \mid n \in \mathbb{N}, n\alpha \in I \mod 1 \}$$

So if I = (A, B) and $\alpha = \sqrt{2} - 1$, then

$$0$$
 5 α 3α A α 6α B 4α 2α 1

Writing S as a sequence $s_1 < s_2 < \ldots$, $\mu_{S,\beta} = \lim_N \mathbb{A}_{n \in [1,N]} \delta_{s_n\beta}$ exists for every β and $\mu_{S,\alpha} = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$ as can be seen by using Weyl's uniform distribution theorem.

Let $I \subset \mathbb{T}$ be an interval, and let $\nu = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$. For a given irrational α , Let us define the set $S \subset \mathbb{N}$ by

$$S := \{ n \mid n \in \mathbb{N}, n\alpha \in I \mod 1 \}$$

So if
$$I = (A, B)$$
 and $\alpha = \sqrt{2} - 1$, then

$$0 5\alpha \qquad 3\alpha A \qquad \alpha \ 6\alpha \qquad B \ 4\alpha \qquad 2\alpha \qquad 1$$

Writing S as a sequence $s_1 < s_2 < \ldots$, $\mu_{S,\beta} = \lim_N \mathbb{A}_{n \in [1,N]} \delta_{s_n\beta}$ exists for every β and $\mu_{S,\alpha} = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$ as can be seen by using Weyl's uniform distribution theorem.

Let $I \subset \mathbb{T}$ be an interval, and let $\nu = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$. For a given irrational α , Let us define the set $S \subset \mathbb{N}$ by

$$S := \{ n \mid n \in \mathbb{N}, n\alpha \in I \mod 1 \}$$

So if
$$I = (A, B)$$
 and $\alpha = \sqrt{2} - 1$, then

$$0 5\alpha$$
 $3\alpha A$ $\alpha 6\alpha$ $B 4\alpha$ 2α 1

Writing *S* as a sequence $s_1 < s_2 < \ldots$, $\mu_{S,\beta} = \lim_{N \to \infty} \mathbb{A}_{n \in [1,N]} \delta_{s_n\beta}$ exists for every β and $\mu_{S,\alpha} = \frac{1}{\lambda(I)} \mathbb{1}_I \cdot \lambda$ as can be seen by using Weyl's uniform distribution theorem.

Plan

eminders

Good sequence

Main questic Fourier coefficients Appreciation Results

Rational α Irrational α

Example 0 – 1 law Wiener-Wint

Questions Single α All α Proof $\times 2 \times 3$

Let α be irrational.

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

For every good sequence $S = (s_n)$ the limit Borel probability measure $\mu_{S,\alpha}$ is continuous.

As a consequence, by Wiener's theorem, $\lim_{P \in [-P,P]} |\mu_{S,\alpha}(e^p)| = 0$.

Theorem (Lesigne-Wierdl

If the Borel probability measure v is Rajchman, that is, $\lim_{|p|\to\infty} v(e^p) = 0$, then v can be represented at α .

Plan

Reminders

Good sequence

Main questio Fourier coefficients Appreciation

Results Rational α Irrational α Example

0 – 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$

Let α be irrational.

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

For every good sequence $S = (s_n)$ the limit Borel probability measure $\mu_{S,\alpha}$ is continuous.

As a consequence, by Wiener's theorem, $\lim_{P \to p \in [-P,P]} |\mu_{S,\alpha}(e^p)| = 0$.

[heorem (Lesigne-Wierdl)

If the Borel probability measure v is Rajchman, that is, $\lim_{|p|\to\infty} v(e^p) = 0$, then v can be represented at α .

Plan

Reminders

Good sequence Main quest Fourier coefficie

Results Rational α Irrational α Example 0 – 1 law

Questions Single α All α Proof $\times 2 \times 3$

Let α be irrational.

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

For every good sequence $S = (s_n)$ the limit Borel probability measure $\mu_{S,\alpha}$ is continuous.

As a consequence, by Wiener's theorem, $\lim_{P} A_{p \in [-P,P]} |\mu_{S,\alpha}(\mathbf{e}^p)| = 0$.

Theorem (Lesigne-Wierdl)

If the Borel probability measure ν is Rajchman, that is, $\lim_{|p|\to\infty}\nu(e^p)=0$, then ν can be represented at α .

