Minicourse on Nilspaces (Part III) Nilspaces in Topological Dynamics

Nilpotent Structures in Topological Dynamics, Ergodic Theory and Combinatorics

Będlewo, Poland, June 5th, 2023

Bibliography

- Bernard Host, Bryna Kra, and Alejandro Maass. Nilsequences and a structure theorem for topological dynamical systems. Advances in Mathematics, 224(1):103–129, 2010
- Song Shao and Xiangdong Ye. Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence. Advances in Mathematics, 231(3-4):1786–1817, 2012

Omar Antolín Camarena and Balazs Szegedy. Nilspaces, nilmanifolds and their morphisms. Preprint. http://arxiv.org/abs/1009.3825, 2012

- Eli Glasner, Yonatan Gutman, and XiangDong Ye. Higher order regionally proximal equivalence relations for general minimal group actions. Advances in Mathematics, 333:1004–1041, 2018
- Yonatan Gutman, Freddie Manners, and Péter P Varjú. The structure theory of nilspaces III: Inverse limit representations and topological dynamics. Advances in Mathematics, 365:107059, 2020

• Let (G, X) be a topological dynamical system (t.d.s). That is:

- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by g.x for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: e.x = x, g.(h.x) = (gh).x
- Oftentimes (as well as in the sequel) G and X are assumed metric.
- Motivating question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975), Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by g.x for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: e.x = x, g.(h.x) = (gh).x
- Oftentimes (as well as in the sequel) G and X are assumed metric.
- Motivating question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975), Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by g.x for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: e.x = x, g.(h.x) = (gh).x
- Oftentimes (as well as in the sequel) G and X are assumed metric.
- Motivating question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by g.x for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: e.x = x, g.(h.x) = (gh).x
- Oftentimes (as well as in the sequel) G and X are assumed metric.
- Motivating question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by g.x for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: e.x = x, g.(h.x) = (gh).x
- Oftentimes (as well as in the sequel) G and X are assumed metric.
- Motivating question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by g.x for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: e.x = x, g.(h.x) = (gh).x
- Oftentimes (as well as in the sequel) G and X are assumed metric.
- Motivating question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975), Veech (1977),...

Definition

(G, X) is equicontinuous if for every $\epsilon > 0$ there exists $\delta > 0$ so that for every $g \in G$, $x_1, x_2 \in X$

$$d(x_1, x_2) < \delta \Rightarrow d(g.x_1, g.x_2) < \epsilon$$

Examples

Irrational rotation on the circle.
 SO_n(ℝ) acts on ℝⁿ ⊇ Sⁿ⁻¹ = SO_n(ℝ)/SO_{n-1}(ℝ).

Definition

(G, X) is equicontinuous if for every $\epsilon > 0$ there exists $\delta > 0$ so that for every $g \in G$, $x_1, x_2 \in X$

$$d(x_1, x_2) < \delta \Rightarrow d(g.x_1, g.x_2) < \epsilon$$

Examples

- Irrational rotation on the circle.
- $SO_n(\mathbb{R})$ acts on $\mathbb{R}^n \supseteq \mathbb{S}^{n-1} = \frac{SO_n(\mathbb{R})}{SO_{n-1}(\mathbb{R})}$.

Definition

(G, X) is equicontinuous if for every $\epsilon > 0$ there exists $\delta > 0$ so that for every $g \in G$, $x_1, x_2 \in X$

$$d(x_1, x_2) < \delta \Rightarrow d(g.x_1, g.x_2) < \epsilon$$

Examples

- Irrational rotation on the circle.
- $SO_n(\mathbb{R})$ acts on $\mathbb{R}^n \supseteq \mathbb{S}^{n-1} = \frac{SO_n(\mathbb{R})}{SO_{n-1}(\mathbb{R})}$.

(G, X) is minimal equicontinuous iff X = K/H is a homogeneous space, where K is a compact group, H is a closed subgroup and G acts through a continuous group homomorphism with dense image $\phi : G \to K$, $g.kH = \phi(g)kH$. In particular if G is abelian, K is abelian (and w.l.o.g $H = \{0\}$).

Question: Can a general minimal t.d.s be "reduced" to a minimal equicontinuous t.d.s?

Definition

(G, Y) is a factor of (G, X) if there exists a surjective continuous map $\phi : (G, X) \to (G, Y)$ which is *G*-equivariant, e.g., $\forall g \in G, x \in X \ \phi(g.x) = g.\phi(x)$

(G, X) is minimal equicontinuous iff X = K/H is a homogeneous space, where K is a compact group, H is a closed subgroup and G acts through a continuous group homomorphism with dense image $\phi : G \to K$, $g.kH = \phi(g)kH$.

Question: Can a general minimal t.d.s be "reduced" to a minimal equicontinuous t.d.s?

Definition

(G, Y) is a factor of (G, X) if there exists a surjective continuous map $\phi : (G, X) \rightarrow (G, Y)$ which is *G*-equivariant, e.g., $\forall g \in G, x \in X \ \phi(g.x) = g.\phi(x)$

(G, X) is minimal equicontinuous iff X = K/H is a homogeneous space, where K is a compact group, H is a closed subgroup and G acts through a continuous group homomorphism with dense image $\phi : G \to K$, $g.kH = \phi(g)kH$. In particular if G is abelian, K is abelian (and w.l.o.g $H = \{0\}$).

Question: Can a general minimal t.d.s be "reduced" to a minimal equicontinuous t.d.s?

Definition

(G, Y) is a factor of (G, X) if there exists a surjective continuous map $\phi : (G, X) \to (G, Y)$ which is *G*-equivariant, e.g., $\forall g \in G, x \in X \ \phi(g.x) = g.\phi(x)$

(G, X) is minimal equicontinuous iff X = K/H is a homogeneous space, where K is a compact group, H is a closed subgroup and G acts through a continuous group homomorphism with dense image $\phi : G \to K$, $g.kH = \phi(g)kH$. In particular if G is abelian, K is abelian (and w.l.o.g $H = \{0\}$).

Question: Can a general minimal t.d.s be "reduced" to a minimal equicontinuous t.d.s?

