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Origins in combinatorial number theory and ergodic theory

Szemerédi’s theorem: for every k ∈ N, every subset of Z of positive upper
density contains arithmetic progressions of length k .

• Szemerédi proved this in 1975 using mainly combinatorics and graph theory.

• Furstenberg gave a new proof in 1977 using ergodic theory.

• In 1953 Roth had given an effective proof for k = 3 using the circle method.

Fundamental idea: given a function f on a finite abelian group Z (or a finite
interval in Z), the Fourier transform of f enables a useful analysis of multilinear
averages of f over patterns such as 3-APs (or solutions to other single linear
equations), e.g. Ex,r∈Zf (x) f (x + r) f (x + 2r). In ergodic theory, a related idea is
that the Kronecker factor is characteristic for ergodic averages over such patterns.

• Since the end of the 1990s, there has been a considerable extension of this
idea, driven by the notion of uniformity norms introduced by Gowers in
arithmetic combinatorics (1998), and by the analogous notion of uniformity
seminorms introduced by Host and Kra in ergodic theory (2005).

• A key objective in this development has been to understand the relation
between uniformity norms and certain nilpotent structures, especially via the
study of the cube structures underlying these norms.
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Uniformity norms and cubes in abelian groups

In his proof of Szemerédi’s theorem, Gowers introduced the following norms.

Uniformity norms. Let G be a compact abelian group, let d ≥ 2, and f ∈ L∞(G).
The Gowers Ud -norm of f consists of an integral over standard (or degree 1)
cubes of dimension d in G (relative to Haar measure):

‖f ‖Ud =
( ∫

cubes c:{0,1}d→G

[∏
vertices v∈{0,1}d C|v |f (c(v))

]
dµd(c)

)2−d

,

where C is the complex-conjugation operator (Cf (x) = f (x)), and |v | =
∑d

i=1 vi .

‖f ‖U2 =
( ∫

x,h1,h2∈G f (x) f (x + h1) f (x + h2) f (x + h1 + h2)
) 1

4 .

‖ · ‖U2 ↔ 2-cubes (x , x + h1, x + h2, x + h1 + h2) ∈ G 4,

i.e. elements c = (x + v1h1 + v2h2)v∈{0,1}2 ∈ G{0,1}
2

.
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Uniformity norms and cubes in abelian groups

‖ · ‖Ud ↔ d-cubes c = (x + v1h1 + · · ·+ vdhd)v∈{0,1}d ∈ G{0,1}
d

.

E.g. for d = 3:
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From uniformity norms to higher-order Fourier analysis

‖ · ‖U2 ↔ Classical Fourier analysis: ‖f ‖U2 = ‖f̂ ‖`4 .

⇒ Inverse theorem for ‖·‖U2 . If f :G → C is 1-bounded and ‖f ‖U2 ≥ ε > 0,

then there is some character χ ∈ Ĝ such that |
∫
G
f χdµ| ≥ ε2.

Fundamental question in higher-order Fourier analysis

Which functions play the role of characters for the Ud -norm, for d > 2?
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Some generalizations of Fourier characters
Fourier characters are defined using the circle: x 7→ e(φ(x)), φ ∈ hom(G → R/Z).

The first higher-order generalizations of characters focused on two settings.

G = ZN : inspired by ergodic theory, Green and Tao started using (d − 1)-step
nilsequences. These generalize characters by replacing R/Z with a (d − 1)-step
nilmanifold H/Γ (quotient of a (d − 1)-step nilpotent Lie group H by a lattice Γ).

E.g. 1-step: R/Z ↔ character χ : n 7→ e( t
N
n)

2-step: H/Γ =
(

1 R R
0 1 R
0 0 1

)
/
(

1 Z Z
0 1 Z
0 0 1

)
↔ nilsequence χ : n 7→ F (gnΓ), (g ∈ H).

Inverse Theorem for the Ud -norm on ZN (Green, Tao, Ziegler, 2010)
Let f : ZN → C, |f | ≤ 1, ‖f ‖Ud ≥ ε > 0. Then there exists a (d − 1)-step
nilsequence χ : ZN → C, of complexity �ε 1, such that |Ex∈ZN

f (x)χ(x)| �ε 1.

G = Fn
p: the stronger algebraic structure in this setting enabled a generalization of

characters using polynomial maps Fn
p → R/Z, with corresponding inverse theo-

rems (Bergelson–Tao–Ziegler (high characteristic case), 2010; Tao–Ziegler, 2011).

Inverse Theorem for the Ud -norm on Fn
p

Let f : Fn
p → C, |f | ≤ 1, ‖f ‖Ud ≥ ε. Then there exists a polynomial map

P : Fn
p → R/Z of degree at most d − 1 such that |Ex∈Fn

p
f (x)e(P(x))| �ε 1.
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Generalizing cubes to understand uniformity norms

The previous inverse theorems confirmed and strengthened the connection between
Gowers norms and nilpotent groups. They also led to new important questions.