Plan

Reminders

Good sequence Main questi Fourier coefficien Appreciation Results Rational α

Irrational α **Example** 0 — 1 law

Questions Single a All a Proof

Let α be irrational.

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

For every good sequence $S = (s_n)$ the limit Borel probability measure $\mu_{S,\alpha}$ is continuous.

As a consequence, by Wiener's theorem, $\lim_{P} A_{p \in [-P,P]} |\mu_{S,\alpha}(\mathbf{e}^p)| = 0$.

Theorem (Lesigne-Wierdl)

If the Borel probability measure ν is Rajchman, that is, $\lim_{|p|\to\infty} \nu(e^p) = 0$, then ν can be represented at α .

Plan

Reminders

Good sequence Main questi Fourier coefficien Appreciation Results Rational a

Example 0 – 1 law Wiener-Winth

Questions Single α All α Proof

Let α be irrational.

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

For every good sequence $S = (s_n)$ the limit Borel probability measure $\mu_{S,\alpha}$ is continuous.

As a consequence, by Wiener's theorem, $\lim_{P} A_{p \in [-P,P]} |\mu_{S,\alpha}(\mathbf{e}^p)| = 0$.

Theorem (Lesigne-Wierdl)

If the Borel probability measure ν is Rajchman, that is, $\lim_{|p|\to\infty} \nu(e^p) = 0$, then ν can be represented at α .

Plan

Reminders

Good sequence

Main questio Fourier coefficients Appreciation

Results Rational α Irrational α Example **0 – 1 law**

Questions Single α All α Proof $\times 2 \times 3$

Гheorem (Lesigne-Quas-Rosenblatt-Wierdl)

If the Borel probability measure v is non-Rajchman then there is a set $A \subset \mathbb{T}$ with $\lambda(A) = 1$ so that v cannot be represented at any $\alpha \in A$.

We have a "0 – 1" law: Rajchman probability measures can be represented at every irrational α , so on a set A with $\lambda(A) = 1$, while non-Rajchman probability measures can be represented on a set A with $\lambda(A) = 0$ ($A = \emptyset$ might be possible, who knows?!).

Theorem (Cuny-Parreau

Plan

Reminders

Good sequence

Main questio Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 lawWiener-Winth

Questions Single α All α Proof $\times 2 \times 3$

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

If the Borel probability measure ν is non-Rajchman then there is a set $A \subset \mathbb{T}$ with $\lambda(A) = 1$ so that ν cannot be represented at any $\alpha \in A$.

We have a "0 – 1" law: Rajchman probability measures can be represented at every irrational α , so on a set A with $\lambda(A) = 1$, while non-Rajchman probability measures can be represented on a set A with $\lambda(A) = 0$ ($A = \emptyset$ might be possible, who knows?!).

Гheorem (Cuny-Parreau

Plan

Reminders

Good sequence Main ques Fourier coeffici

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintm

Questions Single α All α Proof $\times 2 \times 3$

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

If the Borel probability measure ν is non-Rajchman then there is a set $A \subset \mathbb{T}$ with $\lambda(A) = 1$ so that ν cannot be represented at any $\alpha \in A$.

We have a "0 – 1" law: Rajchman probability measures can be represented at every irrational α , so on a set A with $\lambda(A) = 1$, while non-Rajchman probability measures can be represented on a set A with $\lambda(A) = 0$ ($A = \emptyset$ might be possible, who knows?!).

Theorem (Cuny-Parreau

Plan

Reminders

Good sequence Main quest Fourier coefficie Appreciation

Results Rational α Irrational α Example **0 – 1 law** Wiener-Wintn

Questions Single α All α Proof $\times 2 \times 3$

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

If the Borel probability measure ν is non-Rajchman then there is a set $A \subset \mathbb{T}$ with $\lambda(A) = 1$ so that ν cannot be represented at any $\alpha \in A$.

We have a "0 – 1" law: Rajchman probability measures can be represented at every irrational α , so on a set A with $\lambda(A) = 1$, while non-Rajchman probability measures can be represented on a set A with $\lambda(A) = 0$ ($A = \emptyset$ might be possible, who knows?!).

