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The Classical van der Corput Difference Theorem

Definition
A sequence (xn)

∞
n=1 ⊆ [0, 1] is uniformly distributed if for any

open interval (a, b) ⊆ [0, 1] we have

lim
N→∞

1
N

|{1 ≤ n ≤ N | xn ∈ (a, b)}| = b − a. (1)

Theorem (van der Corput, [26])

If (xn)∞n=1 ⊆ [0, 1] is such that (xn+h − xn)
∞
n=1 is uniformly

distributed for every h ∈ N, then (xn)
∞
n=1 is itself uniformly

distributed.

Corollary

If α ∈ R is irrational, then (n2α)∞n=1 is uniformly distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, [3, Theorem 1.4])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
N→∞

1
N

N∑
n=1

⟨xn+h, xn⟩ = 0, (2)

for every h ∈ N, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (3)
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, [3, Page 3])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
h→∞

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (4)

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (5)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, [3, Theorem 1.5], or [18, Lemmas 4.9, 7.5])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
H→∞

1
H

H∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (6)

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (7)

Question
Why would we ever use HvdCDT1 or HvdCDT2 when they are
both corollaries of HvdCDT3? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X ,B, µ,T ), and any
A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0. (8)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy)

For any m.p.s. (X ,B, µ,T ), and any A ∈ B with µ(A) > 0, there
exists n ∈ N for which

µ(A ∩ T−n2
A) > 0. (9)

Furstenberg’s proof in [17, Proposition 1.3] uses a form of vdCDT
since it uses the uniform distribution of (n2α)∞n=1. See also [4,
Theorem 2.1] for a proof using HvdCDT1 directly.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg, [17])

For any m.p.s. (X ,B, µ,T ), any A ∈ B with µ(A) > 0, and any
ℓ ∈ N, there exists n ∈ N for which

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−ℓnA

)
> 0. (10)

The proof presented in [9] uses HvdCT3 as Theorem 7.11, and the
proof in [18] uses a variation.

Theorem (Bergelson and Leibman, [6])

For any m.p.s. (X ,B, µ, {Ti}ℓi=1) with the Tis commuting, any
A ∈ B with µ(A) > 0, and any {pi(x)}ℓi=1 ⊆ xN[x ], there exists
n ∈ N for which

µ
(
A ∩ T

−p1(n)
1 A ∩ T

−p2(n)
2 A ∩ · · · ∩ T

−pℓ(n)
ℓ A

)
> 0. (11)

Uses an equivalent form of HvdCT3 as Lemma 2.4.
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Some of the Ergodic Hierarchy of Mixing

Definition
Let X = (X ,B, µ,T ) be a m.p.s. If for every f , g ∈ L2

0(X , µ)

1 lim
N→∞

1
N

N∑
n=1

⟨Un
T f , g⟩ = 0, then X is ergodic.

2 lim
N→∞

1
N

N∑
n=1

|⟨Un
T f , g⟩| = 0, then X is weakly mixing,

3 lim
n→∞

⟨Un
T f , g⟩ = 0, then X is strongly mixing,

4 and if L2
0(X , µ) has an orthogonal basis of the form

{Un
T fm}n,m∈Z, then X has Lebesgue spectrum.

5 which is the same as (⟨Un
T f , g⟩)∞n=1 being Fourier coefficients

of some h ∈ L1([0, 1],L), where L is the Lebesgue measure.
These definitions also apply to individual elements f ∈ L2

0(X , µ).

Sohail Farhangi Mixing, vdC difference thm, Noncommuting ergodic thms Frame 10



The Symmetric Ergodic Hierarchy of Mixing

Theorem
Let X = (X ,B, µ,T ) be a m.p.s. If for every f ∈ L2

0(X , µ)

1 lim
N→∞

1
N

N∑
n=1

⟨Un
T f , f ⟩ = 0, then X is ergodic,

2 lim
N→∞

1
N

N∑
n=1

|⟨Un
T f , f ⟩| = 0, then X is weakly mixing,

3 lim
n→∞

⟨Un
T f , f ⟩ = 0, then X is strongly mixing,

4 X has Lebesgue spectrum if (⟨Un
T f , f ⟩)∞n=1 are the Fourier

coefficients of some h ∈ L1([0, 1],L) taking nonnegative real
values.

