

Geodesic complexity and decompositions of cut loci

Research Group Workshop on Some Problems of Applied and Computational Topology Banach Center, Będlewo, 5-11 March 2023

Stephan Mescher Martin Luther University Halle-Wittenberg Maximilian Stegemeyer MPI for Mathematics in the Sciences and University of Leipzig

talk based on:

S. Mescher, M. Stegemeyer, Geodesic complexity of homogeneous Riemannian manifolds, to appear in Algebr. Geom. Topol., arXiv:2105.09215

S. Mescher, M. Stegemeyer, Geodesic complexity via fibered decompositions of cut loci, J. Appl. and Comput. Topology (2022), arXiv:2206.07691

Real-world situation

A robot is supposed to move autonomously from one location to another in its workspace (e.g. warehouse, grid network, ...).

Topological motion planning problem

Let X be a path-connected topological space. Given $x, y \in X$, find a path $\gamma \in PX = C^{\circ}([0, 1], X)$ with $\gamma(0) = x$ and $\gamma(1) = y$.

Definition

Let X be a top. space, $A \subset X \times X$. A motion planner over A is a map

 $s: A \rightarrow PX$,

such that (s(x, y))(0) = x, (s(x, y))(1) = y, for all $(x, y) \in A$, i.e. a section over A of the fibration

$$\pi: \mathsf{PX} \to \mathsf{X} \times \mathsf{X}, \qquad \gamma \mapsto (\gamma(\mathsf{O}), \gamma(\mathsf{1})).$$

For a robot to move autonomously in *X*, we need a motion planner over $X \times X$.

We want robots to move *predictably*, so we want motion planners to be continuous on large subsets of $X \times X$ and only have few "jumps" in the path assignments.

Idea: Search for the lowest number of "jumps" of a motion planner that is necessary by the topology of the space.

Definition (Farber '03)

Let X be a path-connected top. space. The topological complexity of X is given by $TC(X) \in \mathbb{N} \cup \{+\infty\}$,

$$\mathsf{TC}(X) := \inf \Big\{ n \in \mathbb{N} \ \Big| \ \exists \bigsqcup_{j=1}^n A_j = X \times X, \text{ s.t. } A_j \text{ locally compact}, \Big\}$$

 $\forall j \exists s_j : A_j \rightarrow PX \text{ cont. motion planner} \}.$

TC(X) is a homotopy invariant and satisfies

$$\operatorname{cat}(X) \leq \operatorname{TC}(X) \leq \operatorname{cat}(X \times X),$$

where cat denotes Lusternik-Schnirelmann category.

Definition (A. Schwarz, '61)

Let $p : E \to B$ be a fibration. The sectional category or Schwarz genus of p is given by

$$\operatorname{secat}(p) = \inf \Big\{ n \in \mathbb{N} \ \Big| \ \exists \bigcup_{j=1}^{n} U_j = B \quad \operatorname{open \ cover}, s_j : U_j \xrightarrow{C^o} E, \ p \circ s_j = \operatorname{incl}_{U_j} \ \forall j \Big\}.$$

If X is an ENR (e.g. a locally finite CW complex), then:

$$\mathsf{TC}(X) = \mathsf{secat}\left(\pi : \mathsf{PX} \to X \times X, \ \gamma \mapsto (\gamma(\mathsf{O}), \gamma(\mathsf{1}))\right).$$

Use results by Schwarz to derive upper and lower bounds on TC(X). Lower bounds are mostly obtained from studying the cohomology rings of X.

(after David Recio-Mitter, 2020)

Problem Motion planners with few domains of continuity may consist of paths that are not feasible or very inefficient.

Engineers might prefer *efficient* motion along short paths and put up with discontinuities.

Idea Given a geodesic space (X, d), i.e. a metric space in which any two points are connected by a minimal geodesic, we allow only paths having minimal length.

