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Topology and robot motion planning

Real-world situation
A robot is supposed to move autonomously from one location to another in
its workspace (e.g. warehouse, grid network, ...).

Topological motion planning problem
Let X be a path-connected topological space. Given x, y ∈ X, find a path
γ ∈ PX = C0([0, 1], X) with γ(0) = x and γ(1) = y.

Definition
Let X be a top. space, A ⊂ X × X. A motion planner over A is a map

s : A→ PX,

such that (s(x, y))(0) = x, (s(x, y))(1) = y, for all (x, y) ∈ A, i.e. a section
over A of the fibration

π : PX → X × X, γ %→ (γ(0), γ(1)).

For a robot to move autonomously in X, we need a motion planner over
X × X.
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Topological complexity

We want robots to move predictably, so we want motion planners to be
continuous on large subsets of X × X and only have few "jumps" in the path
assignments.

Idea: Search for the lowest number of "jumps" of a motion planner that is
necessary by the topology of the space.

Definition (Farber ’03)
Let X be a path-connected top. space. The topological complexity of X is
given by TC(X) ∈ N ∪ {+∞},

TC(X) := inf
!
n ∈ N

""" ∃
n#

j=1

Aj = X × X, s.t. Aj locally compact,

∀j ∃sj : Aj → PX cont. motion planner
$
.

TC(X) is a homotopy invariant and satisfies

cat(X) ≤ TC(X) ≤ cat(X × X),

where cat denotes Lusternik-Schnirelmann category.
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A related notion: sectional category of fibrations

Definition (A. Schwarz, ’61)
Let p : E→ B be a fibration. The sectional category or Schwarz genus of p is
given by

secat(p) = inf
!
n ∈ N

""" ∃
n#

j=1

Uj = B open cover, sj : Uj
C0→ E, p ◦ sj = inclUj ∀j

$
.

If X is an ENR (e.g. a locally finite CW complex), then:

TC(X) = secat
%
π : PX → X × X, γ %→ (γ(0), γ(1))

&
.

Use results by Schwarz to derive upper and lower bounds on TC(X). Lower
bounds are mostly obtained from studying the cohomology rings of X.
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Motivation for geodesic complexity

(after David Recio-Mitter, 2020)

Problem Motion planners with few domains of continuity may consist of
paths that are not feasible or very inefficient.

Engineers might prefer efficient motion along short paths and put up with
discontinuities.

Idea Given a geodesic space (X,d), i.e. a metric space in which any two
points are connected by a minimal geodesic, we allow only paths having
minimal length.
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Definition of geodesic complexity

Definition (Recio-Mitter 2020) (M,g) complete Riemannian manifold,
GM := {minimal geodesics in M} ⊂ PM, π : GM→ M×M, π(γ) = (γ(0), γ(1)),
and A ⊂ M×M. The geodesic complexity of A in M is given by

GCM(A) := inf
!
n ∈ N

""" ∃
n#

j=1

Bj ⊃ A, s.t. Bj locally compact,

∀j ∃sj : Bj
C0→ GM with π ◦ sj = inclBj

$
.

Put GC(M,g) := GCM(M×M) - the geodesic complexity of M.

A local section s : B→ GM of π is called a geodesic motion planner on B.

Caveat π : GM→ M×M is not a fibration, so can not use general results on
secat etc.
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Observations on geodesic complexity

• GCM(A ∪ B) ≤ GCM(A) + GCM(B) for all A,B ⊂ M×M.

• TC(M) ≤ GC(M,g) for every complete Riemannian mfld. (M,g).

• The standard examples of motion planners show that

GC(Sn,ground) = TC(Sn) =

'
(

)
2 if n is odd,
3 if n is even.

.

• GC really depends on the Riemannian metric. Shown by Recio-Mitter:

GC(T2,gflat) = 3, GC(T2,gR3) = 4.

• Recio-Mitter, 2020: For every k ∈ N there exists a closed Riem.
manifold (M,g) with

GC(M,g) ≥ TC(M) + k.
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Cut loci in Riemannian manifolds

Let (M,g) complete Riemannian manifold. Let p ∈ M and let γ : R → M be a
geodesic with γ(0) = p. Put

t∗ := sup{t > 0 | γ|[0,t] is length-minimizing}.

• q := γ(t∗) is called a cut point of p. The cut locus of p is

Cutp(M) := {cut points of p} ⊂ M.

• t∗ · γ′(0) ∈ TpM is called a tangent cut point of p. The tangent cut locus
of p is

*Cutp(M) := {tangent cut points of p} ⊂ TpM.

