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Classical theorems
For topological Z-actions, we have the following results:

If (X ,T ) has positive topological entropy then there exists a
(forward) asymptotic pair (moreover, the union of all asymptotic
pairs has full measure for any invariant measure of positive
entropy). (Blanchard, Host, Ruette, 2002)
If (X ,T ) has zero entropy then there exists a topological extension
(Y ,S) of (X ,T ) which has no asymptotic pairs (a NAP system).
(D., Lacroix, 2012)

Thus zero entropy systems can be characterized precisely as factors
of NAP systems.
Following the global tendency to generalize everything possible to a
wider class of actions, I asked Mateusz the following question:

Is there a reasonable definition of an asymptotic pair in an action
of a countable amenable group G, so that an analogous
characterization of zero entropy G-action holds?
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Comments

There is a very simple notion of an asymptotic pair:
A pair x 6= y is “asymptotic” if for any ε > 0 we have d(gx ,gy) < ε
for all but finitely many g ∈ G.

However, this definition does not work already for Z. In this meaning
“asymptotic” pairs are bilaterally asymptotic and there are examples of
positive entropy systems which have no such pairs.

It seems that a notion of “future” and “past” of an orbit is necessary.

If the group G is orderable, then there have been successful atempts in
the direction of Blanchard-Host-Ruette theorem (W. Huang, L. Xu and
Y. Yi, 2014, and W. Bułatek, B. Kamiński and J. Szymański, 2016).

But we want to work with general (not necessarily orderable) groups.
Here, the first question is: how can one define the “future” of an orbit?
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Mutiorders

Let G be a group. An invariant random order (IRO) is a family of total
orders O on G and a probability measure ν on O invariant under the
G-action given by

a g(≺) b ⇐⇒ ga ≺ gb (≺∈ O).

Definition
A multiorder is an IRO such that all ≺∈ O are of type Z.

IRO’s were introduced by John Kieffer in 1975. They exist on any
countable group, however, most of them are of type Q.

Multiorders were introduced by D., Oprocha, Wiȩcek and Zhang (2022)
and we proved that they exist on any countable amenable group.
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Mutiorders
Moreover, Tom Meyerovitch showed that any multiorder has the Følner
property (is Følner), i.e.,

for ν-almost any ≺∈ O, the order intervals [0≺,n≺] form a Følner
sequence in G.

Observe that on Z we have the natural order < and the family {<}
(with the point mass at < as invariant measure) is a Følner multiorder.
This property of Z is crucial in proving the characterization of zero
entropy Z-actions, and so multiorders seem to be a promising tool for a
generalization.

Definition
A probability measure-preserving G-action (X , µ,G) is multiordered if it
has a multiorder (O, ν,G) as a measure-theoretic factor.
A multiordered G-action will be denoted by (X , µ,G, ϕ), where
ϕ : X → O is the factor map to a multiorder.

Note that every Z-action is multiordered by the one-point factor {<}.
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Asymptotic pairs in multiordered systems

In a multiordered system, the “future” of each orbit is easily defined as
the set {n≺x : n ≥ 1} and “remote future” is the set {n≺x : n ≥ N}.
This allows one to define asymptotic pairs, as follows:

Definition
Let (X , µ,G, ϕ) be a multiordered system. A pair (x , y) ∈ X × X is
ϕ-asymptotic if

1 x 6= y ,
2 ϕ(x) = ϕ(y) =≺∈ O,
3 limn→∞ d(n≺x ,n≺y) = 0.

Note that for Z-actions (X , µ,T ) and ϕ defined by ϕ(x) =< for all
x ∈ X , this definition generalizes the standard notion of an asymptotic
pair.
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Multiordered topological G-actions

While measure-theroetic asymptoticity suffices to prove an analog of
the Blanchard-Host-Ruette statement, for the opposite direction
(existence of a NAP extension for zero entropy systems), we need a
topological version of a multiordered system.

There is no hope to have a compact multiorder. Typically, (even in Z2),
the closure of any multiorder contains partial orders or orders of type N
(with a minimal element) and of type −N (with a maximal element).

Instead, we will introduce a “topological multiorder” using the theory of
tilings. Such a multiorder will arise from a genuine (i.e., compact)
topological system in which it is large in both topological and
measure-theoretic sense (although still without being compact).
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Tiling systems of countable amenable groups

Definition
A tiling T of a countable group G is a partition of G into finite sets T
(called tiles) such that there exists a finite family S of sets S ⊂ G
(called shapes, each containing the unit e, such that for every tile T
there exists a shape S ∈ S and a center c ∈ G such that T = Sc. A
tiling can be encoded symbolically, by placing at the centers of tiles
symbols assigned bijectively to the shapes.
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Tiling systems of countable amenable groups

A tiling T can be shifted by any element of g: T g = {Tg : T ∈ G}. T g
has the same shapes as T and the centers are cg, where c are the
centers of the tiles of T . Note that the orbit closure of a tiling consists
of tilings with the same family of shapes S.