Definition (Recio-Mitter 2020) (M, g) complete Riemannian manifold, $GM := \{ \text{minimal geodesics in } M \} \subset PM, \pi : GM \to M \times M, \pi(\gamma) = (\gamma(0), \gamma(1)),$ and $A \subset M \times M$. The geodesic complexity of A in M is given by

$$\begin{aligned} \mathsf{GC}_{\mathsf{M}}(\mathsf{A}) &:= \inf \Big\{ n \in \mathbb{N} \ \Big| \ \exists \bigsqcup_{j=1}^{n} B_{j} \supset \mathsf{A}, \ \text{s.t.} \ B_{j} \ \text{locally compact}, \\ \forall j \ \exists \mathsf{s}_{j} : B_{j} \xrightarrow{\mathsf{C}^{\circ}} \mathsf{GM} \ \text{with} \ \pi \circ \mathsf{s}_{j} = \operatorname{incl}_{\mathsf{B}_{j}} \Big\}. \end{aligned}$$

Put $GC(M, g) := GC_M(M \times M)$ - the geodesic complexity of M.

A local section $s : B \to GM$ of π is called a geodesic motion planner on B.

Caveat $\pi : GM \to M \times M$ is not a fibration, so can not use general results on secat etc.

Observations on geodesic complexity

- $GC_M(A \cup B) \leq GC_M(A) + GC_M(B)$ for all $A, B \subset M \times M$.
- $TC(M) \leq GC(M, g)$ for every complete Riemannian mfld. (M, g).
- The standard examples of motion planners show that

$$GC(S^n, g_{round}) = TC(S^n) = \begin{cases} 2 & \text{if } n \text{ is odd,} \\ 3 & \text{if } n \text{ is even.} \end{cases}$$

• GC really depends on the Riemannian metric. Shown by Recio-Mitter:

$$\operatorname{GC}(T^2, g_{\operatorname{flat}}) = 3, \quad \operatorname{GC}(T^2, g_{\mathbb{R}^3}) = 4.$$

• **Recio-Mitter, 2020:** For every $k \in \mathbb{N}$ there exists a closed Riem. manifold (M, g) with

$$GC(M,g) \ge TC(M) + k.$$

Cut loci in Riemannian manifolds

Let (M, g) complete Riemannian manifold. Let $p \in M$ and let $\gamma : \mathbb{R} \to M$ be a geodesic with $\gamma(o) = p$. Put

 $t_* := \sup\{t > o \mid \gamma|_{[o,t]} \text{ is length-minimizing}\}.$

• $q := \gamma(t_*)$ is called a cut point of p. The cut locus of p is

 $\operatorname{Cut}_p(M) := {\operatorname{cut points of } p} \subset M.$

- $t_* \cdot \gamma'(o) \in T_pM$ is called a tangent cut point of p. The tangent cut locus of p is $\widetilde{Cut}_p(M) := \{ \text{tangent cut points of } p \} \subset T_pM.$
- Clearly, the Riemannian exponential map of (M, g) satisfies

$$\exp_p\left(\widetilde{\operatorname{Cut}}_p(M)\right) = \operatorname{Cut}_p(M).$$

• If M is compact, then $\widetilde{\operatorname{Cut}}_p(M) \approx S^n$ for each $p \in M$.

Consider $T^2 = \mathbb{R}^2/\Gamma$ with quotient metric of standard metric, where $\Gamma \subset \mathbb{R}^2$ is a lattice whose generators $\{a_1, a_2\}$ satisfy $a_1 \not\perp a_2$. o := [0].

(M,g) complete Riemannian manifold, $Cut_p(M)$ the cut locus of $p \in M$.

Proposition

Let $p \in M$ and $q \in Cut_p(M)$, such that there exist $\gamma_1, \gamma_2 \in GM$ from p to q with $\gamma_1 \neq \gamma_2$. Let U be an open neighborhood of q. Then there exists no continuous geodesic motion planner on $\{p\} \times U$.