Definition

(G, Y) is a factor of (G, X) if there exists a surjective continuous map $\phi : (G, X) \rightarrow (G, Y)$ which is *G*-equivariant, e.g., $\forall g \in G, x \in X \ \phi(g.x) = g.\phi(x)$

(G, X) is minimal equicontinuous iff X = K/H is a homogeneous space, where K is a compact group, H is a closed subgroup and G acts through a continuous group homomorphism with dense image $\phi : G \to K$, $g.kH = \phi(g)kH$. In particular if G is abelian, K is abelian (and w.l.o.g $H = \{0\}$).

Question: Can a general minimal t.d.s be "reduced" to a minimal equicontinuous t.d.s?

Definition

(G, Y) is a factor of (G, X) if there exists a surjective continuous map $\phi : (G, X) \to (G, Y)$ which is *G*-equivariant, e.g., $\forall g \in G, x \in X \phi(g.x) = g.\phi(x)$

(G, X) is minimal equicontinuous iff X = K/H is a homogeneous space, where K is a compact group, H is a closed subgroup and G acts through a continuous group homomorphism with dense image $\phi : G \to K$, $g.kH = \phi(g)kH$. In particular if G is abelian, K is abelian (and w.l.o.g $H = \{0\}$).

Question: Can a general minimal t.d.s be "reduced" to a minimal equicontinuous t.d.s?

Definition

(G, Y) is a factor of (G, X) if there exists a surjective continuous map $\phi : (G, X) \to (G, Y)$ which is *G*-equivariant, e.g., $\forall g \in G, x \in X \phi(g.x) = g.\phi(x)$

Relations in dynamics

Definition

A relation over X, $\mathbf{R} \subset X \times X$ is called:

- closed if **R** is closed in $X \times X$.
- G-invariant if $(x, y) \in \mathbb{R}$ implies $(g.x, g.y) \in \mathbb{R}$ for all $g \in G$.
- reflexive if $(x, x) \in \mathbf{R}$ for all $x \in X$.
- symmetric if $(x, y) \in \mathsf{R}$ implies $(y, x) \in \mathsf{R}$.
- transitive if $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$ imply $(x, z) \in \mathbb{R}$.
- an equivalence relation if it is reflexive, symmetric and transitive.

Let $(G, X) \rightarrow (G, Y)$ be a factor map. Define a closed *G*-invariant equivalence relation $\mathbb{R} \subset X \times X$ by $(x, y) \in \mathbb{R}$ iff $\phi(x) = \phi(y)$. Then $Y = X/\mathbb{R}$.

Conversely if $\mathbf{R} \subset X \times X$ is a closed *G*-invariant equivalence relation then $(G, X) \rightarrow (G, X/\mathbf{R})$ is a factor map.

Relations in dynamics

Definition

A relation over X, $\mathbf{R} \subset X \times X$ is called:

- closed if **R** is closed in $X \times X$.
- G-invariant if $(x, y) \in \mathbb{R}$ implies $(g.x, g.y) \in \mathbb{R}$ for all $g \in G$.
- reflexive if $(x, x) \in \mathbf{R}$ for all $x \in X$.
- symmetric if $(x, y) \in \mathsf{R}$ implies $(y, x) \in \mathsf{R}$.
- transitive if $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$ imply $(x, z) \in \mathbb{R}$.
- an equivalence relation if it is reflexive, symmetric and transitive.

Let $(G, X) \to (G, Y)$ be a factor map. Define a closed *G*-invariant equivalence relation $\mathbb{R} \subset X \times X$ by $(x, y) \in \mathbb{R}$ iff $\phi(x) = \phi(y)$. Then $Y = X/\mathbb{R}$.

Conversely if $\mathbf{R} \subset X \times X$ is a closed *G*-invariant equivalence relation then $(G, X) \rightarrow (G, X/\mathbf{R})$ is a factor map.

Relations in dynamics

Definition

A relation over X, $\mathbf{R} \subset X \times X$ is called:

- closed if **R** is closed in $X \times X$.
- G-invariant if $(x, y) \in \mathbb{R}$ implies $(g.x, g.y) \in \mathbb{R}$ for all $g \in G$.
- reflexive if $(x, x) \in \mathbf{R}$ for all $x \in X$.
- symmetric if $(x, y) \in \mathsf{R}$ implies $(y, x) \in \mathsf{R}$.
- transitive if $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$ imply $(x, z) \in \mathbb{R}$.
- an equivalence relation if it is reflexive, symmetric and transitive.

Let $(G, X) \to (G, Y)$ be a factor map. Define a closed *G*-invariant equivalence relation $\mathbb{R} \subset X \times X$ by $(x, y) \in \mathbb{R}$ iff $\phi(x) = \phi(y)$. Then $Y = X/\mathbb{R}$.

Conversely if $\mathbf{R} \subset X \times X$ is a closed *G*-invariant equivalence relation then $(G, X) \rightarrow (G, X/\mathbf{R})$ is a factor map.

Definition (Ellis & Gottschalk 1960)

 $x, y \in X$ are regionally proximal, denoted $(x, y) \in \mathsf{RP}(X)$, if $\exists g_i \in G, x_i, y_i \in X$

$$x_i \rightarrow x, y_i \rightarrow y, (g_i x_i, g_i y_i) \rightarrow riangle_X \triangleq \{(x, x) | x \in X\}$$

Theorem (Ellis & Gottschalk 1960)

The smallest closed G-invariant equivalence relation which contains RP(X) corresponds to the maximal equicontinuous factor of (G, X).

 $\mathbf{RP}(X)$ is closed *G*-invariant, reflexive and symmetric but not necessarily transitive. Thus sometimes $\mathbf{RP}(X)$ is not an equivalence relation.

Theorem (Veech 1968)

Definition (Ellis & Gottschalk 1960)

 $x, y \in X$ are regionally proximal, denoted $(x, y) \in \mathsf{RP}(X)$, if $\exists g_i \in G, x_i, y_i \in X$

$$x_i \rightarrow x, \ y_i \rightarrow y, \ (g_i x_i, g_i y_i) \rightarrow riangle_X riangleq \{(x, x) | x \in X\}$$

Theorem (Ellis & Gottschalk 1960)

The smallest closed G-invariant equivalence relation which contains RP(X) corresponds to the maximal equicontinuous factor of (G, X).

