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1. An introduction-levels

It is clear that there are following levels of “bigness” of
subsets S of N or Z.

1 syndetic or piecewise syndetic;
2 positive upper density or positive upper Banach density;
3 Σn∈S

1
n =∞.

Basically, one uses topological dynamics, ergodic theory
and harmonic analysis (higher order) to deal with them
respectively.
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1. An introduction: the result

In today’s talk I will show how to prove the following result
using topological methods. 1

Theorem (Huang-Shao-Y., arXiv:2301.07873)

Let d ∈ N and pi be an integral polynomial with pi(0) = 0,
1 ≤ i ≤ d. If F is piecewise syndetic in Z, then

{(m, n) ∈ Z2 : m + p1(n) ∈ F, . . . ,m + pd(n) ∈ F}

is piecewise syndetic in Z2.

General ideas of the proof: We first transfer the question into the
dynamical one, and then use the nilpotent structure (known
before) and the saturation theorem for polynomials (developing
here) to solve them.

1A polynomial P is integral if P(Z) ⊂ Z.
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1. Piecewise syndetic

• F ⊂ Z is syndetic if there is M > 0 s.t. for each x ∈ Z,
BM(x) ∩ F 6= ∅; F ⊂ Z is piecewise syndetic if there are
a syndetic set F1 and intervals In with |In| −→ ∞ with

F ⊃ F1 ∩ (∪n∈NIn).

• F ⊂ Z2 is syndetic if there is M > 0 s.t. for each x ∈ Z2,
BM(x) ∩ F 6= ∅; F ⊂ Z2 is piecewise syndetic if ∃ a
syndetic set F1 and intv. In, Jn with |In|, |Jn| −→ ∞ with

F ⊃ F1 ∩ (∪n∈NIn × Jn).

• ∪n∈NIn or ∪n∈NIn × Jn is called a thick set.

The set of all piecewise syndetic subsets of G will be
denoted by Fps(G), or simply Fps.
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1. Motivations

Syndeticity appears naturally in the study of dynamical
systems.

A tds (X,G) is minimal if each x ∈ X the orbit {gx : g ∈ G} is
dense in X. It is known that if (X,G) is minimal then for each
x ∈ X and each neighborhood U of x,

N(x,U) = {g ∈ G : gx ∈ U}

is syndetic.

By Furstenberg’s corresponding principle, a piecewise
syndetic subset S is related to a minimal system by
considering the indication function 1S in {0, 1}Z.
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1. Motivations

We remark that

F The result was proved by Furstenberg and Glasner
(1998) when pi(n) = in, 1 ≤ i ≤ d. Later, Beiglböck
(2009) provided a simple proof.

F Bergelson-Leibman (1996) showed that if F ∈ Fps then

{(m, n) ∈ Z2 : m + p1(n), . . . ,m + pd(n) ∈ F}

is infinite.
F Our result is one of the open questions asked by

Bergelson and Hindman (2001).
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1. Dynamical version of the result

The dynamical version of our result is:

Theorem
Let (X,T) be minimal. Then for each x ∈ X and each
neighborhood U of x, one has

{(m, n) ∈ Z2 : Tm+P1(n)x ∈ U, . . . ,Tm+Pd(n)x ∈ U}

is piece-wise syndetic.

Later, I will give another dynamical version of our result
which is convenient to prove using dynamical methods.
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1. A question of Furstenberg

The other motivation is the following.

In some survey paper in 1981, Furstenberg wrote:

“We will see in the next section that the latter property
(means multiple recurrence) always holds for some point of
any system (X,T).

On the other hand we do not know if there always exists
a point x such that (x, x, . . . , x) is a uniformly recurrent point
(mean minimal point) for T × T2 × · · · × Td.”
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1. Multiply minimal point

The difficulty of the problem is that we need to find a
minimal system and know exactly the return times

N(x,U) = {n ∈ Z : Tnx ∈ U},

where U is an open neighborhood of x.

Theorem (Huang-Shao-Ye, 2021)
There is a minimal weakly mixing system which has no

multiply minimal point.

In fact, for this system (X,T) and each point x ∈ X, (x, x) is
(X × X,T × T2) recurrent, but not minimal.
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1. Multiply minimal point

In fact, we also have some positive information.

Theorem (Huang-Shao-Ye, 2021. Linear-Theorem)

For any minimal system (X,T)§d ≥ 2, and any
non-empty open set U, there exists x ∈ U such that

{n ∈ Z : Tnx ∈ U, . . . ,Tdnx ∈ U}

is piecewise syndetic.

