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Structure theorems for t.d.s

Let (G ,X ) be a topological dynamical system (t.d.s). That is:
X is a compact (Hausdorff) space. G is topological (Hausdorff)
group. Action denoted by g .x for g ∈ G and x ∈ X .
G acts on X , G ↷ X : e.x = x , g .(h.x) = (gh).x

Oftentimes (as well as in the sequel) G and X are assumed metric.
Motivating question: What is the structure of t.d.s?
Standing assumption: (G ,X ) is minimal, that is every orbit,
G .x ≜ {g .x | g ∈ G} is dense.
Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro
(1975),Veech (1977),...
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Equicontinuous systems

Definition
(G ,X ) is equicontinuous if for every ϵ > 0 there exists δ > 0 so that for
every g ∈ G , x1, x2 ∈ X

d(x1, x2) < δ ⇒ d(g .x1, g .x2) < ϵ

Examples
Irrational rotation on the circle.
SOn(R) acts on Rn ⊇ Sn−1 = SOn(R)/

SOn−1(R).
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Structure theorem for minimal equicontinuous t.d.s

Theorem
(G ,X ) is minimal equicontinuous iff X = K/H is a homogeneous space,
where K is a compact group, H is a closed subgroup and G acts through a
continuous group homomorphism with dense image ϕ : G → K ,
g .kH = ϕ(g)kH.
In particular if G is abelian, K is abelian (and w.l.o.g H = {0}).

Question: Can a general minimal t.d.s be “reduced” to a minimal
equicontinuous t.d.s?

Definition
(G ,Y ) is a factor of (G ,X ) if there exists a surjective continuous map
ϕ : (G ,X )→ (G ,Y ) which is G -equivariant, e.g.,

∀g ∈ G , x ∈ X ϕ(g .x) = g .ϕ(x)

It is not hard to show that there is a maximal equicontinuous factor,
however how to concretely characterize it?
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Relations in dynamics

Definition
A relation over X , R ⊂ X × X is called:

closed if R is closed in X × X .
G -invariant if (x , y) ∈ R implies (g .x , g .y) ∈ R for all g ∈ G .
reflexive if (x , x) ∈ R for all x ∈ X .
symmetric if (x , y) ∈ R implies (y , x) ∈ R.
transitive if (x , y) ∈ R and (y , z) ∈ R imply (x , z) ∈ R.
an equivalence relation if it is reflexive, symmetric and transitive.

Let (G ,X )→ (G ,Y ) be a factor map. Define a closed G -invariant
equivalence relation R ⊂ X × X by (x , y) ∈ R iff ϕ(x) = ϕ(y). Then
Y = X/R.
Conversely if R ⊂ X × X is a closed G -invariant equivalence relation then
(G ,X )→ (G ,X/R) is a factor map.
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The regionally proximal relation

Definition (Ellis & Gottschalk 1960)
x , y ∈ X are regionally proximal, denoted (x , y) ∈ RP(X ), if
∃gi ∈ G , xi , yi ∈ X

xi → x , yi → y , (gixi , giyi )→△X ≜ {(x , x)| x ∈ X}

Theorem (Ellis & Gottschalk 1960)
The smallest closed G -invariant equivalence relation which contains RP(X )
corresponds to the maximal equicontinuous factor of (G ,X ).

RP(X ) is closed G -invariant, reflexive and symmetric but not necessarily
transitive. Thus sometimes RP(X ) is not an equivalence relation.

Theorem (Veech 1968)
RP(X ) is an equivalence relation for (G ,X ), when G is abelian.
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Cube groups

Let G be a group. Define:

G [d ] ≜ G {0,1}d

Definition
Let F be a hyperface of the discrete cube {0, 1}d . For g ∈ G define
gF ∈ G [d ]:

gF (ϵ) =

{
g ϵ ∈ F
Id ϵ /∈ F

Id

Id g

g

Id

Id g

g
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Host-Kra cube groups

Define the Host-Kra cube groups:

HK[d ](G ) = ⟨gF |F is a hyperface of {0, 1}d , g ∈ G ⟩ ⊂ G [d ]

Example
G = Z, d = 2.

HK[2](Z) =
{ c⌜ ⌝d

a⌞ ⌟b
|a, b, c , d ∈ Z, a− b − c + d = 0

}

Nilspaces in Topological Dynamics 9



Host-Kra cube groups

Define the Host-Kra cube groups:

HK[d ](G ) = ⟨gF |F is a hyperface of {0, 1}d , g ∈ G ⟩ ⊂ G [d ]

Example
G = Z, d = 2.