 $\mathbf{RP}(X)$ is closed *G*-invariant, reflexive and symmetric but not necessarily transitive. Thus sometimes $\mathbf{RP}(X)$ is not an equivalence relation.

Theorem (Veech 1968)

Definition (Ellis & Gottschalk 1960)

 $x, y \in X$ are regionally proximal, denoted $(x, y) \in \mathsf{RP}(X)$, if $\exists g_i \in G, x_i, y_i \in X$

$$x_i \rightarrow x, y_i \rightarrow y, (g_i x_i, g_i y_i) \rightarrow riangle_X riangleq \{(x, x) | x \in X\}$$

Theorem (Ellis & Gottschalk 1960)

The smallest closed G-invariant equivalence relation which contains RP(X) corresponds to the maximal equicontinuous factor of (G, X).

RP(X) is closed *G*-invariant, reflexive and symmetric but not necessarily transitive. Thus sometimes RP(X) is not an equivalence relation.

Theorem (Veech 1968)

Definition (Ellis & Gottschalk 1960)

 $x, y \in X$ are regionally proximal, denoted $(x, y) \in \mathsf{RP}(X)$, if $\exists g_i \in G, x_i, y_i \in X$

$$x_i \rightarrow x, y_i \rightarrow y, (g_i x_i, g_i y_i) \rightarrow riangle_X riangleq \{(x, x) | x \in X\}$$

Theorem (Ellis & Gottschalk 1960)

The smallest closed G-invariant equivalence relation which contains RP(X) corresponds to the maximal equicontinuous factor of (G, X).

RP(X) is closed *G*-invariant, reflexive and symmetric but not necessarily transitive. Thus sometimes RP(X) is not an equivalence relation.

Theorem (Veech 1968)

Cube groups

Let G be a group. Define:

 $G^{[d]} \triangleq G^{\{0,1\}^d}$

Definition

Let F be a hyperface of the discrete cube $\{0,1\}^d$. For $g \in G$ define $g^F \in G^{[d]}$:

$$\mathbf{g}^{F}(\epsilon) = \begin{cases} g & \epsilon \in F \\ \mathsf{Id} & \epsilon \notin F \end{cases}$$

Cube groups

Let G be a group. Define:

$$G^{[d]} riangleq G^{\{0,1\}^d}$$

Definition

Let F be a hyperface of the discrete cube $\{0,1\}^d$. For $g \in G$ define $g^F \in G^{[d]}$:

$$g^{F}(\epsilon) = \begin{cases} g & \epsilon \in F \\ \mathsf{Id} & \epsilon \notin F \end{cases}$$

Define the Host-Kra cube groups:

$$\mathcal{HK}^{[d]}(G) = \langle g^{\mathsf{F}} | \, \mathsf{F} \text{ is a hyperface of } \{0,1\}^d, \, g \in G \rangle \subset G^{[d]}$$

Example $G = \mathbb{Z}, d = 2.$ $\mathcal{HK}^{[2]}(\mathbb{Z}) = \left\{ \begin{array}{cc} c^{\sqcap} & \neg d \\ a_{\sqcup} & \neg b \end{array} | a, b, c, d \in \mathbb{Z}, a - b - c + d = 0 \right\}$

Define the Host-Kra cube groups:

$$\mathcal{HK}^{[d]}(G) = \langle g^{\mathsf{F}} | \, \mathsf{F} \text{ is a hyperface of } \{0,1\}^d, \, g \in G \rangle \subset G^{[d]}$$

Example $G = \mathbb{Z}, d = 2.$ $\mathcal{HK}^{[2]}(\mathbb{Z}) = \left\{ \begin{array}{cc} c^{\Gamma} & \neg d \\ a_{\bot} & \lrcorner b \end{array} | a, b, c, d \in \mathbb{Z}, a - b - c + d = 0 \right\}$

Let (G, X) be a t.d.s. Define the (G, X)-dynamical cubespace (X, C_G^{\bullet}) by:

$$C_G^{[d]}(X) = \overline{\{\mathcal{HK}^{[d]}(G).(x,x,\ldots,x)|\, x \in X\}} \subset X^{[d]}, \ d \in \mathbb{N}$$

Note $(\mathcal{HK}^{[d]}(G), C_G^{[d]}(X))$ is a t.d.s (action is coordinate-wise).

Example

$$X = \mathbb{S}^1$$
, $G = \mathbb{Z}$, $x \mapsto x + \alpha$ (α irrational), $d = 2$.

$$C_{\mathbb{Z}}^{[2]}(X) = \left\{ \begin{array}{cc} c^{-} & \neg d \\ a_{\mathbb{L}} & \bot b \end{array} | a, b, c, d \in \mathbb{S}^{1}, \ a - b - c + d = 0 \right\}$$

Let (G, X) be a t.d.s. Define the (G, X)-dynamical cubespace (X, C_G^{\bullet}) by:

$$\mathcal{C}_G^{[d]}(X) = \overline{\{\mathcal{HK}^{[d]}(G).(x,x,\ldots,x)|\, x\in X\}} \subset X^{[d]}, \,\, d\in \mathbb{N}$$

Note $(\mathcal{HK}^{[d]}(G), C_G^{[d]}(X))$ is a t.d.s (action is coordinate-wise).

Example

$$X = \mathbb{S}^1$$
, $G = \mathbb{Z}$, $x \mapsto x + \alpha$ (α irrational), $d = 2$.

$$C_{\mathbb{Z}}^{[2]}(X) = \left\{ \begin{array}{cc} c^{-} & \neg d \\ a_{\mathbb{L}} & \bot b \end{array} | a, b, c, d \in \mathbb{S}^{1}, \ a - b - c + d = 0 \right\}$$

Let (G, X) be a t.d.s. Define the (G, X)-dynamical cubespace (X, C_G^{\bullet}) by:

$$\mathcal{C}_G^{[d]}(X) = \overline{\{\mathcal{HK}^{[d]}(G).(x,x,\ldots,x)|\, x\in X\}} \subset X^{[d]}, \,\, d\in \mathbb{N}$$

Note $(\mathcal{HK}^{[d]}(G), C_G^{[d]}(X))$ is a t.d.s (action is coordinate-wise).