• Clearly, the Riemannian exponential map of (M,g) satisfies

expp
%
*Cutp(M)

&
= Cutp(M).

• If M is compact, then*Cutp(M) ≈ Sn for each p ∈ M.
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Example for cut locus: flat 2-tori

Consider T2 = R2/Γ with quotient metric of standard metric, where Γ ⊂ R2

is a lattice whose generators {a1, a2} satisfy a1 ∕⊥ a2. o := [0].

Cuto(T2) *Cuto(T2)
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The trouble with geodesic motion planning on cut loci

(M,g) complete Riemannian manifold, Cutp(M) the cut locus of p ∈ M.

Proposition
Let p ∈ M and q ∈ Cutp(M), such that there exist γ1, γ2 ∈ GM from p to q with
γ1 ∕= γ2. Let U be an open neighborhood of q. Then there exists no
continuous geodesic motion planner on {p}× U.

Proof The map v : GM→ TM, v(γ) = γ′(0), is continuous. If
s : {p}× U→ GM was a cont. geod. motion planner, then
v ◦ s : {p}× U→ TM was continuous. For i ∈ {1, 2} one computes:

lim
t↗1

(v ◦ s)(p, γi(t)) = lim
t↗1

t · γ′
i (0) = γ′

i (0)

⇒ lim
t↗1

(v ◦ s)(p, γ1(t)) ∕= lim
t↗1

(v ◦ s)(p, γ2(t)) !

Contradiction, as lim
t↗1

s(p, γ1(t)) = s(p,q) = lim
t↗1

s(p, γ2(t)).
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Total cut loci in Riemannian manifolds

• (Recio-Mitter, 2020) The total cut locus of M is given by

Cut(M) :=
+

p∈M

({p}× Cutp(M)) ⊂ M×M.

• The total tangent cut locus of M is given by

*Cut(M) :=
+

p∈M

*Cutp(M) ⊂ TM.

• The extended exponential map

Exp : TM→ M×M, Exp(p, v) = (p, expp(v)),

satisfies
Exp

%
*Cut(M)

&
= Cut(M).

• If (p,q) /∈ Cut(M), then there exists a unique minimal geodesic from p
to q.
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General facts about cut loci

Let (M,g) be a complete Riemannian manifold and p ∈ M.

• Cutp(M) is closed and of Lebesgue measure zero.
• The set of all q ∈ M for which ∃γ1, γ2 ∈ GM with γ1 ∕= γ2 joining p and q
is dense in Cutp(M).

• Gluck, Singer 1978: Every smooth manifold of dimension ≥ 2 admits a
Riemannian metric with a non-triangulable cut locus.

• For q ∕= p ∈ M, the sets Cutp(M) and Cutq(M) might be wildly different
from each other.

• Let Isom(M,g) := {φ : M→ M | φ is an isometry}. If φ ∈ Isom(M,g),
then φ(Cutp(M)) = Cutφ(p)(M).
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Geodesic motion planners and cut loci

• For a complete Riemannian manifold (M,g) the unique geodesic
motion planner

s : (M×M) \ Cut(M) → GM, (s(p,q))(t) = expp(t · Exp
−1(p,q)),

is continuous. (see also Blaszczyk, Carrasquel-Vera, 2018)
• We derive:

GCM(Cut(M)) ≤ GC(M,g) ≤ GCM(Cut(M)) + 1.

(Conjecture: It always holds that GC(M,g) = GCM(Cut(M)) + 1.)
• Let A ⊂ Cut(M). If σA : A→ *Cut(M) is a continuous section of
Exp |!Cut(M) : *Cut(M) → Cut(M), then

sA : A→ GM, (sA(p,q))(t) = expp(t · σA(p,q)),

is a geodesic motion planner.
• Idea for GC Find upper bounds on the numbers of elements of a
decomposition of Cut(M) into domains of continuous sections of
Exp |!Cut(M).
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Fibered decompositions of the total cut locus

Definition Let (M,g) be a complete Riemannian manifold. A decomposition
of Cut(M) into locally compact subsets A1, . . . , Ak is called a fibered
decomposition of Cut(M) if, with ,Ai := Exp−1(Ai) ∩*Cut(M), the restriction

πi := Exp |"Ai :
,Ai → Ai

is a fibration for each i ∈ {1, 2, . . . , k}.

Theorem (M., Stegemeyer, 2022)
If Cut(M) admits a fibered decomposition {A1, . . . , Ak}, then in the above
notation

GC(M,g) ≤
k-

i=1

secat(πi : ,Ai → Ai) + 1.