This theorem also applies to individual elements f ∈ L2
0(X , µ).
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A weak mixing van der Corput difference theorem
Theorem (MvdCT3)

If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
H→∞

1
H

H∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (12)

then (xn)
∞
n=1 is a nearly weakly mixing sequence. This means that

for any other bounded sequence (yn)
∞
n=1 ⊆ H we morally (but not

literally) have that

lim
H→∞

1
H

H∑
h=1

∣∣∣∣∣ limN→∞

1
N

N∑
n=1

⟨xn+h, yn⟩

∣∣∣∣∣ = 0. (13)

Loosely speaking, this can be interpretted as a weak mixing in any
ultrapower H of H with respect to a unitary operator induced by
the left shift. Note that elements of H are sequences in H.
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A Lebesgue spectrum vdCdt

Theorem (MvdCT1)

If (xn)∞n=1 ⊆ H is a bounded sequence satisfying for all h ∈ N
∞∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣
2

< ∞, (14)

then (xn)
∞
n=1 is a spectrally Lebesgue sequence. In particular, if

H = L2(X , µ) and (yn)
∞
n=1 ⊆ L∞(X , µ) is spectrally singular, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
n=1

xnyn

∣∣∣∣∣
∣∣∣∣∣ = 0. (#)

Upgrading from weak convergence to the strong convergence in #
necessitates a new proof of the classical vdCDT. See [10, Chapter
2] for variations of MvdCT related to other levels of mixing, as well
as uniform distribution. See also [25].
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Failure of noncommutative ergodic theorems

Theorem ([15, Lemma 4.1])

Let a, b : N → Z \ {0} be injective sequences and F be any subset
of N. Then there exist a probability space (X ,B, µ), measure
preserving automorphisms T , S : X → X , both of them Bernoulli,
and A ∈ B, such that

µ
(
T−a(n)A ∩ S−b(n)A

)
=

{
0 if n ∈ F ,
1
4 if n /∈ F .

(15)

See also [18, Page 40], [2, Example 7.1], and [7].
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Noncommutative ergodic theorems 1/2

Theorem ([12, Corollary 1.7])

Let a : R+ → R be a Hardy field function for which there exist
some ϵ > 0 and d ∈ Z+ satisfying

lim
t→∞

a(t)

td+ϵ
= lim

t→∞

td+1

a(t)
= ∞.

(
e.g. a(t) = t1.5) (16)

Furthermore, let (X ,B, µ) be a probability space and
T , S : X → X be measure preserving transformations. Suppose
that the system (X ,B, µ,T ) has zero entropy. Then
(i) For every f , g ∈ L∞(X , µ) we have

lim
N→∞

1
N

N∑
n=1

T nf · S⌊a(n)⌋g = E[f |IT ] · E[g |IS ], (17)

where the limit is taken in L2(X , µ).
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Noncommutative ergodic theorems 2/2

Theorem (Continued)

(ii) For every A ∈ B we have

lim
N→∞

1
N

N∑
n=1

µ
(
A ∩ T−nA ∩ S−⌊a(n)⌋A

)
≥ µ(A)3. (18)

In [13] a similar theorem is proven for a(n) = p(n) with
p(x) ∈ Z[x ] of degree at least 2. In [23] it was shown that every T
with singular spectrum must also have zero entropy. Note that the
Horocycle flow has zero entropy [19] and Lebesgue spectrum [22]
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Application 1/4

Theorem (F., 2022)

Let (X ,B, µ) be a probability space and let T , S : X → X be
measure preserving automorphisms for which T has singular
spectrum. Let (kn)∞n=1 ⊆ N be a sequence for which
((kn+h − kn)α)

∞
n=1 is uniformly distributed in the orbit closure of α

for all α ∈ R and h ∈ N.
(i) For any f , g ∈ L∞(X , µ) we have

lim
N→∞

1
N

N∑
n=1

T nf · Skng = E [f |IT ]E[g |IS ], (19)

with convergence taking place in L2(X , µ).
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Application 1/4 continued

Theorem (Continued)

(ii) If A ∈ B then

lim
N→∞

1
N

N∑
n=1

µ
(
A ∩ T−nA ∩ S−knA

)
≥ µ(A)3. (20)

(iii) If we only assume that ((kn+h − kn)α)
∞
n=1 is uniformly

distributed for all α ∈ R \Q and h ∈ N, then (i) and (ii) hold
when S is totally ergodic.