Example

$$X = \mathbb{S}^1$$
, $G = \mathbb{Z}$, $x \mapsto x + \alpha$ (α irrational), $d = 2$.

$$C^{[2]}_{\mathbb{Z}}(X) = \left\{ egin{array}{ccc} c^{arphi} & \neg d \ a_{arphi} & \lrcorner b \end{array} | a,b,c,d \in \mathbb{S}^1, \ a-b-c+d=0
ight\}$$

Definition of $NiIRP^{[d]}(X)$ ([1,4])

The Host-Kra cube groups:

$$\mathcal{HK}^{[d]}(G) = \langle g^F | \, F \text{ is a hyperface of } \{0,1\}^d, \, g \in G \rangle$$

Dynamical cubespace:

$$C_G^{[d]}(X) = \overline{\{\mathcal{HK}^{[d]}(G).(x,x,\ldots,x)|x\in X\}} \subset X^{[d]}$$

 $(x,y) \in \mathsf{NilRP}^{[d]}(X) \stackrel{\triangle}{\Leftrightarrow} (x,x,\ldots x,y) \in C_G^{[d+1]}(X)$

Definition of $NiIRP^{[d]}(X)$ ([1,4])

The Host-Kra cube groups:

$$\mathcal{HK}^{[d]}(G) = \langle g^F | \, F \text{ is a hyperface of } \{0,1\}^d, \, g \in G \rangle$$

Dynamical cubespace:

$$C_G^{[d]}(X) = \overline{\{\mathcal{HK}^{[d]}(G).(x,x,\ldots,x)|x\in X\}} \subset X^{[d]}$$

$$(x,y) \in \mathsf{NiIRP}^{[d]}(X) \stackrel{\triangle}{\Leftrightarrow} (x,x,\ldots x,y) \in C_{\mathcal{G}}^{[d+1]}(X)$$

Proposition

There exists a \mathbb{Z} minimal system whose dynamical cubespace is not fibrant.

Definition

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Examples

Examples of distal systems include equicontinuous systems and nilsystems. The class is closed under inverse limits and isometric extensions.

Theorem

Let (G, X) be a minimal distal topological dynamical system, then the cubespace (X, C_G^{\bullet}) is ergodic and fibrant.

Proposition

There exists a \mathbb{Z} minimal system whose dynamical cubespace is **not** fibrant.

Definition

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Examples

Examples of distal systems include equicontinuous systems and nilsystems. The class is closed under inverse limits and isometric extensions.

Theorem

Let (G, X) be a minimal distal topological dynamical system, then the cubespace (X, C_G^{\bullet}) is ergodic and fibrant.

Proposition

There exists a \mathbb{Z} minimal system whose dynamical cubespace is **not** fibrant.

Definition

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Examples

Examples of distal systems include equicontinuous systems and nilsystems. The class is closed under inverse limits and isometric extensions.

Theorem

Let (G, X) be a minimal distal topological dynamical system, then the cubespace (X, C_G^{\bullet}) is ergodic and fibrant.
Proposition

There exists a \mathbb{Z} minimal system whose dynamical cubespace is **not** fibrant.

Definition

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Examples

Examples of distal systems include equicontinuous systems and nilsystems. The class is closed under inverse limits and isometric extensions.

Theorem

Let (G, X) be a minimal distal topological dynamical system, then the cubespace (X, C_G^{\bullet}) is ergodic and fibrant.

Proposition

There exists a \mathbb{Z} minimal system whose dynamical cubespace is **not** fibrant.

Definition

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Examples

Examples of distal systems include equicontinuous systems and nilsystems. The class is closed under inverse limits and isometric extensions.

Theorem

Let (G, X) be a minimal distal topological dynamical system, then the cubespace (X, C_G^{\bullet}) is ergodic and fibrant.

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NilRP}^{[k]}(X)$
- Closed NilRP^[k](X) = $\overline{\text{NilRP}^{[k]}(X)} \subset X \times X$
- *G*-Equivariant - $(x, y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x, y) \in \mathsf{NilRP}^{[k]}(X)$

Question

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NilRP}^{[k]}(X)$
- Closed NilRP^[k](X) = $\overline{\text{NilRP}^{[k]}(X)} \subset X \times X$
- *G*-Equivariant - $(x,y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x, y) \in \mathsf{NilRP}^{[k]}(X)$

Question

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Closed NiIRP^[k](X) = NiIRP^[k](X) $\subset X \times X$
- *G*-Equivariant - $(x,y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x, y) \in \mathsf{NilRP}^{[k]}(X)$

Question

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Closed NilRP^[k](X) = $\overline{\text{NilRP}^{[k]}(X)} \subset X \times X$
- *G*-Equivariant - $(x,y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \xrightarrow{?} (x, y) \in \mathsf{NilRP}^{[k]}(X)$

Question

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Closed NiIRP^[k](X) = $\overline{\mathsf{NiIRP}^{[k]}(X)} \subset X \times X$
- *G*-Equivariant - $(x, y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NilRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \xrightarrow{?} (x, y) \in \mathsf{NilRP}^{[k]}(X)$

Question

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Closed NiIRP^[k](X) = $\overline{\mathsf{NiIRP}^{[k]}(X)} \subset X \times X$
- *G*-Equivariant - $(x, y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \xrightarrow{?} (x, y) \in \mathsf{NilRP}^{[k]}(X)$

Question

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Closed NiIRP^[k](X) = $\overline{\mathsf{NiIRP}^{[k]}(X)} \subset X \times X$
- *G*-Equivariant - $(x, y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x, y) \in \mathsf{NiIRP}^{[k]}(X)$

Question

The relation NiIRP^[k](X) is:

- $\operatorname{RP}(X) \subseteq \operatorname{NilRP}^{[1]}(X) \subseteq \cdots \subseteq \operatorname{NilRP}^{[k]}(X) \subseteq \cdots$.
- Reflexive $(x, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Closed NiIRP^[k](X) = $\overline{\mathsf{NiIRP}^{[k]}(X)} \subset X \times X$
- *G*-Equivariant - $(x, y) \in \mathsf{NilRP}^{[k]}(X) \Rightarrow \forall g \in G(gx, gy) \in \mathsf{NilRP}^{[k]}(X)$
- Symmetric? $(x, y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Leftrightarrow} (y, x) \in \mathsf{NiIRP}^{[k]}(X)$
- Transitive? $(x, y), (y, z) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x, y) \in \mathsf{NiIRP}^{[k]}(X)$

Question

Is $NiIRP^{[k]}(X)$ an equivalence relation?

