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The Gowers uniformity norms

Let G = (G ,+) be a finite abelian group. We can represent

G = Z/pβ1
1 Z⊕ . . .⊕Z/pβk

k Z

for not necessarily distinct primes p1, . . . ,pk . Let f : G → C. The
Gowers uniformity norms are defined by the formula

The Gowers norms

∥f ∥Uk (G) =

(
E

h1,...,hk ,x∈G
∂h1 ...∂hk f (x)

)1/2k

where ∂hf (x) = f (x+h) · f (x).

For instance, when k = 2 we get

∥f ∥U2(G)=

(
E

h1,h2,x∈G
f (x) · f (x+h1) · f (x+h2) · f (x+h1+h2)

)1/4

.
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The inverse problem

We are interested in the inverse problem: If f : G → C is 1-bounded
(|f (x)| ≤ 1 for all x ∈ G ) and

∥f ∥Uk (G) ≥ δ > 0

is large, then what can we say about f ?

The inverse conjecture for the Gowers uniformity norms predicts
that a large Gowers norm indicates significant correlation with a
function of an algebraic origin.
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The Gowers-Host-Kra seminorms

Let Γ = (Γ,+) be a countable abelian group.

Γ-system

A Γ-system is a probability space X = (X ,X ,µ), equipped with a
measure-preserving action T : Γ→ Aut(X).

For ergodic Γ-system X and f ∈ L∞(X), we define

Host-Kra seminorms

∥f ∥Uk (X) = lim
N1,...,Nk→∞

(
E

h1,...,hk∈ΦN1 ,...,ΦNk

∫
X

∂hk . . .∂h1 f (x)dx

)1/2k

where ∂hf (x) = f (T hx) · f (x), and ΦN is a Følner sequence.
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Structure theorem for Z-systems

Universal Characteristic Factors
For any Γ-system, there exist factors

X → . . .→ Zk(X)→ Zk−1(X)→ . . .→ Z0(X)

such that ∀f ∈ L∞(X)

∥f ∥Uk+1(X) = 0 ⇐⇒ E(f |Zk(X)) = 0.

For example:
If X is ergodic, then Z0(X) = pt.
Z1(X) is the Kronecker factor. This is the maximal factor of X
isomorphic to a rotation on a compact abelian group.

Structure theorem for Z-systems, Host and Kra 2005

Zk(X) is an inverse limit of k-step nilsystems.
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Example

Let X = H3(R)/H3(Z) where

H3(R) =


1 a c

0 1 b
0 0 1

 : a,b,c ∈ R

 .

Set Tx = Ax where A=

1 α 0
0 1 β

0 0 1

 for some irrational α,β

independent over Q.

X = (X ,Haar,T ) is an ergodic 2-step nilsystem and X = Z2(X).
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Green-Tao-Ziegler inverse theorem

Green and Tao published a paper called "linear equations in
primes", where under two conjectures they managed to prove
the existence (and asymptotics) of prime solutions to certain
linear equations.
One of these conjecture was a 1-bounded function
f : Z/NZ→ C with large k-Gowers norm correlates with a
nilsequence.
This conjecture was proved later by Green and Tao for k = 3
and for general k together with Ziegler.
Subsequent alternative proofs (including quantitative
improvements) where established by Szegedy,
Candela–Szegedy, and Manners.
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Vector spaces over finite fields

Definition

Let X be a Γ system. A function f : X→ S1 is called a polynomial
of degree k , if ∂γ1 . . .∂γk+1f = 1, for all γ1, ...,γk+1 ∈ Γ.