GC(M,g) ≥ max{secat(πi) | i ∈ {1, 2, . . . , k}}.

Q Which Riemannian manifolds admit such fibered decompositions?

Idea Restrict our attention to homogeneous manifolds (i.e. Isom(M,g)
acts transitively on M), where all cut loci "look the same".
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An existence result for fibered decompositions

Theorem (M., Stegemeyer, 2022)

a) If M is an irreducible1 compact simply connected symmetric space, then
Cut(M) admits a fibered decomposition.

b) Consider the lens space L(p, 1) ∼= S3/Zp, with a Riemannian metric of
constant curvature g. Then Cut(L(p, 1)) admits a fibered decomposition.

Strategy Let (M,g) be a homogeneous Riemannian manifold. Find a
fibered decomposition of Cutp(M) with an additional property and extend it
to a fibered decomposition of Cut(M) via isometries.

1M is irreducible if it is not isometric to a product of symmetric spaces.
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Isotropy-invariant decompositions

Let (M,g) be a homogenous Riemannian manifold, put G := Isom(M) and
let Φ : G×M→ M denote its action. For p ∈ M let Gp denote its isotropy
group.

Definition A locally compact decomposition {B1, . . . ,Bk} of Cutp(M) is
called isotropy-invariant if

Φg(Bi) ⊂ Bi ∀g ∈ Gp, i ∈ {1, 2, . . . , k}.

Proposition (M., Stegemeyer 2022) Let p ∈ M and let {B1, . . . ,Bk} be an
isotropy-invariant decomposition of Cutp(M). Put ,Bi := exp−1

p (Bi) ∩*Cutp(M)
and assume that expp|"Bi :

,Bi → Bi is a fibration for each i ∈ {1, 2, . . . , k}.

a) Then {A1, . . . , Ak} is a fibered decomposition of Cut(M), where

Ai := {(q, r) ∈ M×M | ∃g ∈ G s.t. Φg(p) = q and r ∈ Φg(Bi)}.

b) pi : Ai → M, pi(q, r) = q, is a fiber bundle with fiber Bi for each i.
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Example for isotropy-invariant decomposition: flat 2-tori

T2 = R2/Γ with quotient metric gΓ of standard metric, where
Γ = Z · {a1, a2}, a1 ∕⊥ a2. o := [0].

B1 = {p,q}, B2 = Cuto(T2) \ {p,q}.
,B1 = {vertices of the hexagon}, ,B2 = {points on the edges of the hexagon}.

expo|"B1 :
,B1 → B1 is a trivial 3-fold covering, expo|"B2 :

,B2 → B2 a trivial 2-fold
covering.
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Example for isotropy-invariant decomposition: flat 2-tori (3)

{B1,B2} is isotropy-invariant.

For the induced fibered decomposition {A1, A2} of Cut(T2) the fibrations

π1 : ,A1 → A1, π2 : ,A2 → A2,

are trivial, hence

GC(T2,gΓ) ≤ secat(π1) + secat(π2) + 1 = 1+ 1+ 1 = 3.

Since TC(T2) = 3, this shows that

GC(T2,gΓ) = 3

for any such lattice Γ.
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Another approach to the GC of homogeneous Riemannian manifolds

Another idea of relating cut loci of points with total cut loci in
homogeneous manifolds:

Proposition If (M,g) is homogeneous and p ∈ M, then ep : Isom(M,g) → M,
φ %→ φ(p), is a principal G-bundle, where G is the isotropy group of p.

Theorem (M., Stegemeyer 2021) If (M,g) is homogeneous, then

GC(M,g) ≤ secat(ep : Isom(M,g) → M) · GCM(Cutp(M)) + 1.

Corollary If (G,ginv) is a conn. Lie group with left-invariant Riemannian
metric, then

GC(G,ginv) ≤ GCM(Cut1(G)) + 1.

Theorem (M., Stegemeyer 2021) Let S3 ∼= SU(2) be equipped with a Berger
metric gB. Then GC(S3,gB) = 2.

Problem The factor secat(ep) is hard to compute and might become very
big, only know in general that secat(ep) ≤ cat(M).
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Cut loci of irreducible compact simply connected symmetric spaces

Let M = G/K be an irreducible compact simply connected symmetric space,
where (G,K) is a Riemannian symmetric pair, let o = [1] ∈ M.