Rmk: We conjecture that the result is sharp, i.e. one can not show
that there is a dense Gδ-set X0 such that for each x ∈ X0 and each
neighborhood U of x, the above holds.
(For a minimal PI system the property is equivalent to the
existence of a multiply minimal point.)
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4. The questions

Now let P1, . . . ,Pk be a finite collection of integral
polynomials with Pi(0) = 0, we ask the following question.

Question
Let (X,T) be a minimal system and U be a non-empty open
set. Is it true that there is x ∈ U such that

{n ∈ Z : TP1(n)x ∈ U, . . . ,TPd(n)x ∈ U} ∈ Fps?

The question has an affirmative answer (proved in the same
paper) and also has a combinatoric counterpart. This also
stimulates us to consider the double case (m, n).
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2. A general consideration

Assume that we have a problem P for a minimal (ergodic)
system (X,T) . If

1 we can show that each minimal (ergodic) system has a
factor Z;

X

π
��

T // X

π
��

Z
S
// Z

2 we can reduce the problem P from (X,T) to (Z, S);

3 we can solve the problem P on the factor Z,

then we solve the original problem P.
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2. Remarks

We remark:

1 It is very important to find a suitable factor Z (structure
theorems). It can not be too ”large” or too ”small”.
It turns out that the pro-nilfactor (by previous results
Host-Kra-Maass, Shao-Y., Glasner-Gutman-Y.) is a
good candidate in certain situations.

2 For the second step, we need to understand π : X → Z
very well. We will do it by proving saturation
theorems.

3 For the third step, we use the nice algebraic structures
of nilsystems.
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2. Topological dynamics

By a topological dynamical system (for short tds) we mean
a pair (X,G), where X is a compact metric space 2 and G is
a topological group acting on X.

When G = Z we write (X,Z) as (X,T), where T : X → X is a
homeomorphism from X to X.

When G = Zd for some d ≥ 2 we write (X,Zd) as
(X, 〈T1, . . . ,Td〉), where Ti : X → X is a homeomorphism
from X to X and Ti ◦ Tj = Tj ◦ Ti.

2Even in this case we are forced to consider compact Hausdorff spaces.
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2. Nilsystems

To show our result we need some tools. The first one is
the known structure theorem.

Let G be a group. For g, h ∈ G, we write

[g, h] = ghg−1h−1

for the commutator of g and h and we write [A,B] for the
subgroup spanned by {[a, b] : a ∈ A, b ∈ B}.

The commutator subgroups Gj, j ≥ 1, are defined inductively
by setting

G1 = G, and Gj+1 = [Gj,G].

Let k ≥ 1 be an integer. We say that G is k-step nilpotent if
Gk+1 is the trivial subgroup.
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2. Nilsystems

Let G be a k-step nilpotent Lie group and Γ a discrete
cocompact subgroup of G. The compact manifold X = G/Γ
is called a k-step nilmanifold.

The group G acts on X. That is, for a fixed τ ∈ G, define

T = T(τ) : X −→ X, xΓ 7→ (τx)Γ.

The Haar measure µ of X is the unique probability measure
on X invariant under this action. Then (X,T, µ) is called a
k-step nilsystem. When the measure is not needed for
results, we omit and write that (X,T) is a k-step nilsystem.

A k-step pronilsystem is an inverse limit of k-step nilsystems.
An∞-step pronilsystem is an inverse limit of nilsystems.
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2. The regionally proximal relation RP

Let G be a group acting on X. (X,G) is equicontinuous if
for each ε > 0 there is δ > 0 such that ρ(x, y) < δ implies that
ρ(gx, gy) < ε for any g ∈ G.

(x, y) ∈ RP (regionally proximal relation) if for each
neighbourhood U × V of (x, y) and ε > 0 there are
(x′, y′) ∈ U × V and g ∈ G with ρ(gx′, gy′) < ε. It is easy to
see RP is a closed invariant relation.