Bergelson-Tao-Ziegler Theorem, 2010
Let X be an ergodic Fω

p -system.
(High characteristics) If p > k , then L2(Zk(X)) is generated by
linear combinations of polynomials of degree k .
(Low characteristics) If p ≤ k , then it is generated by linear
combinations of polynomials of degree C (k).
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Finite dimensional vector spaces

Inverse theorem for the Gowers norms over finite fields.
Tao-Ziegler 2010.
Let p be a fixed prime and let V be a finite dimensional vector
space over Fp. For every δ > 0, there exists ε > 0 so that for any
1-bounded map f : V → C be 1-bounded with ∥f ∥Uk+1(V ) > δ ,
there exists a polynomial p : V → S1 of degree k with∣∣∣Ex∈V f (x)p(x)

∣∣∣> ε.

Subsequent alternative proofs (including quantitative
improvements) by Gowers–Milićević, Milićević,
Candela–González-Sánchez–Szegedy.
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The Bergelson-Tao-Ziegler conjecture

Bergelson, Tao and Ziegler conjectured that the constant C (k)
equals k even when p < k . Recently we disproved this conjecture.

Jamneshan, S., Tao, (preprint)

There exists an ergodic Fω
2 -system X such that L2(Z5(X)) is not

generated by linear combinations of polynomials of degree 5.

It is not obvious that 5 is the least order for which the theorem
fails. In 2020 Candela, Gonzáles-Sánchez, Szegedy proved that
the conjecture holds whenever k ≤ p+1.
What is the optimal value of C (k)?
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What about other abelian groups?

Jamneshan and Tao’s conjecture
Let G be a finite additive group, let η > 0, let k ≥ 1, and let
f : G → C be a 1-bounded function with ∥f ∥Uk+1(G) ≥ η . Then
there exists a degree k filtered nilmanifold H/Γ, drawn from some
finite collection Nk,η of such nilmanifolds that depends only on
k ,η but not on G (and each such nilmanifold in Nk,η is endowed
arbitrarily with a smooth Riemannian metric), a Lipschitz function
F : H/Γ→ C of Lipschitz norm Oη ,k(1), and a polynomial map
g : G → H/Γ such that

| E
x∈G

f (x)F (g(x))| ≫η ,k 1.

The inverse U3(G ) was recently established by Jamneshan and Tao.
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Nonstandard analysis formulation

The proof of the inverse conjectures for Gowers norms using
ergodic theory is by contradiction.
The contrapositive gives the existence of some η ,k such that
there are a sequence of finite abelian groups Gn (in the general
class of such groups, or in a subclass such as the finite vector
spaces over a fixed field of prime order, all cyclic groups, or
groups of uniformly bounded torsion, etc.) and a
corresponding sequence of bounded functions fn : Gn→ C with
∥fn∥Uk (Gn) ≥ η which asymptotically violate the correlation
conclusion for certain choices of nilmanifolds (by enumerating
nilmanifolds using the theory of Mal’cev bases).
Nonstandard analysis allows one to turn this asymptotic
non-correlation into a contradiction to an inverse conjecture
for the Gowers norms for hyperfinite abelian groups (imagine
them as large asymptotic products of finite abelian groups).
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The correspondence principle

On a hyperfinite abelian group, the group Zω enables an
action by coordinate-wise independent translations (a random
sampling over an independent coordinate-wise uniform
distribution guarantees a "generic" such action almost surely).
This gives an ergodic Zω -action on a probability space such
that the Gowers norms for a collection of functions on the
hyperfinite abelian group coincide with the Gowers–Host–Kra
seminorms of these functions in the Zω -system. Now the
contradiction to an inverse conjecture for the Gowers norms
for hyperfinite abelian groups contradicts an inverse conjecture
for the corresponding Gowers–Host–Kra seminorms in that
Zω -system.
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Structure theorem for Zω -actions

Let X be a general ergodic Zω -system.

Jamneshan, Tao, S. (2021)

Z2(X ) is an inverse limit of 2-step nilpotent translational system.

A 2-step translational system
Y = (N/Λ,ν ,S)

N a 2-step nilpotent, locally compact
group.

Λ a discrete co-compact subgroup.