Proof The map $v : GM \to TM$, $v(\gamma) = \gamma'(0)$, is continuous. If $s : \{p\} \times U \to GM$ was a cont. geod. motion planner, then $v \circ s : \{p\} \times U \to TM$ was continuous. For $i \in \{1, 2\}$ one computes:

$$\lim_{t \neq 1} (\mathbf{v} \circ \mathbf{s})(\mathbf{p}, \gamma_i(\mathbf{t})) = \lim_{t \neq 1} \mathbf{t} \cdot \gamma'_i(\mathbf{0}) = \gamma'_i(\mathbf{0})$$

$$\Rightarrow \lim_{t \neq 1} (\mathbf{v} \circ \mathbf{s})(\mathbf{p}, \gamma_1(\mathbf{t})) \neq \lim_{t \neq 1} (\mathbf{v} \circ \mathbf{s})(\mathbf{p}, \gamma_2(\mathbf{t})) \quad \text{if}$$

Contradiction, as $\lim_{t \nearrow 1} s(p, \gamma_1(t)) = s(p, q) = \lim_{t \nearrow 1} s(p, \gamma_2(t)).$

П

Total cut loci in Riemannian manifolds

• (Recio-Mitter, 2020) The total cut locus of M is given by

$$\operatorname{Cut}(M) := \bigcup_{p \in M} (\{p\} \times \operatorname{Cut}_p(M)) \subset M \times M.$$

• The total tangent cut locus of M is given by

$$\widetilde{\operatorname{Cut}}(M) := \bigcup_{p \in M} \widetilde{\operatorname{Cut}}_p(M) \subset TM.$$

• The extended exponential map

$$\operatorname{Exp}: TM \to M \times M, \quad \operatorname{Exp}(p, v) = (p, \operatorname{exp}_p(v)),$$

satisfies

$$\operatorname{Exp}\left(\widetilde{\operatorname{Cut}}(M)\right) = \operatorname{Cut}(M).$$

 If (p,q) ∉ Cut(M), then there exists a unique minimal geodesic from p to q. Let (M, g) be a complete Riemannian manifold and $p \in M$.

- $\operatorname{Cut}_p(M)$ is closed and of Lebesgue measure zero.
- The set of all q ∈ M for which ∃γ₁, γ₂ ∈ GM with γ₁ ≠ γ₂ joining p and q is dense in Cut_p(M).
- **Gluck, Singer 1978:** Every smooth manifold of dimension \geq 2 admits a Riemannian metric with a non-triangulable cut locus.
- For $q \neq p \in M$, the sets $Cut_p(M)$ and $Cut_q(M)$ might be wildly different from each other.
- Let $Isom(M, g) := \{\phi : M \to M \mid \phi \text{ is an isometry}\}$. If $\phi \in Isom(M, g)$, then $\phi(Cut_p(M)) = Cut_{\phi(p)}(M)$.

Geodesic motion planners and cut loci

• For a complete Riemannian manifold (*M*, *g*) the unique geodesic motion planner

 $s: (M \times M) \setminus Cut(M) \rightarrow GM, \quad (s(p,q))(t) = \exp_p(t \cdot Exp^{-1}(p,q)),$

is continuous. (see also Blaszczyk, Carrasquel-Vera, 2018)

• We derive:

 $GC_M(Cut(M)) \le GC(M,g) \le GC_M(Cut(M)) + 1.$

(Conjecture: It always holds that $GC(M, g) = GC_M(Cut(M)) + 1$.)

• Let $A \subset Cut(M)$. If $\sigma_A : A \to \widetilde{Cut}(M)$ is a continuous section of $Exp|_{\widetilde{Cut}(M)} : \widetilde{Cut}(M) \to Cut(M)$, then

 $s_A : A \to GM,$ $(s_A(p,q))(t) = \exp_p(t \cdot \sigma_A(p,q)),$

is a geodesic motion planner.

Idea for GC Find upper bounds on the numbers of elements of a decomposition of Cut(M) into domains of continuous sections of Exp |_{Cut(M)}.

Fibered decompositions of the total cut locus

Definition Let (M, g) be a complete Riemannian manifold. A decomposition of Cut(M) into locally compact subsets A_1, \ldots, A_k is called a fibered decomposition of Cut(M) if, with $\widetilde{A}_i := \text{Exp}^{-1}(A_i) \cap \widetilde{\text{Cut}}(M)$, the restriction

$$\pi_i := \mathsf{Exp} \mid_{\widetilde{\mathsf{A}}_i} : \widetilde{\mathsf{A}}_i o \mathsf{A}_i$$

is a fibration for each $i \in \{1, 2, \ldots, k\}$.