It is known: if G is amenabel and (X,G) is minimal, then RP
is an equivalence relation. X/RP is the maximal
equicontinuous factor (MEF).
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2. RP[d]

Now we explain how∞-step pronilsystems are connected
with minimal systems (we just state it for Z-actions)

Definition (HKM, 2010)

Let (X,T) be a tds and d ∈ N. The points x, y ∈ X are said to
be regionally proximal of order d (along cubes), denoted
by (x, y) ∈ RP[d] if for any δ > 0, there exist x′, y′ ∈ X and a
vector n = (n1, . . . , nd) ∈ Zd such that ρ(x, x′) < δ,
ρ(y, y′) < δ, and

ρ(Tn·εx′,Tn·εy′) < δ

for any ε = {ε1, . . . , εd) ∈ {0, 1}d \ {0, . . . , 0}, where
n · ε = ε1n1 + · · ·+ εdnd.

Note that: RP = RP[1].
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2. For d = 1, 2

� For d = 1 we need n1 with

ρ(Tn1x′,Tn1y′) < ε.

� For d = 2 we need n1, n2 with

ρ(Tn1x′,Tn1y′) < ε,

ρ(Tn2x′,Tn2y′) < ε,

ρ(Tn1+n2x′,Tn1+n2y′) < ε.
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2. For d = 3

� For d = 3 we need n1, n2, n3 with

ρ(Tn1x′,Tn1y′) < ε, ρ(Tn2x′,Tn2y′) < ε,

ρ(Tn1+n2x′,Tn1+n2y′) < ε, ρ(Tn3x′,Tn3y′) < ε,

ρ(Tn1+n3x′,Tn1+n3y′) < ε, ρ(Tn2+n3x′,Tn2+n3y′) < ε,

and

ρ(Tn1+n2+n3x′,Tn1+n2+n3y′) < ε.
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2. Pro-nilfactors

It is known (by Host-Kra-Maass 2010, Shao-Ye 2012) that
for a minimal system

1 RP[d] is an equivalence relation, and has lifting property.
2 X∞ = X/RP[∞] is the inverse limit of nilsystems. 3

Let RP[∞] = ∩∞i=1RP[d] and X∞ = X/RP[∞], which is called
the∞-step pronilfactor of (X,T).

3It was proved in Host-Kra-Maass using ergodic method. It can also be
proved using the theory of nilspaces, see the work by Candela, Gutman,
Szegedy and the coauthors.
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3. The factor map

The second tool we need is the so-called “saturation
theorem”.

That is, we need a deep understanding of π : X −→ X∞.

Unlike the situation in ergodic theory, here we need a
modification such that the resulting factor map is open.
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3. The linear case

The saturation theorem was first proved for the linear case 4

Theorem (Glasner-Huang-Shao-Weiss-Y., 2020)

Let (X,T) be minimal, and π : X → X∞ be the factor map.
Then there are minimal systems X∗ and X∗∞ (almost 1-1
extensions of X and X∞), and a commuting diagram s.t. X∗∞
is a d-step topological characteristic factor of X∗ for all d ≥ 2

X

π

��

X∗σ
oo

π∗(open)
��

X∞ X∗∞
τoo

4π : X → Y is almost 1-1 if {x ∈ X : |π−1π(x)| = 1} is a dense Gδ set.
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2. Notions

We now explain the notions appeared in the above theorem.

Let π : X −→ Y. A ⊂ X is π-saturated if π−1π(A) = A.

For a t.d.s. (X,T) and d ∈ N, let τd = T × T2 × · · · × Td.

Given a factor map π : (X,T)→ (Y,T) and d ≥ 2, the t.d.s.
(Y,T) is said to be a d-step topological characteristic
factor (along τd) of (X,T), if there exists a dense Gδ subset
Ω of X such that for each x ∈ Ω the orbit closure

Lx = O(x(d), τd) = {(Tnx,T2nx, . . . ,Tdnx) : n ∈ Z} ⊂ Xd

is π × · · · × π (d-times) saturated.
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3. A saturation theorem of Qiu

Let P = {p1, . . . , pd} be distinct non-constant integral polynomials
with pi(0) = 0 for 1 ≤ i ≤ d.

Theorem (Weak form of saturation for polynomials, Qiu, 2022)

Let (X,T) be minimal and π : X → X∞ be the factor map. Then
∃ minimal X∗ and X∗∞ (almost 1-1 extensions of X and X∞ resp.),
and a commuting diagram s.t. for any open subsets Vi of X∗ for
0 ≤ i ≤ d with

⋂d
i=0 π

∗(Vi) 6= ∅ and given P, ∃ n ∈ Z and x ∈ V0 with

Tp1(n)x ∈ V1, . . . ,Tpd(n)x ∈ Vd.