Structure theorems for $NiIRP^{[d]}(X)$ [1-5]

Theorem

Let (G, X) be a minimal t.d.s then $NiIRP^{[d]}(X)$ is an equivalence relation.

Theorem

Let (G, X) be a minimal t.d.s and suppose G has a dense compactly generated subgroup, then $(G, X / NilRP^{[d]}(X))$ is the d-th maximal pronilfactor of (G, X), i.e.:

• $X_d \triangleq X / NiIRP^{[d]}(X)$ is isomorphic to an inverse limit of nilsystems

 $\varprojlim(G, L_n/\Gamma_n)$

- L_n is a d-step nilpotent Lie group, Γ_n is cocompact discrete and G acts through a continuous group homomorphism $\phi : G \to L_n$, $g.\ell\Gamma_n = \phi(g)\ell\Gamma_n$.
- X_d is the maximal factor w.r.t to these properties.

Question

For which groups G, is $(G, X / NilRP^{[d]}(X))$ the d-th maximal pronilfactor of (G, X)

Note that for d = 1, $(G, X / \text{NilRP}^{[1]}(X))$ is the maximal compact abelian group factor of (G, X).

Theorem

Let $d \ge 1$ and let (G, X) be a minimal topological dynamical system, then $(G, X / NilRP^{[d]}(X))$ is the maximal factor which is a nilspace of order at most d.

Gluable Cubes [3]

Gluable cubes:

Gluable Cubes [3]

Gluable cubes:

Gluable Cubes [3]

Gluable cubes:

Gluing of Gluable Cubes

Gluing of gluable cubes:

Gluing of Gluable Cubes

Gluing of gluable cubes:

Gluing of Gluable Cubes

Gluing of gluable cubes:

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NiIRP^[k](X) is symmetric.

 $(x,y) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (y,x) \in \mathsf{NilRP}^{[k]}(X)$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NiIRP^[k](X) is symmetric.

 $(x,y) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (y,x) \in \mathsf{NilRP}^{[k]}(X)$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NiIRP^[k](X) is symmetric.

 $(x, y) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (y, x) \in \mathsf{NilRP}^{[k]}(X)$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NilRP^[k](X) is symmetric.

 $(x,y) \in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (y,x) \in \mathsf{NiIRP}^{[k]}(X)$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NilRP^[k](X) is symmetric.

 $(x,y) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (y,x) \in \mathsf{NilRP}^{[k]}(X)$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NiIRP^[k](X) is transitive.

 $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x, z) \in \mathsf{NilRP}^{[k]}(X)$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NiIRP^[k](X) is transitive.

 $(x, y), (y, z) \in \mathsf{NilRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x, z) \in \mathsf{NilRP}^{[k]}(X)$

$$\begin{array}{c|c} z & - y & - x \\ | & | & | \\ y & - y & - y \\ | & | & | \\ x & - y & - x \end{array}$$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NiIRP^[k](X) is transitive.

 $(x,y),(y,z)\in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x,z)\in \mathsf{NiIRP}^{[k]}(X)$

Definition

(G, X) has gluing if for all $n \in \mathbb{N}$ $c_1, c_2 \in C_G^{[n]}(X)$ whenever c_1, c_2 are gluable, $c_1 + c_2 \in C_G^{[n]}(X)$.

Reduction to gluing:

Lemma

If (G, X) has gluing, then NiIRP^[k](X) is transitive.

 $(x,y),(y,z)\in \mathsf{NiIRP}^{[k]}(X) \stackrel{?}{\Rightarrow} (x,z)\in \mathsf{NiIRP}^{[k]}(X)$

Extension implies Gluing

Gluing achieved by extension and projection:

Extension implies Gluing

Gluing achieved by extension and projection:

Extension implies Gluing

Gluing achieved by extension and projection:

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Theorem

Let (G, X) be a minimal distal t.d.s, then the dynamical cubespace $(X, C_G^{\circ}(X))$ is ergodic and fibrant.

Lemma (3)

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Theorem

Let (G, X) be a minimal distal t.d.s, then the dynamical cubespace $(X, C^{\circ}_{G}(X))$ is ergodic and fibrant.

Lemma (3)

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Theorem

Let (G, X) be a minimal distal t.d.s, then the dynamical cubespace $(X, C_G^{\bullet}(X))$ is ergodic and fibrant.

Lemma (3)

Let (G, X) a topological dynamical system. We call (G, X) distal, if for any $x, y \in X$ and any sequence $\{g_n\}_{n=1}^{\infty} \subset G$, $\lim_{n\to\infty} g_n x = \lim_{n\to\infty} g_n y$ implies x = y.

Theorem

Let (G, X) be a minimal distal t.d.s, then the dynamical cubespace $(X, C_G^{\bullet}(X))$ is ergodic and fibrant.