T. Sakai, 1978: Using root systems and properties of adjoint
representations, one can show:

• Cuto(M) has a decomposition {S1, . . . , Sr}, where r = rank(M).
• Each connected component W ⊂ Si, i ∈ {1, 2, . . . , r} is of the form

W ≈ K/Z × Br−i,

where Br−i is an open (r − i)-ball, Z ≤ K is a closed subgroup,
depending on a root system of (G,K).

• If W1,W2 ⊂ Si are connected components with W1 ∕= W2, then
W1 ∩W2 = ∅.

Lemma {S1, . . . , Sr} is isotropy-invariant and gives rise to a fibered
decomposition {A1, . . . , Ar} of Cut(M).
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GC of irreducible compact simply connected symmetric spaces

Theorem (M., Stegemeyer, 2022) Let M = G/K be an irreducible compact
simply connected symmetric space. Then, in terms of the fibered
decomposition from above,

GC(M,gsym) ≤
r-

i=1

max{secat(πi|"Ai|W : ,Ai|W → W) | W ∈ π0(Ai)}+ 1

≤
r-

i=1

max{cat(W) | W ∈ π0(Ai)}+ 1.

Example G2(C4) = U(4)/(U(2)× U(2)), TC(G2(C4)) = 9.

Sakai, 1978: Cuto(G2(C4)) = S1 ⊔ S2, where S1 is a simply conn. manifold
with dim S1 = 6, S2 ≈ (S2 × S2) ⊔ {∗}.

Hence, Cut(G2(C4)) = A1 ∪ A2, where A1 is a bundle over G2(C4) with fiber S1,
A2 = C1 ∪ C2, where C1 is a bundle over G2(C4) with fiber S2 × S2 and
C2 ≈ G2(C4).

⇒ GC(G2(C4)) ≤ cat(A1) + cat(C1) + 1 ≤ 8+ 7+ 1 = 16.
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Geodesic complexity of complex projective spaces (1)

Some well-established facts on complex projective spaces:

• Well-known that TC(CPn) = 2n+ 1 for each n ∈ N.
• CPn = U(n+ 1)/(U(n)× U(1)), n ≥ 2, with the Fubini-Study metric gFS is
an irred. compact simply connected symmetric space of rank one.

• A classical result from Riemannian geometry: Cutp(CPn) ≈ CPn−1, one
obtains that

CPn−1 ↩→ Cut(CPn) → CPn

is a fiber bundle.

21



Geodesic complexity of complex projective spaces (2)

• By the above theorem, we obtain

GC(CPn,gFS) ≤ secat(Exp : *Cut(CPn) → Cut(CPn))+1 ≤ cat(Cut(CPn))+1.

• Since fiber and base are simply conn., Cut(CPn) is simply conn., hence

cat(Cut(CPn)) ≤ dim Cut(CPn)
2 + 1 = dim CPn + dim CPn−1

2 + 1 = 2n.

Thus, GC(CPn,gFS) ≤ 2n+ 1.
• Since TC(CPn) ≤ GC(CPn,gFS), we obtain

GC(CPn,gFS) = 2n+ 1.

• Analogously, one shows that TC(HPn) = GC(HPn,gsym) = 2n+ 1.
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Cut loci of 3-dim. lens spaces

Let π : ,M→ M = ,M/Γ be a Riemannian covering, Γ a finite group of
isometries of ,M. Given q ∈ ,M, let

∆q := {r ∈ ,M |d"M(q, r) < d"M(g · q, r) ∀g ∈ Γ}.

Ozols, 1974: If ∆q ∩ Cutq(,M) = ∅, then Cutπ(q)(M) = π(∂∆q).

Consider the 3-sphere as

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}

and the Zp-action given by m · (z1, z2) = (e
2πim
p z1, e

2πim
p z2).

For p ≥ 3 we consider
L(p, 1) := S3/Zp

and equip L(p, 1) with the metric induced by the round metric on S3. Then
π : S3 → L(p, 1)

is a Riemannian covering.

Farber, Grant, 2008: TC(L(p, 1)) = 6.
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Geodesic complexity of 3-dim. lens spaces

(Cut loci of L(p, 1) have been determined by S. Anisov, 2006, our
computations are independent.)

A long, but straightforward computation (carried out by M. Stegemeyer)
derives from Ozols’ theorem for q ∈ L(p, 1) that

Cutq(L(p, 1)) = B2 ⊔ Bp,

where

B2 = {r ∈ L(p, 1) | there are precisely 2 minimal geodesics from q to r},
Bp = {r ∈ L(p, 1) | there are precisely p minimal geodesics from q to r} ≈ S1.

