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Limits of discrete structures

Goal: The goal of limit theories is to study the large scale structure of
discrete structures such as graph, hypergraphs, subsets in finite abelian
groups, permutations, 0-1 sequences etc...

Method: Let S be a family of objects as above. Introduce some similarity
metric d on the elements of S. Take the completion S of S with respect
to d . Use tools from analysis on S to prove statements about structures
in S.

An old example: Furstenberg’s correspondence principle can be looked
at as a limit language for 0-1 sequences. Limit objects are shift invariant
measures on {0, 1}Z.

Some history: A systematic study of structural limits was started around
2000. Benjamini and Schramm introduced a limit concept for bounded
degree graphs. A similar theory for dense graphs was first described in
the paper "Limits of dense graph sequences", 2005, Lovász, Sz. and later
continued by many authors.



Similarity via Configuration densities

Def: A graph homomorphism is a map from the vertex set of a graph H
to the vertex set of another graph G such that the induced map on pairs
of vertices takes edges to edges.

Def: The homomorphism density t(H,G ) is defined to be the probability
that a random map from V (H) to V (G ) is a graph homomorphism.

Similarity: Homomorphism densities can be used to define a similarity no-
tion for finite graphs. Informally two graphs are similar if their small sub-
graph densities are similar. This can be metrized as follows:

d(G ,F ) =
∞∑
i=1

2−i |t(Hi ,G )− t(Hi ,F )|.



Dense and sparse graphs

Problem: Graphs with a sub-quadratic number of edges (also called sparse
graphs) are similar to the empty graph. Limit theory is essentially blind to
sparse graphs.

Solution: For very sparse (bounded degree) graphs one can use a completely
different metric (Benjamini-Schramm metric). Two graphs are similar if
isomorphism types of small neighborhoods of random points have similar
distributions. This can also be expressed by a different notion of subgraph
density.

Question: What about graphs in between dense and bounded degree? This
intermediate case is an area of active research.



Hypergraphs

Def: A k-uniform directed hypergraph is a subset T of V k where V is
the vertex set. If T is symmetric under the natural action of Sk on V k

then the hypergraph is undirected.

Homomorphism densities in k uniform hypergraphs can be similarly defined
as in graphs. This leads to a similar metrization of k uniform hypergraphs
for every fixed k .

Important: Here we don’t compare hypergraph of different uniformity and
thus there is a separate limit theory for every fixed k



Densities in additive combinatorics and corresponding limits

Def: An additive structure is a pair S = (A,T ) where A is a finite Abelian
group and T is a subset in A.

Questiuon: What is the analogue of a subgraph density in such a structure?

Answer: The best analogue is the density of a linear configuration such
as arithmetic progressions, etc...

A linear configuration C in general is a finite subset in Zk for som k ∈ N.

Def: The density t(C ,S) of a linear configuration C ⊂ Zk in an additive
structure S = (A,T ) is the probability that a random homomorphism
φ : Zk → A takes every element of C into the elements of S .

Remark: Note that Hom(Zk ,A) is a finite abelian group and thus it makes
sense to talk about a random homomorphism. The notion can be naturally
extended to the case where A is compact and thus Hom(Zk ,A) is also
compact.



Configuration densities in weighted structures

In many limit theories one can extend configuration densities to weighted
versions of structures and this will become quite important even in the
non-weighted case.

Def: A weighted k-uniform hypergraph is a function of the form V k → R
(or V k → C). A weighted additive structure is a function f : A → C
where A is a finite or more generally compact Abelian group. In the general
compact case we assume that f is measurable.

Cool and important fact!: homomorphism densities can be extended to
the weighted case in the fashion of partition functions in statistical phy-
sics. Typically normal (non-weighted) structures have densities in weigh-
ted structures. Somewhat more precisely: Take a random map from the
ground set of the configuration to the ground set of the weighted structure
and take the expected value of the product of the weights of images of the
elements in the configuration.



Configuration densities: The formulas

Def (hypergraph case): Assume that f : V k → C and T ⊂ F k .

t(T , f ) := Eφ:F→V

∏
E∈T

f (φk(E )).

Def (additive case): Assume that f : A→ C and T ⊂ Zk .

t(T , f ) := Eφ:Zk→A

∏
E∈T

f (φ(E )).



Norming configurations

Quite surprisingly it turns out that some configurations are special:
appropriate power of their densities behave as norms in the weighted case.
The simplest such configuration is the four cycle C4. We have that for a
fix V the function

‖f ‖C4 := t(C4, f )
1/4

is a norm on the function space f : V ×V → R. Note that in the complex
case we need to add conjugations to the density formula which is a slight
generalization. Another very simple case is the subset

C := {(1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1)} ⊂ Z4

in the additive case.
‖f ‖U2 := t(C , f )1/4

is the U2 uniformity norm of Gowers. Again, in case of complex valued f
we need to add appropriate conjugations to the formula.



Norming configurations

The C4 norm for graphs and the U2 norm for Abelian groups are closely
connected:

‖f ‖U2 = ‖f ′‖C4

where f ′ : A× A→ R is defined by

f ′(x , y) := f (x + y).

There is a similar situation for hypergraphs and higher Gowers norms. Let
Hk := {0, 1}k . Then the so-called octahedral norm (Gowers) of a function
f : V k → R is defined by

‖f ‖Ok
:= t(Hk , f )

1/2k

.

Furthermore if A is a finite abelian group, f : A→ R and f ′(x1, x2, . . . , xk) =
f (x1 + x2 + · · ·+ xk) then

‖f ‖Uk
= ‖f ′‖Ok

where Uk is the k-th Gowers norm. This creates an interesting connection
between hypergraphs and additive combinatorics.