HK[2](Z) =
{ c⌜ ⌝d

a⌞ ⌟b
|a, b, c , d ∈ Z, a− b − c + d = 0

}

Nilspaces in Topological Dynamics 9



Dynamical cubespace

Let (G ,X ) be a t.d.s. Define the (G ,X )-dynamical cubespace (X ,C •
G ) by:

C
[d ]
G (X ) = {HK[d ](G ).(x , x , . . . , x)| x ∈ X} ⊂ X [d ], d ∈ N

Note (HK[d ](G ),C
[d ]
G (X )) is a t.d.s (action is coordinate-wise).

Example
X = S1, G = Z, x 7→ x + α (α irrational), d = 2.

C
[2]
Z (X ) =

{ c⌜ ⌝d
a⌞ ⌟b

|a, b, c , d ∈ S1, a− b − c + d = 0
}
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Definition of NilRP[d ](X ) ([1,4])

The Host-Kra cube groups:

HK[d ](G ) = ⟨gF |F is a hyperface of {0, 1}d , g ∈ G ⟩

Dynamical cubespace:

C
[d ]
G (X ) = {HK[d ](G ).(x , x , . . . , x)| x ∈ X} ⊂ X [d ]

(x , y) ∈ NilRP[d ](X )
△⇔ (x , x , . . . x , y) ∈ C

[d+1]
G (X )

x

x x

x

x

x y

x
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Fibrant dynamical cubespaces [1,4]

Proposition
There exists a Z minimal system whose dynamical cubespace is not fibrant.

Definition
Let (G ,X ) a topological dynamical system. We call (G ,X ) distal, if for
any x , y ∈ X and any sequence {gn}∞n=1 ⊂ G , limn→∞ gnx = limn→∞ gny
implies x = y .

Examples
Examples of distal systems include equicontinuous systems and nilsystems.
The class is closed under inverse limits and isometric extensions.

Theorem
Let (G ,X ) be a minimal distal topological dynamical system, then the
cubespace (X ,C •

G ) is ergodic and fibrant.
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NilRP[k](X ): basic properties

The relation NilRP[k](X ) is:
RP(X ) ⊆ NilRP[1](X ) ⊆ · · · ⊆ NilRP[k](X ) ⊆ · · · .
Reflexive - (x , x) ∈ NilRP[k](X )

Closed - NilRP[k](X ) = NilRP[k](X ) ⊂ X × X

G -Equivariant -
(x , y) ∈ NilRP[k](X )⇒ ∀g ∈ G (gx , gy) ∈ NilRP[k](X )

Symmetric? - (x , y) ∈ NilRP[k](X )
?⇔ (y , x) ∈ NilRP[k](X )

Transitive? - (x , y), (y , z) ∈ NilRP[k](X )
?⇒ (x , y) ∈ NilRP[k](X )

Question

Is NilRP[k](X ) an equivalence relation?
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Structure theorems for NilRP[d ](X ) [1-5]

Theorem

Let (G ,X ) be a minimal t.d.s then NilRP[d ](X ) is an equivalence relation.

Theorem
Let (G ,X ) be a minimal t.d.s and suppose G has a dense compactly
generated subgroup, then (G ,X/NilRP[d ](X )) is the d-th maximal
pronilfactor of (G ,X ), i.e.:

Xd ≜ X/NilRP[d ](X ) is isomorphic to an inverse limit of nilsystems

lim←−(G , Ln/Γn)

Ln is a d-step nilpotent Lie group, Γn is cocompact discrete and G
acts through a continuous group homomorphism ϕ : G → Ln,
g .ℓΓn = ϕ(g)ℓΓn.
Xd is the maximal factor w.r.t to these properties.
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Open Question [4]

Question

For which groups G , is (G ,X/NilRP[d ](X )) the d-th maximal pronilfactor
of (G ,X )

Note that for d = 1, (G ,X/NilRP[1](X )) is the maximal compact abelian
group factor of (G ,X ).