ν : A normalized Haar measure

Sg nΛ = φ(g)nΛ, φ : Zω →N a
homomorphism.
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Rudolph example

There exists a Z-system X with Z2(X) = lim
←

H3(R)/Λn, where

Λn =

1 2nZ 2nZ
0 1 Z
0 0 1


that is NOT isomorphic to a 2-step translational system.

Yet,
Z2(X )∼= K\H3(R×Z2)/H3(∆Z)

where

K =

1 0 0
0 1 Z2
0 0 1

 .
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Alternative structure theorem

Exact structure theorem (S. 2021)

Z2(X ) is isomorphic to a 2-step nilpotent double-coset Zω -system.

A k-step double-coset system
Y = (K\N/Λ,ν ,S)

N a k-step nilpotent, polish
group.

Λ a closed co-compact
subgroup.

K is a closed subgroup.

ν : The push-forward of a
normalized N-invariant
measure

SgKnΛ = φ(g)KnΛ,
φ : Zω →N a
homomorphism whose
image normalizes K .

Conjecture: Zk(X ) is isomorphic to a k-step double-coset system.
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Extensions

Let Γ be torsion-free.
Every ergodic Γ-system X admits an extension whose group of
normalized eigenfunctions {f : X→ S1 : ∂γ f = λγ , for λγ ∈ S1}
is divisible.
Let Y be a Γ-system with a divisible group of eigenfunctions,
then Z2(Y) is a translational system.
A factor of a translational system is a double-coset.
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Alternative structure theorem

Let Γ := Zω , and let X be a totally disconnected ergodic Γ-system.

Existence of divisible extensions
The system X admits an extension Y such that for every k , the
group of polynomials of degree k of Y is divisible.

Theorem (Jamneshan, S., Tao, preprint)

Zk(X) is a double coset Zω -system.

Weak BTZ-Conjecture.
Every ergodic Fω

p -system X, admits a Zω -extension Y with the
property that L2(Zk(Y)) is generated by polynomials of degree k .
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Inverse theorem for groups of bounded torsion

(Jamneshan, S., Tao. preprint)

Let k ,m ∈ N be a fixed natural number. There exists a constant
C (k,m) such that for every δ > 0, there exists ε > 0 so that for
every m-torsion group finite G and every 1-bounded f : G →C with
∥f ∥Uk+1(G) > δ we can find a polynomial p : G → C of degree at

most C (k ,m) so that
∣∣∣Ex∈G f (x) ·p(x)

∣∣∣≥ ε.
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What about connected systems?

A Q-system and more generally Qω -system is automatically totally
ergodic and connected.

Theorem
Let k ≥ 1, let Γ =Qω and let X be a Γ-system with divisible group
of polynomials of degree k . Then Zk(X) is a k-step translational
system. Furthermore, as a nilspace Zk(X) is an inverse limit of
nilmanifolds.
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Inverse theorem for approximately torsion-free

Definition
A family F of finite abelian groups is called approximately
torsion-free if for every p ∈ P there are at most finitely many
G ∈F whose order divides p.

Inverse theorem for approximately torsion-free groups
Jamneshan Tao conjecture holds for approximately torsion-free
groups.
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Outline of the difficulties

A main difficulty in the proof arises from that we are simultaneously
working in three different categories: a dynamical, a topological,
and a combinatorial.

By the correspondence principle, we get correlation with a
"double-nilsequence", that we want to lift to a correlation with a
nilsequence (which then turns out to be a polynomial sequence).
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A key step in the proof

Zk(Y) N/Λ

(Z/mZ)n (Z/mC(k,m)Z)n (Z/mZ)n Zk(X) K\N/Λ

C

∼

mod K

% mod m gn ∼

F

Computer scientist mod map %

Ergodic Sylow theorem + nilspace Schur-Zassenhaus theorem
Continuous mod K not a nilspace fibration a priori
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Thank you for listening!
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