Szemerédi’s regularity lemma

One of the most celebrated and powerful tools in combinatorics is Szeme-
rédi’s famous regularity lemma.

A weak version (weaker than the original) of it can be stated using
the previous C4 norm as follows: For every ε there is some constant
F (ε) such that if E ⊂ V × V is an arbitrary graph on an arbitrary finite
vertex set V then its characteristic function 1E can be ε-approximated in
‖.‖C4 by a step function g : V × V → [0, 1] with at most F (ε) steps.

Remark: There is also a very strong version (stronger than the original)
but which involves a very small ‖.‖C4 -error and an ε error in L2 but it is
more technical to state.

Takeaway of this slide: Graphs can be decomposed into a bounded comp-
lexity part plus some random noise. This dichotomy between noise and
structure can be best expressed and measured by certain norms that come
from configuration densities.



Generalizations of Szemerédi’s regularity lemma

Question: Can Szemerédi’s regularity lemma be generalized to hypergraphs
and additive structures using octahedral norms and uniformity norms?

Answer: Yes, but it is very complicated. There are various approaches by
many authors. The hypergraph case was settled independently by Gowers
and a group of researchers: Rödl, Skokan, Nagle, Schacht around 2000.
Few years later Elek and Sz. gave a simpler but non-standard approach
which was based on ultra-products of measure spaces. It basically used a
limiting point of view and a certain description of factors of ultraproduct
spaces. The method is interestingly related to characteristic factors in
ergodic theory.

The additive case is even more complicated. The topic is also known as
Higher Order Fourier Analysis and huge efforts were devoted to solving
it in the past 2 decades. Inverse and regularity theorems are given to the
Gowers norms in great generality however the topic still has many open
problems. The non-standard approach also proved to be quite useful in
this case. Efforts led to the systematic algebraic study of certain structures
called nilspaces



The Non-standard approach

Basics: Let ω be a non-principal ultrafilter and let {Si}i∈N be finite sets.
The set S =

∏
ω Si is a measure space in the following way. The σ-algebra

is generated by sets of the form S ′ :=
∏
ω S
′
i where S ′i ⊆ Si . We set

µ(S ′) := limω |S ′i |/|Si |.

An illustrative application: Let Gi = (Vi ,Ei ) be a sequence of finite
graphs with Ei ⊆ Vi × Vi . Let V :=

∏
ω Vi ,E :=

∏
ω Ei . We have that

V × V =
∏
ω(Vi × Vi ) and E ⊆ V × V .

important fact: The σ-algebra on V × V is not the same as the product
of the two σ-algebras on its two components. There are 4 interesting
σ-algebras: A1,2,A1,A2,A1 ∨ A2.

Szemerédi’s regularity lemma: The formula

E(1E |A1 ∨ A2)

is a measurable function on V ×V that takes values in [0, 1]. It has a step
function approximations with finite number of steps.



The Non-standard approach

Seminorm characterization: A bounded measurable function f : V×V → R
satisfies

‖f ‖C4 = ‖E(f |A1 ∨ A2)‖C4 .

In particular C4 norm becomes a semi-norm on V × V .

Seminorm <—> sub σ-algebra

The σ-algebra A1 ∨ A2 is generated by the functions that are orthogonal
to every function g with ‖g‖C4 = 0.

Decomposition into structured and random parts: We have a unique de-
composition f = fs + fr where fs = E(f |A1 ∨ A2) and fr = f − fs . This
decomposition is unique with the property that ‖fr‖C4 = 0 and fs is ortho-
gonal to every function g with ‖g‖C4 = 0.



The Non-standard approach

Approach to hypergraph regularity: The set V k has many interesting
σ-algebras generated by 2k − 1 "marginal" σ-algebras. This gives the
algebraic difficulty behind the hypergraph regularity lemma. The non-
standard approach leads to a significantly simplified and more conceptual
proof.

Approach to Higher Order Fourier Analysis: Let A be the ultra product
of finite Abelian groups {Ai}∞i=1.

1. Each Gowers norm becomes a semi-norm on A.

2. To each Gowers norm ‖.‖Uk
there is a corresponding shift-invariant

σ-algebra Fk−1.

3. L2(Fk) is the orthogonal sum of rank one, shift invariant L∞(Fk−1)
modules. These modules form the elements of the k-th order dual
group of A.



The Non-standard approach

Non-standard regularity lemma for the Uk-norm: If f ∈ L∞(A) then
f = fs+fr such that fs is measurable in Fk−1 and ‖fr‖Uk

= 0. Furthermore
there exists a "continuous" morphism τ : A→ N to a k − 1-step compact
nilspace, and a measurable map φ : N → R such that fs = φ ◦ τ .

Note: Nilspaces are special algebraic structures that are presheaves over
the category of Abelian groups with some extra condition.



Limit theories

Back to original question: What are limits of graphs, hypergraphs and
additive structures? Dense graph, hypergraph case is done (Lovász-Sz,
Elek, Sz: graphons, hypergraphons)

Additive limits are completely described for the groups Z n
2 by nilspace met-

hods (exchangeability result Candela, González-Sánchez, Sz ) and partially
described for general Abelian groups (measurable functions on nilspaces)

Cool algebraic observation: Preshevaes appear in these limit theories. Hy-
pergraphs —> Delta complexes, Additive structures —> Nilspaces



Remarks on ergodic theory

Host-Kra seminorms and Gowers norms are very closely related. The Go-
wers semi-norms on ultra product groups play a very similar role as the
Host-Kra seminorms. Furthermore the Fourier σ-algebras Fk play a simil-
ar role as characteristic factors in ergodic theory.

Further connection is found through some measure theoretic constructions
called cubic couplings (Candela-Sz.) Nilspace theory also found applica-
tions in ergodic theory.