Green (ICM 2014): “For me the key open question is to find the “right” proof of
the inverse conjecture for the Gowers norms. At the moment the proofs are
unsatisfactory on a conceptual level.”

In 2005 Host and Kra had introduced uniformity seminorms in ergodic theory,
crucial for their Ergodic Structure Theorem (a highlight in these ergodic theory
developments, building on work of Furstenberg–Weiss, Conze–Lesigne and others).

Host and Kra later introduced parallelepiped structures (2006), initiating an
axiomatic approach to the study of cube structures underlying uniformity
seminorms (structures further developed in dynamics by Host–Kra–Maass in
particular), toward a deeper understanding of the relation between these
seminorms and nilpotent groups.

Such structures included cubes definable on any filtered nilpotent group (G ,G•),
now known as Host-Kra cubes.
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Generalizing cubes to understand uniformity norms

Recall that given a group G , a sequence of subgroups G• = (Gi )i≥0 is a filtration
of degree k on G if G0 = G1 = G and ∀ i , j ≥ 0, [Gi ,Gj ] ≤ Gi+j , and Gk+1 = {id}.

For each n the group of Host-Kra cubes of dimension n is the subgroup C n(G•)
of G{0,1}

n

consisting of elements (i.e. maps c : {0, 1}n → G ) of the following kind:

E.g. for G• = (G0,G1,G2) of degree 2 and n = 3:
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Toward nilspaces via higher-order Fourier analysis

In 2009, Szegedy initiated an approach to higher-order Fourier analysis using in
particular ultraproducts and ideas originating in graph-limit theory. As part of this
approach, in 2010, Antoĺın-Camarena and Szegedy (inspired by the work of Host
and Kra) introduced a general concept of spaces equipped with cube structures
(which included in particular the Host-Kra cube structures), called nilspaces.

Nilspaces form a category that generalizes the category of compact abelian
groups, and which includes nilmanifolds.

Nilspace theory yields a useful answer to the fundamental question of
higher-order Fourier analysis, providing natural analogues of characters for
general compact abelian groups.

This theory is growing rapidly, with contributions by many authors:
Antoĺın-Camarena, C., González-Sánchez, Gutman, Jamneshan, Manners, Shalom,
Szegedy, Tao, Varjú, etc.

This theory relies on an abstract and general notion of cube structures.
To define this we need to start with the category of discrete cubes.
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The category of discrete cubes

• For every n ≥ 0, the discrete n-cube is {0, 1}n, now often denoted by Jn K.

• A morphism (of discrete cubes) is a function φ : Jm K→ Jn K which can be
extended to an affine homomorphism Zm → Zn.

Example of morphism: φ : J2 K→ J3 K, (v1, v2) 7→ (v1, v2, v2)

• For 0 ≤ m ≤ n, an m-face of Jn K is a set F ⊂ Jn K which
is determined by fixing n −m coordinates of the vertex v ∈ Jn K.
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Definition (Antoĺın-Camarena, Szegedy 2010). A nilspace is a set X equipped
with a cube set C n(X ) ⊂ X Jn K for each n ∈ Z≥0 (the elements of C n(X ) are the
n-cubes on X ), satisfying the following axioms:

1. (Composition) For every c ∈ C n(X ) and every morphism φ : Jm K→ Jn K,
we have c ◦ φ ∈ Cm(X ).

2. (Ergodicity) C 1(X ) = X {0,1}.

3. (Corner completion) Let c ′ : {0, 1}n \ {1n} → X be an n-corner,
i.e. ∀ (n − 1)-face F 3 0n, the restriction of
c ′ to F is in C n−1(X ).

Then there is a cube c ∈ C n(X ) such that

∀ v ∈ {0, 1}n \ {1n}, c(v) = c ′(v).

X is a k-step nilspace if completion of (k + 1)-corners is always unique.

X is a compact nilspace if X and every cube set C n(X ) are compact Hausdorff.

There is also a naturally defined Haar probability measure µn on each cube set
Cn(X) of a compact nilspace X.
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Examples of nilspaces:

• Any abelian group G can be viewed as a 1-step nilspace.

The cubes c ∈ C n(G ) are the maps c(v) = x + v1h1 + · · ·+ vnhn (x , hi ∈ G ).

An important k-step nilspace structure on an abelian group G :
the nilspace Dk(G ), known as a degree-k abelian group, consisting of the
Host-Kra cubes for the filtration G = G0 = · · · = Gk ≥ Gk+1 = {0}.

• Any filtered nilmanifold (G/Γ,G•) can be viewed as a compact nilspace.