Гheorem (Cuny-Parreau

Plan

Reminders

Good sequence Main ques Fourier coeffici

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintm

Questions Single α All α Proof $\times 2 \times 3$

Theorem (Lesigne-Quas-Rosenblatt-Wierdl)

If the Borel probability measure ν is non-Rajchman then there is a set $A \subset \mathbb{T}$ with $\lambda(A) = 1$ so that ν cannot be represented at any $\alpha \in A$.

We have a "0 – 1" law: Rajchman probability measures can be represented at every irrational α , so on a set A with $\lambda(A) = 1$, while non-Rajchman probability measures can be represented on a set A with $\lambda(A) = 0$ ($A = \emptyset$ might be possible, who knows?!).

Theorem (Cuny-Parreau)

Results Limit in Wiener-Wintner's theorem

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 law

Wiener-Wintner

Single α All α Proof

Interlude.

Гheorem (Wiener-Wintner)

Let (X, \mathfrak{m}, T) be a dynamical system, and E a measurable set. Then $\lim_N \mathbb{A}_{n \in [0,N]} \mathbb{1}_E(T^n x) e(n\beta)$ exists for a.e. x and every β .

So if T is ergodic and $\mathfrak{m}(E) > 0$ then for a.e. x the set $S := \{ n \mid T^n x \in E \}$ is a good set.

What is $\mu_{S,\beta}$?

Well, if T is ergodic and $\mathfrak{m}(E) > 0$ then S = S(x) has positive density for a.e. x: $d(S) := \lim_N \mathbb{A}_{n \in [0,N)} \mathbb{1}_S(n) = \mathfrak{m}(E)$. It's not difficult to see that then $\mu_{S,\beta}$ is absolutely continuous with respect to λ for every β , so, in particular, it's Rajchman.

Results Limit in Wiener-Wintner's theorem

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example

Wiener-Wintner

Questions Single α All α Proof

Interlude.

Theorem (Wiener-Wintner)

Let (X, \mathfrak{m}, T) be a dynamical system, and E a measurable set. Then $\lim_N \mathbb{A}_{n \in [0,N]} \mathbb{1}_E(T^n x) e(n\beta)$ exists for a.e. x and every β .

So if T is ergodic and $\mathfrak{m}(E) > 0$ then for a.e. x the set $S := \{ n \mid T^n x \in E \}$ is a good set.

What is $\mu_{S,\beta}$?

Well, if T is ergodic and $\mathfrak{m}(E) > 0$ then S = S(x) has positive density for a.e. x: $d(S) \coloneqq \lim_N \mathbb{A}_{n \in [0,N)} \mathbb{1}_S(n) = \mathfrak{m}(E)$. It's not difficult to see that then $\mu_{S,\beta}$ is absolutely continuous with respect to λ for every β , so, in particular, it's Rajchman.

Results Limit in Wiener-Wintner's theorem

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Rational α Irrational α

0 – 1 law Wiener-Wintner

Questions Single α All α

Proof $\times 2 \times 3$

Interlude.

Theorem (Wiener-Wintner)

Let (X, \mathfrak{m}, T) be a dynamical system, and E a measurable set. Then $\lim_{N \to \infty} \mathbb{A}_{n \in [0,N]} \mathbb{1}_{E}(T^{n}x) e(n\beta)$ exists for a.e. x and every β .

So if T is ergodic and $\mathfrak{m}(E) > 0$ then for a.e. x the set $S := \{ n \mid T^n x \in E \}$ is a good set.

What is $\mu_{S,\beta}$? Well, if T is ergodic and $\mathfrak{m}(E) > 0$ then S = S(x) has positive density for a.d $d(S) := \lim_N \mathbb{A}_{n \in [0,N]} \mathbb{1}_S(n) = \mathfrak{m}(E)$. It's not difficult to see that then $\mu_{S,\beta}$ is absolutely continuous with respect to λ for every β , so, in particular, it's Raj
Results Limit in Wiener-Wintner's theorem

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Rational α Irrational α Example

0 – 1 law Wiener-Wintner

Questions Single α All α Proof

Interlude.