Theorem (M., Stegemeyer, 2022)

If Cut(M) admits a fibered decomposition $\{A_1, \ldots, A_k\}$, then in the above notation

$$\operatorname{GC}(M,g) \leq \sum_{i=1}^{k} \operatorname{secat}(\pi_{i} : \widetilde{A}_{i} \to A_{i}) + 1.$$

 $\operatorname{GC}(M,g) \geq \max\{\operatorname{secat}(\pi_{i}) \mid i \in \{1, 2, \dots, k\}\}.$

Q Which Riemannian manifolds admit such fibered decompositions?

Idea Restrict our attention to homogeneous manifolds (i.e. Isom(M, g) acts transitively on *M*), where all cut loci "look the same".

Theorem (M., Stegemeyer, 2022)

- a) If *M* is an irreducible¹ compact simply connected symmetric space, then Cut(*M*) admits a fibered decomposition.
- b) Consider the lens space $L(p, 1) \cong S^3/\mathbb{Z}_p$, with a Riemannian metric of constant curvature g. Then Cut(L(p, 1)) admits a fibered decomposition.

Strategy Let (M, g) be a homogeneous Riemannian manifold. Find a fibered decomposition of $Cut_{\rho}(M)$ with an additional property and extend it to a fibered decomposition of Cut(M) via isometries.

¹*M* is *irreducible* if it is not isometric to a product of symmetric spaces.

Let (M, g) be a homogenous Riemannian manifold, put G := Isom(M) and let $\Phi : G \times M \to M$ denote its action. For $p \in M$ let G_p denote its isotropy group.

Definition A locally compact decomposition $\{B_1, \ldots, B_k\}$ of $Cut_p(M)$ is called isotropy-invariant if

$$\Phi_g(B_i) \subset B_i \qquad \forall g \in G_p, \ i \in \{1, 2, \dots, k\}.$$

Proposition (M., Stegemeyer 2022) Let $p \in M$ and let $\{B_1, \ldots, B_k\}$ be an isotropy-invariant decomposition of $\operatorname{Cut}_p(M)$. Put $\widetilde{B}_i := \exp_p^{-1}(B_i) \cap \widetilde{\operatorname{Cut}}_p(M)$ and assume that $\exp_p|_{\widetilde{B}_i} : \widetilde{B}_i \to B_i$ is a fibration for each $i \in \{1, 2, \ldots, k\}$.

a) Then $\{A_1, \ldots, A_k\}$ is a fibered decomposition of Cut(M), where

 $A_i := \{(q, r) \in M \times M \mid \exists g \in G \text{ s.t. } \Phi_g(p) = q \text{ and } r \in \Phi_g(B_i)\}.$

b) $p_i : A_i \to M$, $p_i(q, r) = q$, is a fiber bundle with fiber B_i for each *i*.

Example for isotropy-invariant decomposition: flat 2-tori

 $T^2 = \mathbb{R}^2 / \Gamma$ with quotient metric g_{Γ} of standard metric, where $\Gamma = \mathbb{Z} \cdot \{a_1, a_2\}, a_1 \not\perp a_2. o := [0].$

 $B_1 = \{p,q\}, B_2 = \operatorname{Cut}_o(T^2) \setminus \{p,q\}.$

 $\widetilde{B}_1 = \{ \text{vertices of the hexagon} \}, \widetilde{B}_2 = \{ \text{points on the edges of the hexagon} \}.$ $\exp_o|_{\widetilde{B}_1} : \widetilde{B}_1 \to B_1 \text{ is a trivial 3-fold covering, } \exp_o|_{\widetilde{B}_2} : \widetilde{B}_2 \to B_2 \text{ a trivial 2-fold covering.} \}$

$\{B_1, B_2\}$ is isotropy-invariant.