Definition
A dynamical tiling T of a countable amenable group G is a G-action on
a closed invariant family of tilings with a common family of shapes S.
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Tiling systems of countable amenable groups
Definition
A tiling system T =

∨
n≥1 Tk is a topological joining of a sequence of

dynamical tilings such that

(1) (Følner property) If Sk denotes the family of shapes of Tk then⋃
k≥1 Sk is a Følner sequence in G.

The elements of T are sequences of tilings T = (Tk )k≥1 such that:
(2) (Congruency) For each k each tile of Tk+1 is a union of tiles of Tk .
(3) (Determinism) If two tiles of Tk+1 have the same shape, they are

partitioned in to tiles of Tk in “the same way”.

Summary of notation:
T - (static) tiling,
T - tile of T ,
T - dynamical tiling,
T =

∨
k≥1 Tk - tiling system (topological joining of dynamical tilings),

T = (Tk )k≥1 - element of the tiling system (sequence of static tilings).
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Tiling systems of countable amenable groups

Theorem (D., Huczek, Zhang, 2016)
Every countable amenable group G admits a tiling system of
topological entropy zero.
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Ordered tiling systems

Tiling systems give rise to very special multiorders (which we will call
topological). It suffices to order the subtiles of every tile.

Definition
An ordered tiling system is a tiling system T in which:

1 each shape S ∈ S1 is ordered linearly (from 1 to #S),
2 for k ≥ 1 we know that each S ∈ Sk+1 splits (in a unique way - this

is due to determinism) as a union of tiles of order k . We demand
that the subtiles of S are ordered linearly (from 1 to the number of
subtiles).

Each tile T (of any finite order k ) is then ordered linearly via the
lexicographical order applied to its subtiles, subtiles of subtiles, etc.
We are interested in these elements T ∈ T which determine an order
of type Z on G:
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Ordered tiling systems

Definition
An element T ∈ T is straight if

1 The union (over k ≥ 1) of the central tiles of Tk (the tiles of Tk
containing e) covers G,

2 The orders on the central tiles converge to an order ≺T of G of
type Z.

Theorem (D., Oprocha, Wiȩcek, Zhang, 2022)
If T is an ordered tiling system then the collection TSTR of all straight
elements T ∈ T is residual and has full invariant measures in T.

Tomasz Downarowicz (Poland) Asymptotic pairs and entropy June 9, 2023 14 / 23



Ordered tiling systems

Definition
An element T ∈ T is straight if

1 The union (over k ≥ 1) of the central tiles of Tk (the tiles of Tk
containing e) covers G,

2 The orders on the central tiles converge to an order ≺T of G of
type Z.

Theorem (D., Oprocha, Wiȩcek, Zhang, 2022)
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Topological multiorders

Definition
The collection OT = {≺T : T ∈ TSTR} is called a topological multiorder
of G.

If OT is a topological multiorder then the mapping T 7→≺T is defined
and continuous on TSTR, and it commutes with the action of G (the
action on T is the shift, while on OT the action was defined earlier by
a g(≺) b ⇐⇒ ga ≺ gb).

For each invariant measure µ on T, this mapping is a
measure-theoretic factor map from (TSTR, µ,G) to the multiorder
(OT, ν,G), where ν is the image of µ via this map.
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Topologically multiordered systems (finally!)

Theorem (D., Oprocha, Wiȩcek, Zhang, 2022)
Every topological multiorder OT has the uniform Følner property: For
each ε > 0 and each finite set K ⊂ G, there exists n such that for any
≺T ∈ OT, any order interval of length at least n is (K , ε)-invariant.

Definition (D., Wiȩcek, 2023)
A topological G-action (X ,G) is topologically multiordered if there
exists an ordered tiling system T and a topological factor map
π : X → T such that the preimage XSTR = π−1(TSTR) is dense in X .
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Topologically multiordered systems (finally!)

If (X ,G) is topologically multiordered then on XSTR we define the map
ϕ onto OT by

ϕ(x) =≺T , where T = π(x) ∈ TSTR.

The mapping ϕ is defined and continuous on a residual set of full
invariant measure.

Then for any invariant measure µ on X , (X , µ,G, ϕ) is a multiordered
measure-preserving G-action.