X

π

��

X∗
σ

oo

π∗(open)
��

X∞ X∗∞
τoo

Remark: It is used to solve the density problem.
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3. A saturation theorem for polynomials

Let P = {p1, . . . , pd} be distinct non-constant integral
polynomials with pi(0) = 0 for 1 ≤ i ≤ d.

Theorem (Saturation for poly., HSY, arXiv:2301.07873)
Let (X,T) be minimal and π : X → X∞ be the factor map. Then

∃ minimal X∗ and X∗∞ (almost 1-1 extensions of X and X∞ resp.),
a commuting diagram below and a dense Gδ set Ω s.t. for each
x ∈ Ω, d ∈ N and open sets U1, . . . ,Ud with π∗(x) ∈ ∩d

i=1π
∗(Ui),

there is n ∈ Z with

Tp1(n)x ∈ U1,Tp2(n)x ∈ U2, . . . ,Tpd(n)x ∈ Ud.

X

π

��

X∗σ
oo

π∗(open)
��

X∞ X∗∞
τoo
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3. Remarks

We have the following remarks.

1 The saturation theorem for the linear case can be
stated in the form of the one for general polynomials.

2 The proof of the saturation theorem is very long, I will
not discuss it here. Roughly speaking, the theorem
says that each minimal system is built by two parts:
“the structured part” (∞-step pronil-system), and
“the random part”.

3 The almost 1-1 modification is necessary by a result of
Wu-Xu-Ye.
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4. A system associated for polynomials

The final tool we need is the associated system related to a
given t.d.s. and a finite collection of integral polynomials.

To show the dynamical version of our result, we need to
pass it to pass it to another dynamical version.
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4. A system associated for linear polynomials

Glasner (1994) introduced an associated system Nd for a
t.d.s. Let (X,T) be a t.d.s. Set τd = T × T2 × · · · × Td and
T(d) = T × · · · × T. Then

Nd(X,T) = ∪x∈XO(x(d), 〈T(d), τd〉),

where x(d) = (x, . . . , x) (d-times), and 〈T(d), τd〉 is the group
generated by T(d) and τd. Note that if (X,T) is minimal, then
for any x ∈ X,

Nd(X,T) = O(x(d), 〈T(d), τd〉).

A deep result is the following

Theorem (Glasner)

If (X,T) is minimal, then so is (Nd, 〈T(d), τd〉).
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4. A system associated for polynomials

Now assume that (X,T) is a t.d.s. and p(n) = n2.

We define a system on ⊂ XZ

N∞(X, T) = ∪x∈XO((Tn2 x)n∈Z, 〈T∞, σ〉)

= ∪x∈X{(. . . , Tm+(n−1)2 x, T
•

m+n2 x, Tm+(n+1)2 x, . . .) : n,m ∈ Z},

where
T∞ = · · · × T × T × T × · · · ,

and σ is the left shift.
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4. A system associated for polynomials

Generally, for integral polynomials A = {p1, . . . , pd} with
pi(0) = 0, a point of (Xd)Z is denoted by

x = (xn)n∈Z =
(

(x(1)
n , x(2)

n , · · · , x(d)
n )
)

n∈Z
.

Let σ : (Xd)Z → (Xd)Z be the shift map, i.e., for all
(xn)n∈Z ∈ (Xd)Z

(σx)n = xn+1, ∀n ∈ Z.

Let (X,T) be a tds. For each x ∈ X, put

ωAx =
(
(Tp1(n)x,Tp2(n)x, . . . ,Tpd(n)x)

)
n∈Z ∈ (Xd)Z

Then

N∞(X,A) = {(T∞)nσm(ωAx ) : n,m ∈ Z, x ∈ X} ⊂ (Xd)Z.
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4. A system associated for polynomials

Remark
1 It is clear that N∞(X,A) is invariant under the action of

T∞ and σ, and T∞ ◦ σ = σ ◦ T∞. Thus
(N∞(X,A), 〈T∞, σ〉) is a Z2-t.d.s.

2 If (X,T) is transitive, then for each transitive point x of
(X,T), N∞(X,A) = O(ωAx , 〈T∞, σ〉).

3 Sometimes we identify points in (Xd1+d2)Z as
(Xd1)Z × (Xd2)Z as follows:

(
(x(1)

n , · · · , x
(d1+d2)
n )

)
n∈Z

=
((

(x(1)
n , · · · , x

(d1)
n )

)
n∈Z,

(
(x

(d1+1)
n , · · · , x

(d1+d2)
n )

)
n∈Z

)
.
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4. A system associated for polynomials

Examples: Let (X,T) be minimal.