For the induced fibered decomposition $\{A_1, A_2\}$ of $Cut(T^2)$ the fibrations

$$\pi_1:\widetilde{A}_1\to A_1, \qquad \pi_2:\widetilde{A}_2\to A_2,$$

are trivial, hence

$$GC(T^2, g_{\Gamma}) \leq secat(\pi_1) + secat(\pi_2) + 1 = 1 + 1 + 1 = 3.$$

Since $TC(T^2) = 3$, this shows that

$$GC(T^2,g_{\Gamma})=3$$

for any such lattice Γ.

Another approach to the GC of homogeneous Riemannian manifolds

Another idea of relating cut loci of points with total cut loci in homogeneous manifolds:

Proposition If (M, g) is homogeneous and $p \in M$, then e_p : Isom $(M, g) \to M$, $\phi \mapsto \phi(p)$, is a principal *G*-bundle, where *G* is the isotropy group of *p*.

Theorem (M., Stegemeyer 2021) If (M, g) is homogeneous, then

 $GC(M,g) \leq secat(e_p : Isom(M,g) \rightarrow M) \cdot GC_M(Cut_p(M)) + 1.$

Corollary If (G, g_{inv}) is a conn. Lie group with left-invariant Riemannian metric, then

 $GC(G, g_{inv}) \leq GC_M(Cut_1(G)) + 1.$

Theorem (M., Stegemeyer 2021) Let $S^3 \cong SU(2)$ be equipped with a Berger metric g_B . Then $GC(S^3, g_B) = 2$.

Problem The factor secat(e_p) is hard to compute and might become very big, only know in general that secat(e_p) \leq cat(M).

Let M = G/K be an irreducible compact simply connected symmetric space, where (G, K) is a Riemannian symmetric pair, let $o = [1] \in M$.

T. Sakai, 1978: Using root systems and properties of adjoint representations, one can show:

- Cut_o(M) has a decomposition $\{S_1, \ldots, S_r\}$, where $r = \operatorname{rank}(M)$.
- Each connected component $W \subset S_i$, $i \in \{1, 2, ..., r\}$ is of the form

$$W \approx K/Z \times B^{r-i},$$

where B^{r-i} is an open (r-i)-ball, $Z \le K$ is a closed subgroup, depending on a root system of (G, K).

• If $W_1, W_2 \subset S_i$ are connected components with $W_1 \neq W_2$, then $\overline{W}_1 \cap W_2 = \emptyset$.

Lemma $\{S_1, \ldots, S_r\}$ is isotropy-invariant and gives rise to a fibered decomposition $\{A_1, \ldots, A_r\}$ of Cut(*M*).

GC of irreducible compact simply connected symmetric spaces

Theorem (M., Stegemeyer, 2022) Let M = G/K be an irreducible compact simply connected symmetric space. Then, in terms of the fibered decomposition from above,

$$egin{aligned} \mathsf{GC}(M, g_{\mathsf{sym}}) &\leq \sum_{i=1}^r \max\{ \mathsf{secat}(\pi_i |_{\widetilde{A}_i \mid W} : \widetilde{A}_i |_W o W) \mid W \in \pi_\mathsf{o}(A_i) \} + 1 \ &\leq \sum_{i=1}^r \max\{ \mathsf{cat}(W) \mid W \in \pi_\mathsf{o}(A_i) \} + 1. \end{aligned}$$

 $\label{eq:constraint} \begin{array}{ll} \mbox{Example} & G_2(\mathbb{C}^4) = U(4)/(U(2) \times U(2)), & \mbox{TC}(G_2(\mathbb{C}^4)) = 9. \end{array}$

Sakai, 1978: $\operatorname{Cut}_o(G_2(\mathbb{C}^4)) = S_1 \sqcup S_2$, where S_1 is a simply conn. manifold with dim $S_1 = 6$, $S_2 \approx (S^2 \times S^2) \sqcup \{*\}$.