Examples include kn = ⌊a(n)⌋ with a(n) being as in frame 19,
kn = ⌊n2 log2(n)⌋, and for part (iii) we may take kn = p(n) for
p(x) ∈ xZ[x ] with degree at least 2.
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Application 2/4 (A special case)

Theorem (F., 2022)

Let (X ,B, µ) be a probability space and T , S : X → X be measure
preserving automorphisms. Suppose that T has singular spectrum
and S is totally ergodic. Let p1, · · · , pK ∈ Q[x ] be integer
polynomials for which deg(p1) ≥ 2 and deg(pi) ≥ 2 + deg(pi−1).
For any f , g1, · · · , gK ∈ L∞(X , µ), we have

lim
N→∞

1
N

N∑
n=1

T nf
K∏
i=1

Spi (n)gi = E[f |IT ]
K∏
i=1

∫
X

gidµ, (21)

with convergence taking place in L2(X , µ).
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Application 3/4 (A special case)

Theorem (F., 2022)

Let (X ,B, µ) be a probability space and T ,R , S : X → X be
measure preserving automorphisms. Suppose that T has singular
spectrum, R and S commute, and S is weakly mixing. Let ℓ ∈ N
and let p1, · · · , pℓ ∈ Q[x ] be pairwise essentially distinct integer
polynomials, each having degree at least 2. For any
f , h, g1, · · · , gℓ ∈ L∞(X , µ) satisfying

∫
X
gjdµ = 0 for some

1 ≤ j ≤ ℓ, we have

lim
N→∞

1
N

N∑
n=1

T nf · Rnh ·
ℓ∏

j=1

Spj (n)gj = 0, (22)

with convergence taking place in L2(X , µ).
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An example to justify our assumptions
Consider the m.p.s. ([0, 1]2,B,L2,T , S) with
S(x , y) = (x + 2α, y + x) for some α ∈ R \Q, and
T (x , y) = (x , y + x). We see that ([0, 1]2,B,L2, S) and
([0, 1]2,B,L2,T ) are both zero entropy systems that are not
weakly mixing, and the former is totally ergodic. Furthermore, T
and S generate a 2-step nilpotent group. For
f0(x , y) = e2πi(x−y), f1(x , y) = e2πiy , and f2(x , y) = e−2πix , we see
that

lim
N→∞

1
N

N∑
n=1

T nf0(x , y)S
nf1(x , y)S

1
2 (n

2−n)f2(x , y)

= lim
N→∞

1
N

N∑
n=1

e2πi((1−n)x−y+y+nx+(n2−n)α−x−(n2−n)α) = 1 ̸= 0.
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Sets of K but not K + 1 recurrence?
Theorem ([14, Theorem 1.4 and Corollary 4.4])

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4 ,

3
4

]}
.

(i) If (X ,B, µ) is a probability space and
S1, S2, · · · , Sk−1 : X → X are commuting measure preserving
transformations, then for any A ∈ B with µ(A) > 0, there
exists n ∈ Rk for which

µ
(
A ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (23)

(ii) There exists a m.p.s. (X ,B, µ,T ) and a set A ∈ B satisfying
µ(A) > 0 such that for all n ∈ Rk we have

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
= 0. (24)
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Application 4/4

Theorem (F., 2022)

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4 ,

3
4

]}
. Let (X ,B, µ) be a probability

space and S1, S2, · · · , Sk−1 : X → X commuting measure
preserving automorphisms. Let T : X → X be an measure
preserving automorphism with singular spectrum, and for which
{T , S1, S2, · · · , Sk−1} generate a nilpotent group. For any A ∈ B
with µ(A) > 0, there exists n ∈ R for which

µ
(
A ∩ T−nA ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (25)

Since the system (T2,B2,L2,T ) with T (x , y) = (x + α, y + x)
can be used in item (ii) of the last slide when k = 2, the current
theorem does not hold for a general T with 0 entropy. Also note
that the maximal spectral type of T is L+ δα.
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Examples of systems with singular spectrum
In [5, Proposition 2.9] it is shown that if (X ,B, µ) is a standard
probability space, and Aut(X ,B, µ) is endowed with the strong
operator topology, then the set of transformations that are weakly
mixing and rigid is a generic set. Since any rigid automorphism has
singular spectrum, we see that the set of singular automorphisms is
generic. Now let S ⊆ Aut(X ,B, µ) denote the collection of
strongly mixing transformation, and note that S is a meager set
since an automorphism cannot simultaneously be rigid and strongly
mixing. Since S is not a complete metric space with respect to the
topology induced by the strong operator topology, a new topology
was introduced in [24], with respect to which S is a complete
metric space. It is shown in the Corollary to Theorem 7 of [24]
that a generic T ∈ S has singular spectrum, and such a T is
mixing of all orders due a well known result of Host [20]. See [11]
and [21] for concrete examples of T ∈ S that have singular
spectrum. See also [1], [8], and [16].
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