(1) The case A = {p} with p(n) = n we have

(N∞(X,A), σ) ∼= (X,T), (4.1)

where ∼= means two systems are isomorphic.

(2) Let A = {p1, p2, . . . , pd}, where pi(n) = ain, 1 ≤ i ≤ d and
a1, a2, . . . , ad are distinct non-zero integers. In this case we
have

(N∞(X,A), σ) ∼= (NA(X,T), τ~a), (4.2)

where NA(X,T) is the orbit closure of (x, . . . , x) under
T × T × · · · × T, and τ~a = Ta1 × Ta2 × · · · × Tad . It is known
that (NA(X,T), 〈T∞, σ〉) is minimal by Glasner.
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4. A system associated for polynomials

(3) (X,T) is weakly mixing. If A = {n2} we have

(N∞(X,A), σ) ∼= (XZ, σ).

We remark that (N∞(X,A), 〈T∞, σ〉) is not minimal in the
above case.

If A = {n, n2} we have

(N∞(X,A), σ) ∼= (X × XZ,T × σ), (4.3)
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(4) If (X,T) is∞-step pronil, so is (N∞(X,A), 〈T∞, σ〉).

(5) If (X,T) is distal,

(N∞(X,A), 〈T∞, σ〉)

may not be distal (unless it is∞-step pronil).
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Theorem

Let (X,T) be a minimal t.d.s. a Then the following
statements are equivalent:

1 For any family A = {p1, p2, · · · , pd} of integral
polynomials with pi(0) = 0, (N∞(X,A), 〈T∞, σ〉) is an
M-system.

2 The dynamical version of our result, i.e.

For any integral polynomials p1, . . . , pd with pi(0) = 0, 1 ≤ i ≤ d, we
have that for each x ∈ X and any neighbourhood U of x

{(m, n) ∈ Z2 : Tm+p1(n)x ∈ U, . . . , Tm+pd(n)x ∈ U} ∈ Fps(Z2).

a(X,G) is an M-system if it is transitive and the set of minimal points is
dense.
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We remark that to use the saturation theorem we need to
give a condition for the family A.

Definition
Let A = {p1, . . . , pd} be a family of integral polynomials. We
say A satisfies condition (♠) if pi(0) = 0 and

1 pi(n) = ain, 1 ≤ i ≤ s, where s ≥ 0, and a1, . . . , as are
distinct non-zero integers;

2 deg pj ≥ 2, s + 1 ≤ j ≤ d;
3 for each i 6= j ∈ {s + 1, s + 2, . . . , d}, p[k]

j 6= p[t]
i for any

k, t ∈ Z, where p[j](n) = p(n + j)− p(j), ∀n ∈ Z.

It is easy to see that for a given family A there is a maximal
subfamily A′ with the condition (♠).
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It is left to show for any family A = {p1, · · · , pd} of integral
polynomials with pi(0) = 0 with the condition (♠),
(N∞(X,A), 〈T∞, σ〉) is an M-system.
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5. The distal case

To explain the main ideas of the proof, we start with a
minimal distal system (X,T) and A = {p} with deg(p) ≥ 2.
Let G = 〈T∞, σ〉.

X

π
��

Zπ′oo

φ~~}}
}}
}}
}}

X∞

We illustrate the idea by assuming that

(1) π is an equicontinuous extension.
(2) φ : Z −→ X∞ is a group extension and
(3) the maximal∞-step pro-nilfactor of Z is also X∞.
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Then we have the following diagram.

N∞(X,A)

π∞

��

N∞(Z,A)
(π′)∞oo

φ∞wwooo
ooo

ooo
oo

N∞(X∞,A)

Note that N∞(X∞,A) is∞-step pro-nil and by the saturation
theorem, for each y = (yi)i∈Z ∈ N∞(X∞,A)

(φ∞)−1(y) =
∏
i∈Z

φ−1yi.
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5. The distal case

It suffices to show the minimal points of G is dense in
N∞(Z,A).

Now fix a point y = (yi)i∈Z ∈ N∞(X∞,A) and
x = (xi)i∈Z ∈ (φ∞)−1(y). Since y is G-minimal, there exists a
G-minimal point x′ = (x′i)i∈Z ∈ (φ∞)−1(y).