Hence, $\operatorname{Cut}(G_2(\mathbb{C}^4)) = A_1 \cup A_2$, where A_1 is a bundle over $G_2(\mathbb{C}^4)$ with fiber S_1 , $A_2 = C_1 \cup C_2$, where C_1 is a bundle over $G_2(\mathbb{C}^4)$ with fiber $S^2 \times S^2$ and $C_2 \approx G_2(\mathbb{C}^4)$.

 $\Rightarrow \mathsf{GC}(\mathsf{G}_2(\mathbb{C}^4)) \leq \mathsf{cat}(\mathsf{A}_1) + \mathsf{cat}(\mathsf{C}_1) + 1 \leq 8 + 7 + 1 = 16.$

Some well-established facts on complex projective spaces:

- Well-known that $TC(\mathbb{C}P^n) = 2n + 1$ for each $n \in \mathbb{N}$.
- $\mathbb{C}P^n = U(n+1)/(U(n) \times U(1)), n \ge 2$, with the Fubini-Study metric g_{FS} is an irred. compact simply connected symmetric space of rank one.
- A classical result from Riemannian geometry: $\operatorname{Cut}_p(\mathbb{C}P^n)\approx\mathbb{C}P^{n-1}$, one obtains that

$$\mathbb{C}P^{n-1} \hookrightarrow \mathsf{Cut}(\mathbb{C}P^n) \to \mathbb{C}P^n$$

is a fiber bundle.

Geodesic complexity of complex projective spaces (2)

• By the above theorem, we obtain

 $\mathsf{GC}(\mathbb{C}\mathsf{P}^n,g_{FS})\leq \mathsf{secat}(\mathsf{Exp}:\widetilde{\mathsf{Cut}}(\mathbb{C}\mathsf{P}^n)\to\mathsf{Cut}(\mathbb{C}\mathsf{P}^n))+1\leq\mathsf{cat}(\mathsf{Cut}(\mathbb{C}\mathsf{P}^n))+1.$

• Since fiber and base are simply conn., $Cut(\mathbb{C}P^n)$ is simply conn., hence

$$\mathsf{cat}(\mathsf{Cut}(\mathbb{C}P^n)) \leq \frac{\mathsf{dim}\;\mathsf{Cut}(\mathbb{C}P^n)}{2} + 1 = \frac{\mathsf{dim}\;\mathbb{C}P^n + \mathsf{dim}\;\mathbb{C}P^{n-1}}{2} + 1 = 2n.$$

Thus, $GC(\mathbb{C}P^n, g_{FS}) \leq 2n + 1$.

• Since $TC(\mathbb{C}P^n) \leq GC(\mathbb{C}P^n, g_{FS})$, we obtain

$$GC(\mathbb{C}P^n, g_{FS}) = 2n + 1.$$

• Analogously, one shows that $TC(\mathbb{H}P^n) = GC(\mathbb{H}P^n, g_{sym}) = 2n + 1$.

Cut loci of 3-dim. lens spaces

Let $\pi: \widetilde{M} \to M = \widetilde{M}/\Gamma$ be a Riemannian covering, Γ a finite group of isometries of \widetilde{M} . Given $q \in \widetilde{M}$, let

$$\Delta_q := \{r \in \widetilde{M} \mid d_{\widetilde{M}}(q,r) < d_{\widetilde{M}}(g \cdot q,r) \quad \forall g \in \Gamma \}.$$

Ozols, 1974: If $\overline{\Delta}_q \cap \operatorname{Cut}_q(\widetilde{M}) = \emptyset$, then $\operatorname{Cut}_{\pi(q)}(M) = \pi(\partial \Delta_q)$.

Consider the 3-sphere as

$$S^3 = \{(Z_1, Z_2) \in \mathbb{C}^2 \mid |Z_1|^2 + |Z_2|^2 = 1\}$$

and the \mathbb{Z}_p -action given by $m \cdot (z_1, z_2) = (e^{\frac{2\pi i m}{p}} z_1, e^{\frac{2\pi i m}{p}} z_2)$. For $p \ge 3$ we consider

$$L(p, 1) := S^3/\mathbb{Z}_p$$

and equip L(p, 1) with the metric induced by the round metric on S³. Then $\pi: S^3 \rightarrow L(p, 1)$

is a Riemannian covering.