Lemma (3)

Projections & Partial Ordering

Given $c \in C_G^3(X)$ various projections give rise to 2-cubes, e.g.:

Definition

Partial order on $\{0,1\}^n \leq : \vec{v} \leq \vec{w}$ if $v_i \leq w_i$ for all *i*. E.g. $0010 \leq 0110$. $S \subset \{0,1\}^n$ is a downwards-closed subset if closed under $\leq . \epsilon \in \{0,1\}^n$ is maximal if maximal w.r.t $\leq .$

Projections & Partial Ordering

Given $c \in C_G^3(X)$ various projections give rise to 2-cubes, e.g.:

Definition

Partial order on $\{0,1\}^n \leq : \vec{v} \leq \vec{w}$ if $v_i \leq w_i$ for all *i*. E.g. $0010 \leq 0110$. $S \subset \{0,1\}^n$ is a downwards-closed subset if closed under $\leq . \epsilon \in \{0,1\}^n$ is maximal if maximal w.r.t $\leq .$
Projections & Partial Ordering

Given $c \in C_G^3(X)$ various projections give rise to 2-cubes, e.g.:

Definition

Partial order on $\{0,1\}^n \leq : \vec{v} \leq \vec{w}$ if $v_i \leq w_i$ for all *i*. E.g. $0010 \leq 0110$. $S \subset \{0,1\}^n$ is a downwards-closed subset if closed under $\leq . \epsilon \in \{0,1\}^n$ is maximal if maximal w.r.t $\leq .$

$Hom_G(S, X)$

Let $S \subset \{0,1\}^n$ be a downwards-closed subset. $f : S \to X$ is a morphism if for every $D \subset S$ k-dimensional face of $\{0,1\}^n$ contained in S, $f_{|D} \in C_G^k(X)$.

Definition

(G, X) has extension if any morphism $f : S \to X$, $S \subset \{0, 1\}^n$ extends to $c \in C^n_G(X)$, i.e. $c_{|S|} = f$.

$Hom_G(S, X)$

Let $S \subset \{0,1\}^n$ be a downwards-closed subset. $f : S \to X$ is a morphism if for every $D \subset S$ k-dimensional face of $\{0,1\}^n$ contained in S, $f_{|D} \in C_G^k(X)$.

Definition

(G, X) has extension if any morphism $f : S \to X$, $S \subset \{0, 1\}^n$ extends to $c \in C^n_G(X)$, i.e. $c_{|S|} = f$.

$Hom_G(S, X)$

Let $S \subset \{0,1\}^n$ be a downwards-closed subset. $f : S \to X$ is a morphism if for every $D \subset S$ k-dimensional face of $\{0,1\}^n$ contained in S, $f_{|D} \in C_G^k(X)$.

Definition

(G, X) has extension if any morphism $f : S \to X$, $S \subset \{0, 1\}^n$ extends to $c \in C_G^n(X)$, i.e. $c_{|S} = f$.

$Hom_G(S, X)$

Let $S \subset \{0,1\}^n$ be a downwards-closed subset. $f : S \to X$ is a morphism if for every $D \subset S$ k-dimensional face of $\{0,1\}^n$ contained in S, $f_{|D} \in C_G^k(X)$.

Definition

(G, X) has extension if any morphism $f : S \to X$, $S \subset \{0, 1\}^n$ extends to $c \in C_G^n(X)$, i.e. $c_{|S} = f$.

- Proof by induction. In particular assume true for downwards-closed subsets in $\{0,1\}^{n-1}$
- Let $f : \mathcal{V} \to X$, $\mathcal{V} \subset \{0,1\}^n$ be a morphism.
- If $|\mathcal{V}| = 1$, then f is extendable.
- Assume $|\mathcal{V}| \ge 2$ and $\mathcal{V} \ne \{0,1\}^n$. Let $\epsilon \in \mathcal{V}$ be a maximal element in \mathcal{V} and denote $\mathcal{W} = \mathcal{V} \setminus \{\epsilon\}$ (note $|\mathcal{W}| \ge 1$).
- Special case: Assume that $f_{|W} = (x, x, ..., x)_{|W}$.

- Proof by induction. In particular assume true for downwards-closed subsets in $\{0,1\}^{n-1}$
- Let $f : \mathcal{V} \to X$, $\mathcal{V} \subset \{0,1\}^n$ be a morphism.
- If $|\mathcal{V}| = 1$, then f is extendable.
- Assume $|\mathcal{V}| \ge 2$ and $\mathcal{V} \ne \{0,1\}^n$. Let $\epsilon \in \mathcal{V}$ be a maximal element in \mathcal{V} and denote $\mathcal{W} = \mathcal{V} \setminus \{\epsilon\}$ (note $|\mathcal{W}| \ge 1$).
- Special case: Assume that $f_{|W} = (x, x, ..., x)_{|W}$.

- Proof by induction. In particular assume true for downwards-closed subsets in $\{0,1\}^{n-1}$
- Let $f : \mathcal{V} \to X$, $\mathcal{V} \subset \{0,1\}^n$ be a morphism.
- If $|\mathcal{V}| = 1$, then f is extendable.
- Assume $|\mathcal{V}| \ge 2$ and $\mathcal{V} \ne \{0,1\}^n$. Let $\epsilon \in \mathcal{V}$ be a maximal element in \mathcal{V} and denote $\mathcal{W} = \mathcal{V} \setminus \{\epsilon\}$ (note $|\mathcal{W}| \ge 1$).
- Special case: Assume that $f_{|W} = (x, x, ..., x)_{|W}$.

- Proof by induction. In particular assume true for downwards-closed subsets in $\{0,1\}^{n-1}$
- Let $f : \mathcal{V} \to X$, $\mathcal{V} \subset \{0,1\}^n$ be a morphism.
- If $|\mathcal{V}| = 1$, then f is extendable.
- Assume $|\mathcal{V}| \ge 2$ and $\mathcal{V} \ne \{0,1\}^n$. Let $\epsilon \in \mathcal{V}$ be a maximal element in \mathcal{V} and denote $\mathcal{W} = \mathcal{V} \setminus \{\epsilon\}$ (note $|\mathcal{W}| \ge 1$).
- Special case: Assume that $f_{|W} = (x, x, ..., x)_{|W}$.