Theorem
Let d ≥ 1 and let (G ,X ) be a minimal topological dynamical system, then
(G ,X/NilRP[d ](X )) is the maximal factor which is a nilspace of order at
most d .
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Gluable Cubes [3]

Gluable cubes:

a b

dc

b

d f

e

a

b c

d

e

f g

h

d

c j

k

h

g l

m
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Gluing of Gluable Cubes

Gluing of gluable cubes:

a b

dc

+

b

d f

e

=

a

c f

e
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Gluing implies Symmetry

Definition

(G ,X ) has gluing if for all n ∈ N c1, c2 ∈ C
[n]
G (X ) whenever c1, c2 are

gluable, c1 + c2 ∈ C
[n]
G (X ).

Reduction to gluing:

Lemma

If (G ,X ) has gluing, then NilRP[k](X ) is symmetric.

(x , y) ∈ NilRP[k](X )
?⇒ (y , x) ∈ NilRP[k](X )

y x x

x x x

y x y

x x

x y

∈ C 2
G (X )⇒

y y

y x
⇒ ∈ C 2

G (X )
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Gluing implies Transitivity

Definition

(G ,X ) has gluing if for all n ∈ N c1, c2 ∈ C
[n]
G (X ) whenever c1, c2 are

gluable, c1 + c2 ∈ C
[n]
G (X ).

Reduction to gluing:

Lemma

If (G ,X ) has gluing, then NilRP[k](X ) is transitive.

(x , y), (y , z) ∈ NilRP[k](X )
?⇒ (x , z) ∈ NilRP[k](X )

x y x

y y y

z y x
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Gluing implies Transitivity

Definition

(G ,X ) has gluing if for all n ∈ N c1, c2 ∈ C
[n]
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gluable, c1 + c2 ∈ C
[n]
G (X ).

Reduction to gluing:

Lemma
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(x , y), (y , z) ∈ NilRP[k](X )
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x y x

y y y

z y x
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Extension implies Gluing

Gluing achieved by extension and projection:

a

c

d

e

g

h

a

b c

d

e

f g

h

a

b c

d

e

f g

h
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Extension implies Gluing

Gluing achieved by extension and projection:

a

c

d

e

g

h

a

b c

d

e

f g

h

a

b c

d

e

f g

h
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Extension implies Gluing

Gluing achieved by extension and projection:

a

c

d

e

g

h

a

b c

d

e

f g

h

a

b c

d

e

f g

h
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Distal implies fibrant

Definition
Let (G ,X ) a topological dynamical system. We call (G ,X ) distal, if for
any x , y ∈ X and any sequence {gn}∞n=1 ⊂ G , limn→∞ gnx = limn→∞ gny
implies x = y .

Theorem
Let (G ,X ) be a minimal distal t.d.s, then the dynamical cubespace
(X ,C •

G (X )) is ergodic and fibrant.

Lemma (3)
A fibrant cubespace has the extension property.

Nilspaces in Topological Dynamics 21



Distal implies fibrant

Definition
Let (G ,X ) a topological dynamical system. We call (G ,X ) distal, if for
any x , y ∈ X and any sequence {gn}∞n=1 ⊂ G , limn→∞ gnx = limn→∞ gny
implies x = y .

Theorem
Let (G ,X ) be a minimal distal t.d.s, then the dynamical cubespace
(X ,C •

G (X )) is ergodic and fibrant.

Lemma (3)
A fibrant cubespace has the extension property.

Nilspaces in Topological Dynamics 21



Distal implies fibrant

Definition
Let (G ,X ) a topological dynamical system. We call (G ,X ) distal, if for
any x , y ∈ X and any sequence {gn}∞n=1 ⊂ G , limn→∞ gnx = limn→∞ gny
implies x = y .

Theorem
Let (G ,X ) be a minimal distal t.d.s, then the dynamical cubespace
(X ,C •

G (X )) is ergodic and fibrant.

Lemma (3)
A fibrant cubespace has the extension property.

Nilspaces in Topological Dynamics 21



Distal implies fibrant

Definition
Let (G ,X ) a topological dynamical system. We call (G ,X ) distal, if for
any x , y ∈ X and any sequence {gn}∞n=1 ⊂ G , limn→∞ gnx = limn→∞ gny
implies x = y .

Theorem
Let (G ,X ) be a minimal distal t.d.s, then the dynamical cubespace
(X ,C •

G (X )) is ergodic and fibrant.

Lemma (3)
A fibrant cubespace has the extension property.