We denote such a topologically multiordered system by (X ,G, π, ϕ).
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Main theorems
Theorem (D., Wiȩcek, 2023)

1 Let (X , µ,G, ϕ) be a multiordered measure-preserving action of a
countable amenable group. Suppose that hµ(X |ϕ) > 0. Then
there exists a ϕ-asymptotic pair in X . Moreover, the union of such
pairs has positive measure µ.

2 Let (X ,G) be a topological G-action on a compact metric space.
Let (O, ν,G) be any multiorder. Then for ν-almost every ≺∈ O
there exists a ≺-asymptotic pair (i.e., such that d(n≺x ,n≺y)→ 0).

The passage from (1) to (2) is via picking a measure µ on X of positive
entropy, looking at the direct product of (X , µ,G) with (O, ν,G) and
letting ϕ be the projection on the second coordinate. Then
hµ(X |ϕ) = hµ(X ) > 0 and (1) applies. Almost all ≺ are obtained for
ergodic components of ν by invariance of the set of ≺ for which a pair
exists.
Statement (1) cannot be deduced from (2), because the graph of ϕ
may have measure zero in the product.
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Main theorems

Theorem (D., Wiȩcek, 2023)
Let (X ,G) be a topological action of a countable amenable group.
Suppose that hµ(X ) = 0. Then there exists a topologically multiordered
extension (Y ,G, π, ϕ) of (X ,G) which has no ϕ-asymptotic pairs at all.

Corollary (D., Wiȩcek, 2023)
Let (X ,G) be a topological action of a countable amenable group. The
following conditions are equivalent:

1 htop(X ,G) = 0.
2 For any invariant measure µ on X which has positive entropy,

there exists a multiodered extension (Y , ν,G, ϕ) of (X , µ,G) which
has no ϕ-asymptotic pairs (it suffices that the union of asymptotic
pairs has measure zero).

3 There exists a topologically multiordered topological extension
(Y ,G, π, ϕ) of (X ,G) which has no ϕ-asymptotic pairs at all.

.

Tomasz Downarowicz (Poland) Asymptotic pairs and entropy June 9, 2023 19 / 23



Main theorems
Theorem (D., Wiȩcek, 2023)
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Some tricks in the proof
Here is how we build an extension of a G-system of entropy zero:

We take an ordered tiling system T =
∨

k≥1 Tk of G of entropy zero.
Next, in each T = (Tk )k≥1 ∈ T, for each k and in each tile T of Tk , we
move the center of T , so that it has number 1 relatively in T . The new
tiling system is a factor of the old one, and we call it centered.
The next trick is to move the centers of the tiles, so that they occupy
positions congruent to each-other modulo some number pk (large for
large k but small in comparison with the size of each tile of the k th
generation), and congruent modulo pk−1 to the centers of order k − 1
(which have already been moved).
This is done through an inductive process in which every tiling Tk is
replaced by pk versions (depending on the position of the centers
modulo pk ). In this manner we obtain a new (more rich) tiling system
which is an extension of the centered tiling system.
We call it odometric tiling system, becuse it shares some common
features with usual odometers. This tiling system also has entropy
zero.
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Some tricks in the proof
We now extend our initial system (X ,G) by its direct product with an
odometric tiling system of entropy zero. This extension is
zero-dimensional, so we can represent it symbolically by symbolic
arrays. The centers of the tiles are marked in respective rows by some
special markers (for example by stars). This is a topologically
multiordered extension.

We now divide each row of each array into equal pieces of length pk .
Remark: This partition is not a tiling, as it may have infinitely many
shapes (with “huge jumps”).
Then to each array we add one extra symbolic row (row number zero)
in which we encode symbolically the information from each
(k × pk )-rectangle using half of the free space of the following
piece. This is possible due to entropy zero, if the numbers pk grow fast
enough. After all countably many steps, the zero row is filled except
on a set of Banach density zero. We fill in the unfilled positions in all
possible ways, creating multiple outcomes for each initial array x (this
is why we obtain an extension, not a conjugate system).
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Some tricks in the proof

Let x , y be an asymptotic pair of arrays. They are associated to the
same order (otherwise, by definition, thay are not asymptotic).

Remark: They may, however be associated to different sequences of
tilings T , however, such that the orders ≺T coincide.
Since x 6= y , these arrays differ at at least one place. Then their new
zero rows will differ infinitely many times looking forward from that
place. So, in the extension they have no asymptotic lifts.
In this manner we obtain an extension which glues asymptotic pairs. It
is not hard to prove that this extension has entropy zero (and is
zero-dimensional), so we can repeat the process.
The NAP extension is obtained as an inverse limit of the sequence of
extensions that glue asymptotic pairs.
It is an extremely easy exercise that in such an inverse limit there are
no asymptotic pairs.
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THANK YOU!
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