- Proof by induction. In particular assume true for downwards-closed subsets in $\{0,1\}^{n-1}$
- Let $f : \mathcal{V} \to X$, $\mathcal{V} \subset \{0,1\}^n$ be a morphism.
- If $|\mathcal{V}| = 1$, then f is extendable.
- Assume $|\mathcal{V}| \ge 2$ and $\mathcal{V} \ne \{0,1\}^n$. Let $\epsilon \in \mathcal{V}$ be a maximal element in \mathcal{V} and denote $\mathcal{W} = \mathcal{V} \setminus \{\epsilon\}$ (note $|\mathcal{W}| \ge 1$).

• Special case: Assume that $f_{|\mathcal{W}|} = (x, x, \dots, x)_{|\mathcal{W}|}$.

- Proof by induction. In particular assume true for downwards-closed subsets in $\{0,1\}^{n-1}$
- Let $f : \mathcal{V} \to X$, $\mathcal{V} \subset \{0,1\}^n$ be a morphism.
- If $|\mathcal{V}| = 1$, then f is extendable.
- Assume $|\mathcal{V}| \ge 2$ and $\mathcal{V} \ne \{0,1\}^n$. Let $\epsilon \in \mathcal{V}$ be a maximal element in \mathcal{V} and denote $\mathcal{W} = \mathcal{V} \setminus \{\epsilon\}$ (note $|\mathcal{W}| \ge 1$).
- Special case: Assume that $f_{|\mathcal{W}} = (x, x, \dots, x)_{|\mathcal{W}}$.

- Proof by induction. In particular assume true for downwards-closed subsets in $\{0,1\}^{n-1}$
- Let $f : \mathcal{V} \to X$, $\mathcal{V} \subset \{0,1\}^n$ be a morphism.
- If $|\mathcal{V}| = 1$, then f is extendable.
- Assume $|\mathcal{V}| \ge 2$ and $\mathcal{V} \ne \{0,1\}^n$. Let $\epsilon \in \mathcal{V}$ be a maximal element in \mathcal{V} and denote $\mathcal{W} = \mathcal{V} \setminus \{\epsilon\}$ (note $|\mathcal{W}| \ge 1$).
- Special case: Assume that $f_{|\mathcal{W}} = (x, x, \dots, x)_{|\mathcal{W}}$.

- Let \mathcal{F} be a lower face of $\{0,1\}^n$ which contains ϵ .
- By the inductive assumption $f_{|\mathcal{V}\cap\mathcal{F}}$ is extendable to \mathcal{F} . Let us call the extension h.
- Let \mathcal{H} be the upper face which is parallel to \mathcal{F} .
- Copy h on \mathcal{H} . We have $\tilde{f} \in C^3_G(X)$ which extends f.

- Let \mathcal{F} be a lower face of $\{0,1\}^n$ which contains ϵ .
- By the inductive assumption f_{|V∩F} is extendable to F. Let us call the extension h.
- Let \mathcal{H} be the upper face which is parallel to \mathcal{F} .
- Copy h on \mathcal{H} . We have $\tilde{f} \in C^3_G(X)$ which extends f.

- Let \mathcal{F} be a lower face of $\{0,1\}^n$ which contains ϵ .
- By the inductive assumption f_{|V∩F} is extendable to F. Let us call the extension h.
- Let \mathcal{H} be the upper face which is parallel to \mathcal{F} .
- Copy h on \mathcal{H} . We have $\tilde{f} \in C^3_G(X)$ which extends f.

- Let \mathcal{F} be a lower face of $\{0,1\}^n$ which contains ϵ .
- By the inductive assumption f_{|V∩F} is extendable to F. Let us call the extension h.
- \bullet Let ${\mathcal H}$ be the upper face which is parallel to ${\mathcal F}.$
- Copy h on \mathcal{H} . We have $\tilde{f} \in C^3_G(X)$ which extends f.

- Let \mathcal{F} be a lower face of $\{0,1\}^n$ which contains ϵ .
- By the inductive assumption f_{|V∩F} is extendable to F. Let us call the extension h.
- \bullet Let ${\mathcal H}$ be the upper face which is parallel to ${\mathcal F}.$
- Copy h on \mathcal{H} . We have $\tilde{f} \in C^3_G(X)$ which extends f.

The general case:

_emma

If (G, X) is a distal minimal t.d.s then $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ is a distal minimal t.d.s.

Proof: As $(G^{[n]}, X^{[n]})$ is distal so is $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$. As $C_G^{[n]}(X) = \overline{\{\mathcal{HK}^{[n]}(G).(x, x, \dots, x) | x \in X\}} = \overline{\mathcal{HK}^{[n]}(G).(x_0, x_0, \dots, x_0)}$ is dynamically transitive it is minimal.

- By inductive assumption $f_{|W}$ is extendable to $c \in C_G^{[n]}(X)$.
- By minimality of $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ we may choose $h_i \in \mathcal{HK}^{[n]}(G)$ such that

$$h_i c \to (x, x, \dots, x)$$

The general case:

Lemma

If (G, X) is a distal minimal t.d.s then $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ is a distal minimal t.d.s.

Proof: As $(G^{[n]}, X^{[n]})$ is distal so is $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$. As $C_G^{[n]}(X) = \overline{\{\mathcal{HK}^{[n]}(G).(x, x, \dots, x) | x \in X\}} = \overline{\mathcal{HK}^{[n]}(G).(x_0, x_0, \dots, x_0)}$ is dynamically transitive it is minimal.

- By inductive assumption $f_{|W}$ is extendable to $c \in C_G^{[n]}(X)$.
- By minimality of $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ we may choose $h_i \in \mathcal{HK}^{[n]}(G)$ such that

$$h_i c \rightarrow (x, x, \dots, x)$$

The general case:

Lemma

If (G, X) is a distal minimal t.d.s then $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ is a distal minimal t.d.s.

Proof: As $(G^{[n]}, X^{[n]})$ is distal so is $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$. As $C_G^{[n]}(X) = \overline{\{\mathcal{HK}^{[n]}(G).(x, x, \dots, x) | x \in X\}} = \overline{\mathcal{HK}^{[n]}(G).(x_0, x_0, \dots, x_0)}$ is dynamically transitive it is minimal.