Nilspaces in Topological Dynamics 21



Projections & Partial Ordering

Given c ∈ C 3
G (X ) various projections give rise to 2-cubes, e.g.:

a

b c

d

e

f g

h

d

c j

k

h

g l

m

Definition
Partial order on {0, 1}n ≤: v⃗ ≤ w⃗ if vi ≤ wi for all i . E.g. 0010 ≤ 0110.
S ⊂ {0, 1}n is a downwards-closed subset if closed under ≤. ϵ ∈ {0, 1}n is
maximal if maximal w.r.t ≤.
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Morphisms and Extension

HomG (S ,X )

Let S ⊂ {0, 1}n be a downwards-closed subset. f : S → X is a morphism if
for every D ⊂ S k-dimensional face of {0, 1}n contained in S , f|D ∈ C k

G (X ).

a

c

d

e h

b

f g

Definition
(G ,X ) has extension if any morphism f : S → X , S ⊂ {0, 1}n extends to
c ∈ Cn

G (X ), i.e. c|S = f .
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Establishing Extension I [4]

Proof by induction. In particular assume true for downwards-closed
subsets in {0, 1}n−1

Let f : V → X , V ⊂ {0, 1}n be a morphism.
If |V| = 1, then f is extendable.
Assume |V| ≥ 2 and V ≠ {0, 1}n . Let ϵ ∈ V be a maximal element in
V and denote W = V \ {ϵ} (note |W| ≥ 1).
Special case: Assume that f|W = (x , x , . . . , x)|W .

x

x

x

y

V

x

x

x

W
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Assume |V| ≥ 2 and V ≠ {0, 1}n . Let ϵ ∈ V be a maximal element in
V and denote W = V \ {ϵ} (note |W| ≥ 1).
Special case: Assume that f|W = (x , x , . . . , x)|W .

x

x

x

y

V

x

x

x

W
Nilspaces in Topological Dynamics 24



Establishing Extension I [4]

Proof by induction. In particular assume true for downwards-closed
subsets in {0, 1}n−1

Let f : V → X , V ⊂ {0, 1}n be a morphism.
If |V| = 1, then f is extendable.
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Establishing Extension II

Let F be a lower face of {0, 1}n which contains ϵ.
By the inductive assumption f|V∩F is extendable to F . Let us call the
extension h.
Let H be the upper face which is parallel to F .
Copy h on H. We have f̃ ∈ C 3

G (X ) which extends f .

x

x

x

y

V

F
z

x

x

x

y z

F

H
x

y z

f̃ : {0, 1}3 → X
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Using Distality I

The general case:

Lemma

If (G ,X ) is a distal minimal t.d.s then (HK[n](G ),C
[n]
G (X )) is a distal

minimal t.d.s.

Proof: As (G [n],X [n]) is distal so is (HK[n](G ),C
[n]
G (X )). As

C
[n]
G (X ) = {HK[n](G ).(x , x , . . . , x)| x ∈ X} = HK[n](G ).(x0, x0, . . . , x0) is

dynamically transitive it is minimal.
By inductive assumption f|W is extendable to c ∈ C

[n]
G (X ).

By minimality of (HK[n](G ),C
[n]
G (X )) we may choose hi ∈ HK[n](G )

such that
hic → (x , x , . . . , x)

Let f ′ = limi hi f . Note f ′|W = (x , x , . . . , x)|W . Therefore f ′ is
extendable by the special case.
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Using Distality II

Let f ′ = limi hi f . Note f ′|W = (x , x , . . . , x)|W . Therefore f ′ is
extendable by the special case.

Lemma

If (G ,X ) is a distal t.d.s then (HK[n](G ),HomG (V,X )) is a distal t.d.s.

Distal exchangablility

Let (G ,X ) be distal. Then x ∈ Gy iff y ∈ Gx .

As f ′ ∈ HK[n](G )f , we have f ∈ HK[n](G )f ′ which implies f is
extendable.
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The Ellis enveloping semigroup

It would be very convenient if we could “compactify” (G ,X )...
For example, for any g1, g2, . . . ∈ G , one would be able to find a
subsequence gij such that gij x converges for all x ∈ X .

Definition
The Ellis (enveloping) semigroup E = E (G ,X ) of a t.d.s (G ,X ) is the
closure of G in the semigroup (with respect to composition) XX equipped
with the product topology.

The Ellis semigroup is compact but in general not metrizable.

In general the elements of E as maps X → X are not necessarily
1− 1, nor onto, nor continuous.
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