Indeed, if G• has degree k , and C n(G•) are the corresponding groups of
Host-Kra cubes for n ∈ N, then the nilmanifold X = G/Γ together with the
cubes C n(X ) = C n(G•)/[C n(G•) ∩ Γ{0,1}

n

] is a k-step compact nilspace.

2-step example: the Heisenberg nilspace
(
H/Γ =

(
1 R R
0 1 R
0 0 1

)
/
(

1 Z Z
0 1 Z
0 0 1

)
,
(

Cn(H/Γ)
)
n≥0

)
.

• Not every compact nilspace is a nilmanifold.
However, every compact nilspace X has a natural action by a nilpotent group
of homeomorphisms compatible with the cubes: the translation group Θ(X).

−→ Dynamical systems on nilspaces, known as nilspace systems
(these include nilsystems). When we add the nilspace Haar measure,
these systems become measure-preserving systems.
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Definition. ϕ : X → Y is a morphism of nilspaces if
for every cube c ∈ C n(X ), the composition ϕ ◦ c is a cube in C n(Y ).

Examples: - continuous homomorphisms between compact abelian groups.

- polynomial maps P : Fn
p → R/Z of degree at most k − 1.

(These are nilspace morphisms from D1(Fn
p) to Dk(R/Z).)

Definition. χ : G → C is a nilcharacter of order k (G cpct. ab. group) if

χ = F ◦ ϕ, where

• ϕ : G → X is a morphism of compact nilspaces,

• X is a compact k-step nilspace of finite rank,

• F : X → C is continuous with absolute value |F (x)| ≤ 1 ∀ x ∈ X .

(Usually, some control on the Lipschitz norm of F and the “complexity” of X is added,

and we then say that χ has “bounded complexity”.)

Examples: - Fourier characters in Ĝ (X = T, ϕ ∈ hom(G ,X ), F (x) = e2πix).

- polynomial phase functions e(P(x)), P : Fn
p → R/Z polynomial.

- nilsequences x ∈ Z 7→ F (hxΓ), F : H/Γ→ C, h ∈ H.
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More recent inverse theorems for Gowers norms

Qualitative setting: in the nilspace approach, Szegedy had obtained in 2012
inverse theorems in terms of nilspaces for several families of compact abelian
groups (beyond the ZN and Fn

p settings). More recently, using the framework of
cubic couplings, this was extended into the following general result.

Inverse theorem (C., Szegedy 2019). Let k ∈ N. ∀ ε > 0, ∃M > 0 s.t. if G is a
compact abelian group or a nilmanifold, and f is a Borel function on G with
|f | ≤ 1 and ‖f ‖Uk+1 ≥ ε, then there is a nilcharacter χ : G → C of order k and

complexity ≤ M such that |〈f , χ〉| ≥ ε2k+1

/2.

In particular, the Green–Tao–Ziegler inverse theorem on ZN , and the Tao–Ziegler
inverse theorem on Fn

p, both follow from this inverse theorem (C.–Szegedy and
C.–González-Sánchez–Szegedy).

Quantitative setting: highly non-trivial works of Manners (2018), and of
Gowers-Milićević (2021), have produced effective versions of the inverse theorem,
respectively for ZN and Fn

p (high-characteristic case), with good bounds.
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Some open directions in this area

The Jamneshan–Tao conjecture (2021): in the inverse theorem for finite
abelian groups, the nilspace X involved in the correlating nilcharacter can be
ensured to be a nilmanifold H/Γ.

This conjecture has a wide scope, and it also motivates further development of
nilspace theory.

Vector spaces Fn
p,

p fixed, n increasing.

Groups Z/NZ,

N prime increasing

! ————————— ? ————————— !
Tao–Ziegler

C.–Szegedy–G-Sánchez

Gowers-Milićević

Green–Tao–Ziegler

C.–Szegedy

Manners
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Some open directions in this area

Recent progress toward the Jamneshan – Tao conjecture:

• Works of Jamneshan – Shalom – Tao (2023) confirm the conjecture for ‖ · ‖Uk+1

on abelian groups of bounded torsion, with the nilmanifold actually being a
degree-d abelian group (polynomial phases of degree at most d − 1), albeit
with d possibly larger than the expected value k .

• C. – González-Sánchez – Szegedy (2023):
the nilspace X can be ensured to be a double-coset nilspace K\G/Γ, with G
a nilpotent Lie group, albeit not ensuring always a nilmanifold. The idea that
such a general double-coset representation of nilspaces might hold originated in
work of Gutman–Manners–Varjú from 2014 (personal communication).

Quantitative directions: in the recent progress by Manners and Gowers–
Milićević for bounds in the inverse theorem, the approaches in the corresponding
two settings (ZN and Fn

p) are different. The qualitative general inverse theorem
unifies the two settings to some extent, at least conceptually. Is there a general
quantitatively effective proof of the inverse theorem on all finite abelian groups?

Thank you!
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