Let φi ∈ Aut(Z) such that xi = φi(x′i). For each k ∈ N, let

Φk = (φ−k × φ−k+1 × · · · × φk)
∞

= · · · × (φ−k × φ−k+1 × · · · × φk)×
(φ−k × φ−k+1 × · · · × φk)× · · · .
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Then

Φk(x′) = (. . . , φk(x′−k−1), x−k, . . . , x0
•
, . . . , xk,

φ−k(x′k+1), . . . , φk(x′3k+1), φ−k(x′3k+2), . . .)

→ x, k→∞.

It is not difficulty to show that
1 Φk(x′) ∈ N∞(Z,A)

2 Φk(x′) is G-minimal.
This shows that the G-minimal points are dense in N∞(Z,A).
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5. The ideas of the proof

The idea of the proof of the general case is similar to the
above, but is much involved.

Let Aut(X,T) be the group of automorphisms of the t.d.s.
(X,T), that is, the group of all self-homeomorphisms ψ of X
such that ψ ◦ T = T ◦ ψ.

For an extension π : (X,T)→ (Y,T), let

Autπ(X,T) = {S ∈ Aut(X,T) : π ◦ S = π},

i.e., the collection of elements of Aut(X,T) mapping every
fiber of π into itself.
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Definition
Let π : (X,T)→ (Y,T) be an extension of minimal t.d.s. One
says π is regular if for any minimal point (x1, x2) in Rπ (i.e.
π(x1) = π(x2)) there exists χ ∈ Autπ(X,T) s.t. χ(x1) = x2.

Theorem (Vries’s book)

Let (X,T) and (Y,T) be minimal t.d.s. and let φ be the factor
map. Then there is an extension θ : (X∗,T)→ (X,T) such
that φ∗ = φ ◦ θ : (X∗,T)→ (Y,T) is regular.

X∗
θ

zzuuu
uuu

u

φ∗

��

X

φ $$I
III

III

Y
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Let π : (X,T)→ (Y,T) be a factor map of minimal t.d.s., and
x0 ∈ X, y0 = π(x0). Let u ∈ J such that ux0 = x0. We say that
π is a RIC (relatively incontractible) extension if for every
y = py0 ∈ Y, p ∈M,

π−1(y) = p ◦
(
uπ−1(y0)

)
. (5.1)

where

p ◦ A = {x ∈ X : ∀ λ ∈ Λ there is dλ ∈ A with x = lim
λ

mλdλ}

for any net {mλ}λ∈Λ ⊆ Z converging to p.

Note that every distal extension is RIC, and every RIC
extension is open.
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Every factor map between minimal systems can be lifted to
a RIC extension by proximal extensions.

Theorem (EGS)

Given a factor map π : (X,T)→ (Y,T) of minimal systems,
there exists a commutative diagram of factor maps (called
RIC-diagram)

X

π
��

X∗
θ′
oo

π′
��

Y Y ′θoo

such that:
(a) θ′ and θ are proximal extensions;
(b) π′ is a RIC extension;
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5. The ideas of the proof

The proof is done in four steps:

1 firstly we construct the extension using the regularizer
and the universal minimal system (Step 1),

2 secondly we transfer the question into some extension
of (N∞(X∗,A), 〈T∞, σ〉) (Step 2);

3 then we show the set of minimal points is dense in a
certain region (Step 3);

4 and finally we use the RIC property to spread minimal
points to the whole space (Step 4).5

5The weakly mixing extension makes trouble here.
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5. Some open questions

We just proved if F ∈ Fps(Z) then

{(m, n) ∈ Z2 : m + p1(n), . . . ,m + pk(n) ∈ F} ∈ Fps(Z2).

The first question is that

Question
What is the relationship between two piece-wise
syndeticity?
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Question

Assume that d ∈ N, S ∈ Fps(Z2), and pi,j is an integral
polynomial with pi,j(0) = 0 for each 1 ≤ i ≤ d, 1 ≤ j ≤ 2.
Consider the set

{(m1,m2, n) ∈ Z3 : (m1 + p1,1(n),m2 + p1,2(n)) ∈ S,

. . . , (m1 + pd,1(n),m2 + pd,2(n)) ∈ S}.

Is it true that the above set is piecewise syndetic in Z3?

Remark: Our method does not work for this situation. And
we guess that there is a combinatoric proof of our result
which can be used to solve the question, even for the
nilpotent actions.
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5. Some open questions

A general question is

Question
How to show the saturation theorem for other subsets of Z?
For example, the set of primes.
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