Theorem (Wiener-Wintner)

Let (X, \mathfrak{m}, T) be a dynamical system, and E a measurable set. Then $\lim_N \mathbb{A}_{n \in [0,N]} \mathbb{1}_E(T^n x) \mathbf{e}(n\beta)$ exists for a.e. x and every β .

So if T is ergodic and $\mathfrak{m}(E) > 0$ then for a.e. x the set $S := \{ n \mid T^n x \in E \}$ is a good set.

What is $\mu_{S,\beta}$?

Well, if *T* is ergodic and $\mathfrak{m}(E) > 0$ then S = S(x) has positive density for a.e. *x*: $d(S) := \lim_{N \to 0} \mathbb{A}_{n \in [0,N)} \mathbb{1}_{S}(n) = \mathfrak{m}(E)$. It's not difficult to see that then $\mu_{S,\beta}$ is absolutely continuous with respect to λ for every β , so, in particular, it's Rajchman.

Results Limit in Wiener-Wintner's theorem

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation Results

Rational α Irrational α

0 – 1 law

Wiener-Wintner Questions Single α All α

×2 × 3

Interlude.

Theorem (Wiener-Wintner)

Let (X, \mathfrak{m}, T) be a dynamical system, and E a measurable set. Then $\lim_N \mathbb{A}_{n \in [0,N]} \mathbb{1}_E(T^n x) \mathbf{e}(n\beta)$ exists for a.e. x and every β .

So if T is ergodic and $\mathfrak{m}(E) > 0$ then for a.e. x the set $S := \{ n \mid T^n x \in E \}$ is a good set.

What is $\mu_{S,\beta}$?

Well, if *T* is ergodic and $\mathfrak{m}(E) > 0$ then S = S(x) has positive density for a.e. *x*: $d(S) := \lim_{N \to \infty} \mathbb{A}_{n \in [0,N)} \mathbb{1}_{S}(n) = \mathfrak{m}(E)$. It's not difficult to see that then $\mu_{S,\beta}$ is absolutely continuous with respect to λ for every β , so, in particular, it's Rajchman.

Plan

Reminders

Good sequence

Main questio Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintn

Questions Single a All a Proof

Remaining Question (For single α)

Which continuous Borel probability measures can be represented at some irrational α?

- If the continuous Borel probability measure ν is invariant with respect to multiplication by both 2 and 3 and ν ≠ λ then, it cannot be represented at an irrational α.
 - So if every continuous Borel probability measure can be represented at an irrational α , then a continuous, " $\times 2 \times 3$ " invariant measure is the
 - laar-Lebesgue measure, and hence Furstenberg's conjecture holds.

Plan

Reminders

Good sequence

Main questio Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintr

Question Single a All a Proof

 $\times 2 \times 3$

Remaining Question (For single α)

Which continuous Borel probability measures can be represented at some irrational α ?

- If the continuous Borel probability measure ν is invariant with respect to multiplication by both 2 and 3 and $\nu \neq \lambda$ then, it cannot be represented at an irrational α .
- So if every continuous Borel probability measure can be represented at an irrational α , then a continuous, " $\times 2 \times 3$ " invariant measure is the Haar–Lebesgue measure, and hence Furstenberg's conjecture holds.
- There is no magical α where potentially every continuous measure can be represented: for every irrational α there is a continuous measure which cannot be represented at α.

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne

Questions Single a All a Proof

Remaining Question (For single α)

Which continuous Borel probability measures can be represented at some irrational α ?

• If the continuous Borel probability measure ν is invariant with respect to multiplication by both 2 and 3 and $\nu \neq \lambda$ then, it cannot be represented at an irrational α .

So if every continuous Borel probability measure can be represented at an irrational α , then a continuous, "×2 × 3" invariant measure is the Haar-Lebesgue measure, and hence Furstenberg's conjecture holds.

There is no magical α where potentially every continuous measure can be represented: for every irrational α there is a continuous measure which cannot be represented at α .

Plan

Reminders

Good sequence

Main question Fourier coefficients Appreciation

Results Rational α Irrational α Example 0 – 1 law Wiener-Wintne

Question Single a All a Proof

Remaining Question (For single α)

Which continuous Borel probability measures can be represented at some irrational α ?