Farber, Grant, 2008: TC(L(p, 1)) = 6.

Geodesic complexity of 3-dim. lens spaces

(Cut loci of L(p, 1) have been determined by **S. Anisov, 2006**, our computations are independent.)

A long, but straightforward computation (carried out by **M. Stegemeyer**) derives from Ozols' theorem for $q \in L(p, 1)$ that

$$\operatorname{Cut}_q(L(p, 1)) = B_2 \sqcup B_p,$$

where

 $B_2 = \{r \in L(p, 1) \mid \text{there are precisely 2 minimal geodesics from } q \text{ to } r\},\$ $B_p = \{r \in L(p, 1) \mid \text{there are precisely } p \text{ minimal geodesics from } q \text{ to } r\} \approx S^1.$ $\{B_2, B_p\}$ is isotropy-invariant and induces a fibered decomposition $\text{Cut}(L(p, 1)) = A_2 \sqcup A_p.$

 $\Rightarrow \quad \mathsf{GC}(L(p,1)) \leq \operatorname{secat}(\pi_2 : \widetilde{A}_2 \to A_2) + \operatorname{secat}(\pi_p : \widetilde{A}_p \to A_p) + 1.$ $\pi_2 : \widetilde{A}_2 \to A_2 \text{ is a trivial covering, hence } \operatorname{secat}(\pi_2) = 1.$ $A_p \text{ is a circle bundle over } L(p, 1), \text{ hence}$

$$\begin{split} & \mathsf{secat}(\pi_p) \leq \mathsf{cat}(\mathsf{A}_p) \leq \dim \mathsf{A}_p + \mathsf{1} = \mathsf{4} + \mathsf{1} = \mathsf{5}.\\ & \mathsf{Thus,}\ \mathsf{GC}(\mathit{L}(p,\mathsf{1})) \leq \mathsf{7}. \quad \Rightarrow \quad \mathsf{GC}(\mathit{L}(p,\mathsf{1})) \in \{\mathsf{6},\mathsf{7}\}. \end{split}$$

- When does a closed manifold *M* admit a Riemannian metric *g* such that TC(*M*) = GC(*M*, *g*)?
- In case that TC(M) = GC(M, g): find explicit geodesic motion planners on M having TC(M) domains of continuity.
- How does GC behave with respect to products and Riemannian coverings?
- Are there stability properties of GC under perturbations of the Riemannian metric?
- Find more examples of Riemannian manifolds with well-understood cut loci whose GC can be determined.

Thank you for your attention!

talk based on:

S. Mescher, M. Stegemeyer, Geodesic complexity of homogeneous Riemannian manifolds, to appear in Algebr. Geom. Topol., arXiv:2105.09215

S. Mescher, M. Stegemeyer, Geodesic complexity via fibered decompositions of cut loci, J. Appl. and Comput. Topology (2022), arXiv:2206.07691

Bonus: A lower bound for stratified cut loci

A lower bound for stratified cut loci (1)

Aim We want to derive another lower bound for GC for cut loci admitting stratifications.

Definition $B \subset M$. A stratification of B of depth N is a family $(S_1, S_2, ..., S_N)$, s.t.

- $S_i \subset B$ locally closed, $S_i \cap S_j = \emptyset \ \forall i \neq j$,
- $B = \bigcup_{i=1}^{n} S_i, \quad \overline{S}_i = \bigcup_{j=i}^{N} S_j \quad \forall i \in \{1, 2, \dots, N\}.$
- Z_i conn. component of S_i, Z_i conn. component of S_i. Then:

$$Z_j \cap \overline{Z}_i \neq \varnothing \quad \Rightarrow \quad Z_j \subset \overline{Z}_i.$$

(M, g) closed Riem. manifold, $p \in M$. Let $U_p \subset T_p M$ be the domain of injectivity of \exp_p . Put $K := \overline{U}_p = U_p \cup \widetilde{\operatorname{Cut}}_p(M)$ and $\exp_K := \exp_p|_K : K \to M$.

