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Definitions

In this talk the setting is:

• (X ,X , µ) is a probability space.

• T : X → X is a bi-measurable, measure preserving
transformation. This means that µ(T−1A) = µ(A) for all A ∈ X .

If I speak of several transformations T1, . . . ,Td , I mean that each
one is measure preserving (as above).

T is ergodic for µ (or (X ,X , µ,T ) is ergodic) if for any f ∈ L2(µ),

1
N

N−1∑
n=0

f (T nx)→
∫

f dµ

where the convergence is in L2(µ).
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Joint ergodicity

Let (X ,X , µ,T1, . . . ,Td) be a measure preserving system and
a1, . . . , ad be sequences of integers.
We say that (T a1(n)

1 ,T
a2(n)
2 , . . . ,T

ad (n)
d )n∈N is jointly ergodic if

1
N

N−1∑
n=0

f1(T
a1(n)
1 x)f2(T

a2(n)
2 x) · · · fd(T

ad (n)
d x)

converges (in L2(µ)) to∫
f1dµ ·

∫
f2dµ · · ·

∫
fddµ.

for any f1, . . . , fd ∈ L∞(µ).



Some results: single transformation

Furstenberg (1977): If T is weakly mixing 1, then for any d ∈ N,

(T n,T 2n, . . . ,T dn)n∈N is jointly ergodic.

Bergelson (1987): If T is weakly mixing, and p1, p2, . . . , pd are
polynomials such that

pi is non constant, i = 1, . . . , d .

pi − pj is non constant for i ̸= j . Then

(T p1(n),T p2(n), . . . ,T pd (n))n∈N is jointly ergodic.

e.g.: (T n2+n,T n2)n∈N is jointly ergodic.

1T is weakly mixing if T × T is ergodic for µ× µ
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Some results: single transformation

Frantzikinakis and Kra(2005): If T is totally ergodic and p1, . . . , pd
is an independent family of polynomials (a linear combination
along integers is non-constant), then

(T p1(n),T p2(n), . . . ,T pd (n))n∈N is jointly ergodic.

Tsinas (2023): If a1, . . . , ak are Hardy functions of polynomial
growth with linear combination far away from log, then

(T [a1(n)],T [a2(n)], . . . ,T [ad (n)])n∈N is jointly ergodic.

(previous result in that direction by Bergelson, Moreira, Richter
(2020); Tsina’s talk)
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Commuting transformations
Setting: (X ,X , µ,T1, . . . ,Td),TiTj = TjTi for all i , j .

It is a very different problem!

Berend and Bergelson (1989): If
TiT

−1
j is ergodic for all i ̸= j .

T1 × T2 · · · × Td is ergodic for µ⊗d := µ⊗ µ · · · ⊗ µ.
then

(T n
1 ,T

n
2 , . . . ,Tdn)n∈N is jointly ergodic.

Bergelson, Leibman and Son (2016): Let ϕ1, . . . , ϕd be generalized
linear functions. Then (Tϕ1(n)1 )n, . . . , (T

ϕd (n)
d )n are jointly ergodic

for µ if, and only if, both of the following conditions are satisfied:

(i)
(
T
ϕi (n)
i T

−ϕj (n)
j

)
n
is ergodic for µ for all 1 ¬ i , j ¬ d , i ̸= j ;

and
(ii)
(
T
ϕ1(n)
1 × · · · × T

ϕd (n)
d

)
n
is ergodic for µ⊗d .

Chu, Frantzikinakis and Host (2011) Case of polynomials of
distinct growth. Recent progress in the polynomial case (Wenbo’s
talk) D., Ferre-Moragues, Koutsogiannis, Sun, Frantzikinakis, Kuca
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What about non-polynomial functions?

D., Koutsogiannis, Sun (2023): Let (X ,B, µ,T1, . . . ,Td) be a
system with commuting and invertible transformations, and a be
“good function”, Then (T [a(n)]

1 )n, . . . , (T
[a(n)]
d )n are jointly ergodic

for µ if, and only if, both of the following conditions are satisfied:

(i) ((TiT
−1
j )[a(n)])n is ergodic for µ for all 1 ¬ i , j ¬ d , i ̸= j ; and

(ii) ((T1 × · · · × Td)
[a(n)])n is ergodic for µ⊗d .

Examples of good a′s. x log x ; xe log2 x + x17;
x17 + x1/2(2+ cos

√
log x)

Hardy function of polynomial growth with “strongly non polynomial part” that

dominates log. More later...
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Host-Kra seminorms

Notation: (X ,X ,T1, . . . ,Td) will be written as (X ,Zd) and for
n = (n1, . . . , nd) ∈ Zd , Tn = T n1

1 · · ·T
nd
d .