• If the continuous Borel probability measure ν is invariant with respect to multiplication by both 2 and 3 and $\nu \neq \lambda$ then, it cannot be represented at an irrational α .

So if every continuous Borel probability measure can be represented at an irrational α , then a continuous, " $\times 2 \times 3$ " invariant measure is the Haar-Lebesgue measure, and hence Furstenberg's conjecture holds.

There is no magical α where potentially every continuous measure can be represented: for every irrational α there is a continuous measure which cannot be represented at α .

Remaining questions All α

Plan

- Reminders
- Good sequence
- Main questio Fourier coefficients Appreciation
- Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$

Remaining Question (All α)

Given a collection $\mathcal{A} \subset \mathbb{T}$ of α 's and a good sequence S, what can be the corresponding collection of limit measures { $\mu_{S,\alpha} \mid \alpha \in \mathcal{A}$ }?

By the easier direction of Lyons characterization of Rajchman measures (already observed by Rajchman), for every good set *S* and Rajchman measure ν we have ν { $\alpha \mid \mu_{S,\alpha} \neq \lambda$ } = 0. In particular, since λ is Rajchman, λ { $\alpha \mid \mu_{S,\alpha} \neq \lambda$ } = 0 (Weyl's result).

Remaining questions All α

Plan

- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- Results Rational α Irrational α Example 0 - 1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$

Remaining Question (All α)

Given a collection $\mathcal{A} \subset \mathbb{T}$ of α 's and a good sequence S, what can be the corresponding collection of limit measures { $\mu_{S,\alpha} | \alpha \in \mathcal{A}$ }?

By the easier direction of Lyons characterization of Rajchman measures (already observed by Rajchman), for every good set *S* and Rajchman measure ν we have $\nu \{ \alpha \mid \mu_{S,\alpha} \neq \lambda \} = 0$. In particular, since λ is Rajchman, $\lambda \{ \alpha \mid \mu_{S,\alpha} \neq \lambda \} = 0$ (Weyl's result).

Remaining questions All α

Plan

- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- Results Rational α Irrational α Example 0-1 law Wiener-Wintne

Questions Single α All α Proof $\times 2 \times 3$

Remaining Question (All α)

Given a collection $\mathcal{A} \subset \mathbb{T}$ of α 's and a good sequence S, what can be the corresponding collection of limit measures { $\mu_{S,\alpha} | \alpha \in \mathcal{A}$ }?

By the easier direction of Lyons characterization of Rajchman measures (already observed by Rajchman), for every good set *S* and Rajchman measure ν we have $\nu \{ \alpha \mid \mu_{S,\alpha} \neq \lambda \} = 0$. In particular, since λ is Rajchman, $\lambda \{ \alpha \mid \mu_{S,\alpha} \neq \lambda \} = 0$ (Weyl's result).

- Plan
- Reminders
- Good sequence
- Main question Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 - 1 law Wieper-Wintne
- Question Single α All α
- Proof

Definition (Weight, weighted average)

- We say a sequence $w = (w(n))_{n \in \mathbb{N}}$ is a weight if $w(n) \ge 0$ for every $n \in \mathbb{N}$.
- For a given non-identically 0 weight w, the w-weighted average A^w_{n∈[1,N]}f_n of the sequence (f_n)_{n∈ℕ} is defined by

$$\mathbb{A}_{n\in[1,N]}^{w}f_{n} \coloneqq \frac{1}{\sum_{n\in[1,N]}w(n)}\sum_{n\in[1,N]}w(n)f_{n}$$

Theorem (Lesigne-Wierdl)

Let α be irrational.

If the Borel probability measure ν is Rajchman, that is, $\lim_{|p|\to\infty} \nu(e^p) = 0$, then ν can be represented at α , so there is a good set S with $\mu_{S,\alpha} = \nu$.

For a given Rajchman ν, we first construct a w so that the w-weighted averages converge to ν: We use Fejér's kernel for the Fourier series of ν to get the weight w so that lim_N A^w_{n∈[1,N]}δ_{nβ} exists for every β and lim_N A^w_{n∈[1,N]}δ_{nα} = ν.
We then randomly "construct" a good S which represents ν at α, that is, μ_{S,α} = ν, using w as "expectation". We show that almost every set S satisfies lim_N (A_{s∈S(N)}δ_{sα} - A^w_{n∈[1,N]}δ_{nα}) = 0, where S(N) = S ∩ [1, N].
The good set S representing ν can be taken to be a subset of your favorite set: the set of squares, primes, or randomly generated set.