Definition A stratification (S_1, \ldots, S_N) of $\operatorname{Cut}_p(M)$ is inconsistent if for all $i \in \{2, 3, \ldots, N\}$ and $x \in S_i$ the following holds:

 \exists open nbhd. *U* of *x*, so that with $\pi_o(U \cap S_{i-1}) = \{Z_1, Z_2 \dots, Z_s\}$:

$$x \in \overline{Z}_j \quad \forall j \quad \land \quad \widetilde{\operatorname{Cut}}_p(M) \cap \exp_p^{-1}(\{x\}) \cap \bigcap_{j=1}^{s} \overline{\exp_K^{-1}(Z_j)} = \varnothing.$$

Use inconsistency of cut loci as a *geometric obstruction* to existence of continuous geodesic motion planners.

Theorem (M.-Stegemeyer '21) If $\exists p \in M$ for which $Cut_p(M)$ admits an inconsistent stratification of depth *N*, then

$$GC(M,g) \ge N+1.$$

Example of inconsistent stratification: flat 2-tori (1)

 $T^2 = \mathbb{R}^2 / \Gamma$ with quotient metric g_{Γ} of standard metric, where $\Gamma = \mathbb{Z} \cdot \{a_1, a_2\}, a_1 \not\perp a_2. o := [0].$

Example of inconsistent stratifications: flat 2-tori (2)

Choose a sufficiently small neighborhood U of p and let

 $\pi_0(U \cap S_1) = \{Z_1, Z_2, Z_3\}.$

 $\widetilde{\text{Cut}}_o(T^2) \cap \text{exp}_o^{-1}(Z_1), \widetilde{\text{Cut}}_o(T^2) \cap \text{exp}_o^{-1}(Z_2), \widetilde{\text{Cut}}_o(T^2) \cap \text{exp}_o^{-1}(Z_3).$

 $\widetilde{\operatorname{Cut}}_o(T^2) \cap \exp_o^{-1}(\{p\}) \cap \overline{\exp_K^{-1}(Z_1)} \cap \overline{\exp_K^{-1}(Z_2)} \cap \overline{\exp_K^{-1}(Z_3)} \\ = \{p_1, p_3\} \cap \{p_2, p_3\} \cap \{p_1, p_2\} = \varnothing. \Rightarrow (S_1, S_2) \text{ is inconsistent.}$

Metrics with non-degenerate cut points

Definition (Itoh-Sakai 2007) (M, g) closed, $p \in M$, $q \in Cut_p(M)$, $k \in \mathbb{N}$.

- a) Call q of order k + 1 if there are precisely k + 1 distinct minimal geodesics $\gamma_0, \gamma_1, \ldots, \gamma_k : [0, 1] \to M$ from p to q.
- b) We call q non-degenerate if additionally $\{\dot{\gamma}_0(1), \dot{\gamma}_1(1), \dots, \dot{\gamma}_k(1)\} \subset T_q M$ is in general position (i.e. $\{\dot{\gamma}_1(1) \dot{\gamma}_0(1), \dots, \dot{\gamma}_k(1) \dot{\gamma}_0(1)\}$ is linearly independent)

Theorem

a) **(Itoh-Sakai 2007)** Assume $Cut_p(M)$ contains no conjugate point of p and that every $q \in Cut_p(M)$ is non-degenerate. Then $(C_N, C_{N-1}, \ldots, C_1)$ is a stratification of $Cut_p(M)$, where

 $C_k = \{q \in \operatorname{Cut}_p(M) \mid q \text{ is of order } k+1 \} \ \forall k \in \{1, 2, \dots, N\}$

and N is the highest order of a point in $Cut_p(M)$.

b) (M.-Stegemeyer 2021) This stratification is inconsistent.

Again: Thank you for your attention!

talk based on:

S. Mescher, M. Stegemeyer, Geodesic complexity of homogeneous Riemannian manifolds, to appear in Algebr. Geom. Topol., arXiv:2105.09215

S. Mescher, M. Stegemeyer, Geodesic complexity via fibered decompositions of cut loci, J. Appl. and Comput. Topology (2022), arXiv:2206.07691