- By inductive assumption $f_{|W}$ is extendable to $c \in C_G^{[n]}(X)$.
- By minimality of $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ we may choose $h_i \in \mathcal{HK}^{[n]}(G)$ such that

$$h_i c \rightarrow (x, x, \dots, x)$$

The general case:

Lemma

If (G, X) is a distal minimal t.d.s then $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ is a distal minimal t.d.s.

Proof: As $(G^{[n]}, X^{[n]})$ is distal so is $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$. As $C_G^{[n]}(X) = \overline{\{\mathcal{HK}^{[n]}(G).(x, x, \dots, x) | x \in X\}} = \overline{\mathcal{HK}^{[n]}(G).(x_0, x_0, \dots, x_0)}$ is dynamically transitive it is minimal.

- By inductive assumption $f_{|W}$ is extendable to $c \in C_G^{[n]}(X)$.
- By minimality of $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ we may choose $h_i \in \mathcal{HK}^{[n]}(G)$ such that

$$h_i c \to (x, x, \dots, x)$$

The general case:

Lemma

If (G, X) is a distal minimal t.d.s then $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ is a distal minimal t.d.s.

Proof: As $(G^{[n]}, X^{[n]})$ is distal so is $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$. As $C_G^{[n]}(X) = \overline{\{\mathcal{HK}^{[n]}(G).(x, x, \dots, x) | x \in X\}} = \overline{\mathcal{HK}^{[n]}(G).(x_0, x_0, \dots, x_0)}$ is dynamically transitive it is minimal.

- By inductive assumption $f_{|W}$ is extendable to $c \in C_G^{[n]}(X)$.
- By minimality of $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ we may choose $h_i \in \mathcal{HK}^{[n]}(G)$ such that

$$h_i c \rightarrow (x, x, \dots, x)$$

The general case:

Lemma

If (G, X) is a distal minimal t.d.s then $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ is a distal minimal t.d.s.

Proof: As $(G^{[n]}, X^{[n]})$ is distal so is $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$. As $C_G^{[n]}(X) = \overline{\{\mathcal{HK}^{[n]}(G).(x, x, \dots, x) | x \in X\}} = \overline{\mathcal{HK}^{[n]}(G).(x_0, x_0, \dots, x_0)}$ is dynamically transitive it is minimal.

- By inductive assumption $f_{|W}$ is extendable to $c \in C_G^{[n]}(X)$.
- By minimality of $(\mathcal{HK}^{[n]}(G), C_G^{[n]}(X))$ we may choose $h_i \in \mathcal{HK}^{[n]}(G)$ such that

$$h_i c \rightarrow (x, x, \dots, x)$$

Lemma

If (G, X) is a distal t.d.s then $(\mathcal{HK}^{[n]}(G), Hom_G(\mathcal{V}, X))$ is a distal t.d.s.

Distal exchangablility

Let (G, X) be distal. Then $x \in \overline{Gy}$ iff $y \in \overline{Gx}$.

As f' ∈ HK^[n](G)f, we have f ∈ HK^[n](G)f' which implies f is extendable.

Lemma

If (G, X) is a distal t.d.s then $(\mathcal{HK}^{[n]}(G), Hom_G(\mathcal{V}, X))$ is a distal t.d.s.

Distal exchangablility

Let (G, X) be distal. Then $x \in \overline{Gy}$ iff $y \in \overline{Gx}$.

• As $f' \in \mathcal{HK}^{[n]}(G)f$, we have $f \in \mathcal{HK}^{[n]}(G)f'$ which implies f is extendable.

Lemma

If (G, X) is a distal t.d.s then $(\mathcal{HK}^{[n]}(G), Hom_G(\mathcal{V}, X))$ is a distal t.d.s.

Distal exchangablility

Let (G, X) be distal. Then $x \in \overline{Gy}$ iff $y \in \overline{Gx}$.

As f' ∈ HK^[n](G)f, we have f ∈ HK^[n](G)f' which implies f is extendable.

Lemma

If (G, X) is a distal t.d.s then $(\mathcal{HK}^{[n]}(G), Hom_G(\mathcal{V}, X))$ is a distal t.d.s.

Distal exchangablility

Let (G, X) be distal. Then $x \in \overline{Gy}$ iff $y \in \overline{Gx}$.

• As $f' \in \mathcal{HK}^{[n]}(G)f$, we have $f \in \mathcal{HK}^{[n]}(G)f'$ which implies f is extendable.

It would be very convenient if we could "compactify" (G, X)... For example, for any $g_1, g_2, \ldots \in G$, one would be able to find a subsequence g_{i_i} such that $g_{i_i}x$ converges for all $x \in X$.

Definition

The Ellis (enveloping) semigroup E = E(G, X) of a t.d.s (G, X) is the closure of G in the semigroup (with respect to composition) X^X equipped with the product topology.

- The Ellis semigroup is compact but in general not metrizable.
- In general the elements of *E* as maps $X \to X$ are not necessarily 1-1, nor onto, nor continuous.

It would be very convenient if we could "compactify" (G, X)... For example, for any $g_1, g_2, \ldots \in G$, one would be able to find a subsequence g_{i_i} such that $g_{i_i}x$ converges for all $x \in X$.

Definition

The Ellis (enveloping) semigroup E = E(G, X) of a t.d.s (G, X) is the closure of G in the semigroup (with respect to composition) X^X equipped with the product topology.

- The Ellis semigroup is compact but in general not metrizable.
- In general the elements of *E* as maps $X \to X$ are not necessarily 1-1, nor onto, nor continuous.

It would be very convenient if we could "compactify" (G, X)... For example, for any $g_1, g_2, \ldots \in G$, one would be able to find a subsequence g_{i_i} such that $g_{i_i}x$ converges for all $x \in X$.

Definition

The Ellis (enveloping) semigroup E = E(G, X) of a t.d.s (G, X) is the closure of G in the semigroup (with respect to composition) X^X equipped with the product topology.

- The Ellis semigroup is compact but in general not metrizable.
- In general the elements of *E* as maps $X \rightarrow X$ are not necessarily 1 1, nor onto, nor continuous.