Theorem (Lesigne-Wierdl)

Let α be irrational.

If the Borel probability measure ν is Rajchman, that is, $\lim_{|p|\to\infty} \nu(e^p) = 0$, then ν can be represented at α , so there is a good set S with $\mu_{S,\alpha} = \nu$.

- For a given Rajchman ν, we first construct a w so that the w-weighted averages converge to ν: We use Fejér's kernel for the Fourier series of ν to get the weight w so that lim_N A^w_{n∈[1,N]}δ_{nβ} exists for every β and lim_N A^w_{n∈[1,N]}δ_{nα} = ν.
 We then randomly "construct" a good S which represents ν at α, that is, μ_{S,α} = ν, using w as "expectation". We show that almost every set S satisfies lim_N (A_{s∈S(N)}δ_{sα} A^w_{n∈[1,N]}δ_{nα}) = 0, where S(N) = S ∩ [1,N].
- The good set S representing v can be taken to be a subset of your favorite set: the set of squares, primes, or randomly generated set.

Theorem (Lesigne-Wierdl)

Let α be irrational.

If the Borel probability measure ν is Rajchman, that is, $\lim_{|p|\to\infty} \nu(e^p) = 0$, then ν can be represented at α , so there is a good set S with $\mu_{S,\alpha} = \nu$.

- For a given Rajchman ν , we first construct a w so that the w-weighted averages converge to ν : We use Fejér's kernel for the Fourier series of ν to get the weight w so that $\lim_{n \in [1,N]} \delta_{n\beta}$ exists for every β and $\lim_{n \in [1,N]} \delta_{n\alpha} = \nu$.
- We then randomly "construct" a good S which represents ν at α , that is, $\mu_{S,\alpha} = \nu$, using w as "expectation". We show that almost every set S satisfies $\lim_{N \to \infty} \left(\mathbb{A}_{s \in S(N)} \delta_{s\alpha} - \mathbb{A}_{n \in [1,N]}^{w} \delta_{n\alpha} \right) = 0$, where $S(N) = S \cap [1,N]$.
- The good set *S* representing *v* can be taken to be a subset of your favorite set: the set of squares, primes, or randomly generated set.

Theorem (Lesigne-Wierdl)

Let α be irrational.

If the Borel probability measure ν is Rajchman, that is, $\lim_{|p|\to\infty} \nu(e^p) = 0$, then ν can be represented at α , so there is a good set S with $\mu_{S,\alpha} = \nu$.

- For a given Rajchman ν , we first construct a w so that the w-weighted averages converge to ν : We use Fejér's kernel for the Fourier series of ν to get the weight w so that $\lim_{N \to \infty} \mathbb{A}_{n \in [1,N]}^{w} \delta_{n\beta}$ exists for every β and $\lim_{N \to \infty} \mathbb{A}_{n \in [1,N]}^{w} \delta_{n\alpha} = \nu$.
- We then randomly "construct" a good S which represents v at α , that is, $\mu_{S,\alpha} = v$, using w as "expectation". We show that almost every set S satisfies $\lim_{N \to \infty} \left(\mathbb{A}_{s \in S(N)} \delta_{s\alpha} - \mathbb{A}_{n \in [1,N]}^{w} \delta_{n\alpha} \right) = 0$, where $S(N) = S \cap [1,N]$.
- The good set S representing ν can be taken to be a subset of your favorite set: the set of squares, primes, or randomly generated set.

$\times 2 \times 3$

Plan

- Reminders
- Good sequence
- Main questio Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law Wiener-Wintn
- Questions Single α All α Proof
- $\times 2 \times 3$

Theorem

Let α be irrational, and ν be a continuous Borel probability measure which is invariant with respect to multiplication by 2 and 3. Suppose that for a good set S we have $\mu_{S,\alpha} = \nu$. Then $\nu = \lambda$.