As in Wenbo’s talk, for subgroups G1, . . . ,Gk of Zd , we can
construct seminorms

|||f |||G1,...,Gk

When each subgroup act ergodically,

|||f |||G1,...,Gk
= |||f |||Zd ,...,Zd

Notation: |||f |||(Zd )×M = |||f |||Zd , . . . ,Zd︸ ︷︷ ︸
M−times

|||f |||(G1,G2)×3 = |||f |||G1,G2,G1,G2,G1,G2 , etc.
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Ingredients
Frantikinakis (2023); Best and Ferre-Moragues (2022)
(a1(n), . . . , ad(n)) is jointly ergodic iff
1 it is good for seminorm estimates: for the system

(X ,B, µ, (Tn)n∈Zd ) if there exists M ∈ N such that if
f1, . . . , fk ∈ L∞(µ) and |||fℓ|||(Zd )×M = 0 then

lim
N→∞

1
Nd

∑
n∈[N]d

k∏
i=1

Tai (n)fi = 0,

2 good for equidistribution for the system for the system
(X ,B, µ, (Tn)n∈Zd ), if for every α1, . . . , αk ∈
Spec ((Tn)n∈Zd ) , not all of them being trivial, we have

lim
N→∞

1
Nd

∑
n∈[N]d

exp(α1(a1(n)) + · · ·+ αk(ak(n))) = 0

where exp(x) = e2πix for all x ∈ R, and

Spec
(
(Tn)n∈Zd

)
= {α ∈ Hom(Zd ,T) : Tnf = exp(α(n))f , n ∈ Zd , for f ̸= 0 ∈ L2(µ)}.



Using Frantzikinakis criteria for joint ergodicity, our main goal is to
obtain upper bounds for the averages

1
N

N−1∑
n=0

f1(T
[a(n)]
1 x)f2(T

[a(n)]
2 x) · · · fd(T

[a(n)]
d x)

in terms of (box) Host-Kra seminorms.

D., Koutsogiannis, Sun (2023)
There exists D ∈ N such that if |||f1|||(T1,T1T−12 ,...,T1T−1d )×D = 0, then

lim sup
N→∞

∥∥∥∥∥ 1N
N∑

n=1

T
[a(n)]
1 f1 · . . . · T [a(n)]

d fd

∥∥∥∥∥
2

= 0. (1)

...and then proceed as in Wenbo’s talk...
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Strategy for obtaining seminorm estimates

Steps (roughly):
1 Transform the problem into one about variable polynomials.
2 Use appropriate PET induction to find upper bounds in terms
of averages of (box) seminorms.

3 Track the coefficients and use concatenation to obtain box
Host-Kra seminorms. By ergodicity assumptions these are
Host-Kra seminorms.



1: Reducing to variable polynomials

A sequence of real variable polynomials is a sequence of the form
(pN(n))N,n ⊆ R, where we assume that while the polynomials pN
might depend on N, their degrees do not.

pN,1(n) =
n17√
N

pN,1(n) =
( √2
Ne/π

+
N

3

)
n7 − 33

logN
n + 1, N, n ∈ N.



1: Reducing to variable polynomials

Let a be a function and (pN)N be a sequence of functions such
that there exists L a positive function with 1 ≺ L(x) ≺ x .

a(N + r) = pN(r) + eN,r , with eN,r ≪ 1.

for 0 ¬ r ¬ L(N), and let f1 ∈ L∞(µ).

If

lim sup
N→∞

sup
|cn|¬1

sup
∥f2∥∞,...,∥fd∥∞¬1

∥∥∥∥∥E0¬n¬L(N)cn

d∏
i=1

T
[pN(n)]
i fi

∥∥∥∥∥
2

= 0,

then we have

lim sup
N→∞

∥∥∥∥∥E1¬n¬N
d∏

i=1

T
[a(n)]
i fi

∥∥∥∥∥
2

= 0

for all f2, . . . , fd ∈ L∞(µ).
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Dealing with variable polynomials

How to deal with

lim sup
N→∞

sup
|cn|¬1

sup
∥f2∥∞,...,∥fd∥∞¬1

∥∥∥∥∥E0¬n¬L(N)cn

d∏
i=1

T
[pN(n)]
i fi

∥∥∥∥∥
2

?

We need PET-induction for variable polynomials, with a tracking
coefficient method. I will avoid giving details here.
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After running PET induction enough times one gets a bound

Eh∈Zr |||f1|||Tc1(h)
,Tc1(h)

,Tc1(h)−c2(h)
,...,Tc1(h)−cℓ(h)

= 0

Concatenation theorems (Tao and Ziegler) allows us to bound this
by

|||f1|||(T1,T1T−12 ,...,T1T−1d )×D

which under ergodicity assumptions equals

|||f1|||(Zd )×D



Conditions/examples of good sequences

Let h be a Hardy field function of polynomial growth, that is there
exists k and C with h(x) ¬ Cxk for all large enough x .
Any such h can be written as

h(x) = sh(x) + ph(x) + eh(x), (Richter)

where sh is a strongly non-polynomial Hardy field function,that is,
there exists i with lim x i/sh(x) = lim sh(x)/x

i+1 = 0.

Our result applies when log(x)/sh(x)→ 0. We conjecture that this
can be improved to log(x)/h(x)→ 0.
Our result cover cases of Hardy+tempered, for instance
x17 + x1/2(2+ cos

√
log x) or xπ/ log x + x1/2(2+ cos

√
log x).
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√
log x).



Conditions/examples of good sequences
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Questions / comments

1 Commuting transformations and different iterates (in progress
with B. Kuca, A. Koutsogiannis, W. Sun, K. Tsinas).

1

N

N∑
n=1

T
[a1(n)]
1 f1 · . . . · T [ad (n)]

d fd .

2 Non commutative setting. Recent results by Bergelson-Son,
Frantzikinakis-Host.

3 How about topological joint ergodicity (as in Xiangdong’s
talk).
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Dziękuję!