- Suppose, indirecte, that ν ≠ λ. Then there is p ∈ Z, p ≠ 0, so that ν(e^p) ≠ 0.
 Since ν is assumed to be ×2 × 3-invariant, for every j, k we have ν(e^{p2/3k}) = ν(e^p). But we have μ_{s,p2/2k}(e) = μ_{s,x}(e^{p2/3k}) = ν(e^p).
- By Furstenberg's theorem, the set $\left\{ p2^{j}3^{k}\alpha \mid j,k \in \mathbb{Z} \right\}$ is dense in \mathbb{T} , so $|\mu_{S,\beta}(\mathbf{e})| = |\nu(\mathbf{e}^{p})| > 0$ for a dense set of β , namely for β of the form $\beta = p2^{j}3^{k}\alpha$. But $\mu_{S,\beta}(\mathbf{e}) = 0$ for a dense set of β as well (the set of such β is of λ -measure 1 by Weyl's theorem). Since the function $\phi(\beta) := |\mu_{S,\beta}(\mathbf{e})|$ is a limit of continuous functions, this is impossible (by Baire's theorem).

$\times 2 \times 3$

Plan

- Reminders
- Good sequence
- Main questio Fourier coefficients Appreciation
- **Results** Rational α Irrational α Example 0 – 1 law Wiener-Wintn

Questions ^{Single α} All α Proof

 $\times 2 \times 3$

Máté Wierdl

Theorem

Let α be irrational, and ν be a continuous Borel probability measure which is invariant with respect to multiplication by 2 and 3. Suppose that for a good set S we have $\mu_{S,\alpha} = \nu$. Then $\nu = \lambda$.

- Suppose, indirecte, that ν ≠ λ. Then there is p ∈ Z, p ≠ 0, so that ν(e^p) ≠ 0.
 Since ν is assumed to be ×2 × 3-invariant, for every j, k we have ν(e^{p2j3k}) = ν(e^p). But we have μ_{S,p2j3kα}(e) = μ_{S,α}(e^{p2j3k}) = ν(e^p).
- By Furstenberg's theorem, the set $\left\{ p2^{j}3^{k}\alpha \mid j,k \in \mathbb{Z} \right\}$ is dense in \mathbb{T} , so $|\mu_{S,\beta}(\mathbf{e})| = |\nu(\mathbf{e}^{p})| > 0$ for a dense set of β , namely for β of the form $\beta = p2^{j}3^{k}\alpha$. But $\mu_{S,\beta}(\mathbf{e}) = 0$ for a dense set of β as well (the set of such β is of λ -measure 1 by Weyl's theorem). Since the function $\phi(\beta) := |\mu_{S,\beta}(\mathbf{e})|$ is a limit of continuous functions, this is impossible (by Baire's theorem).

$\times 2 \times 3$

Plan

Reminders

- Good sequence
- Main questio Fourier coefficients
- Results Rational α Irrational α Example 0 - 1 law Wiener-Wintn

Question: Single α All α Proof

 $\times 2 \times 3$

Theorem

Let α be irrational, and ν be a continuous Borel probability measure which is invariant with respect to multiplication by 2 and 3. Suppose that for a good set S we have $\mu_{S,\alpha} = \nu$. Then $\nu = \lambda$.

- Suppose, indirecte, that ν ≠ λ. Then there is p ∈ Z, p ≠ 0, so that ν(e^p) ≠ 0.
 Since ν is assumed to be ×2 × 3-invariant, for every j, k we have ν(e^{p2j3k}) = ν(e^p). But we have μ_{S,p2j3kα}(e) = μ_{S,α}(e^{p2j3k}) = ν(e^p).
- By Furstenberg's theorem, the set $\left\{ p2^{j}3^{k}\alpha \mid j,k \in \mathbb{Z} \right\}$ is dense in T, so $|\mu_{S,\beta}(\mathbf{e})| = |\nu(\mathbf{e}^{p})| > 0$ for a dense set of β , namely for β of the form $\beta = p2^{j}3^{k}\alpha$. But $\mu_{S,\beta}(\mathbf{e}) = 0$ for a dense set of β as well (the set of such β is of λ -measure 1 by Weyl's theorem). Since the function $\phi(\beta) := |\mu_{S,\beta}(\mathbf{e})|$ is a limit of continuous functions, this is impossible (by Baire's theorem).