{B2,Bp} is isotropy-invariant and induces a fibered decomposition
Cut(L(p, 1)) = A2 ⊔ Ap.

⇒ GC(L(p, 1)) ≤ secat(π2 : ,A2 → A2) + secat(πp : ,Ap → Ap) + 1.

π2 : ,A2 → A2 is a trivial covering, hence secat(π2) = 1.
Ap is a circle bundle over L(p, 1), hence

secat(πp) ≤ cat(Ap) ≤ dim Ap + 1 = 4+ 1 = 5.

Thus, GC(L(p, 1)) ≤ 7. ⇒ GC(L(p, 1)) ∈ {6, 7}.
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Questions for future research

• When does a closed manifold M admit a Riemannian metric g such
that TC(M) = GC(M,g)?

• In case that TC(M) = GC(M,g): find explicit geodesic motion planners
on M having TC(M) domains of continuity.

• How does GC behave with respect to products and Riemannian
coverings?

• Are there stability properties of GC under perturbations of the
Riemannian metric?

• Find more examples of Riemannian manifolds with well-understood
cut loci whose GC can be determined.
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Geodesic complexity and decompositions of cut loci

Thank you for your attention!
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Bonus: A lower bound for stratified cut
loci



A lower bound for stratified cut loci (1)

Aim We want to derive another lower bound for GC for cut loci admitting
stratifications.

Definition B ⊂ M. A stratification of B of depth N is a family (S1, S2, . . . , SN),
s.t.

• Si ⊂ B locally closed, Si ∩ Sj = ∅ ∀i ∕= j,

• B =
n+

i=1

Si, Si =
N+

j=i

Sj ∀i ∈ {1, 2, . . . ,N}.

• Zi conn. component of Si, Zj conn. component of Sj. Then:

Zj ∩ Zi ∕= ∅ ⇒ Zj ⊂ Zi.
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A lower bound from the structure of a cut locus

(M,g) closed Riem. manifold, p ∈ M. Let Up ⊂ TpM be the domain of
injectivity of expp. Put K := Up = Up ∪*Cutp(M) and expK := expp|K : K → M.

Definition A stratification (S1, . . . , SN) of Cutp(M) is inconsistent if for all
i ∈ {2, 3, . . . ,N} and x ∈ Si the following holds:

∃ open nbhd. U of x, so that with π0(U ∩ Si−1) = {Z1, Z2 . . . , Zs}:

x ∈ Zj ∀j ∧ *Cutp(M) ∩ exp−1
p ({x}) ∩

s.

j=1

exp−1
K (Zj) = ∅.

Use inconsistency of cut loci as a geometric obstruction to existence of
continuous geodesic motion planners.

Theorem (M.-Stegemeyer ’21) If ∃p ∈ M for which Cutp(M) admits an
inconsistent stratification of depth N, then

GC(M,g) ≥ N+ 1.
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Example of inconsistent stratification: flat 2-tori (1)

T2 = R2/Γ with quotient metric gΓ of standard metric, where
Γ = Z · {a1, a2}, a1 ∕⊥ a2. o := [0].

Cuto(T2) *Cuto(T2)

Stratification (S1, S2) of Cuto(T2): S2 = {p,q}, S1 = Cuto(T2) \ {p,q}. Choose

a sufficiently small neighborhood U of p.
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Example of inconsistent stratifications: flat 2-tori (2)

Choose a sufficiently small neighborhood U of p and let

π0(U ∩ S1) = {Z1, Z2, Z3}.
*Cuto(T2) ∩ exp−1

o (Z1),*Cuto(T2) ∩ exp−1
o (Z2),*Cuto(T2) ∩ exp−1

o (Z3).

*Cuto(T2) ∩ exp−1
o ({p}) ∩ exp−1

K (Z1) ∩ exp−1
K (Z2) ∩ exp−1

K (Z3)
= {p1,p3} ∩ {p2,p3} ∩ {p1,p2} = ∅. ⇒ (S1, S2) is inconsistent.
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Metrics with non-degenerate cut points

Definition (Itoh-Sakai 2007) (M,g) closed, p ∈ M, q ∈ Cutp(M), k ∈ N.

a) Call q of order k+ 1 if there are precisely k+ 1 distinct minimal
geodesics γ0, γ1, . . . , γk : [0, 1] → M from p to q.

b) We call q non-degenerate if additionally {γ̇0(1), γ̇1(1), . . . , γ̇k(1)} ⊂ TqM is
in general position (i.e. {γ̇1(1)− γ̇0(1), . . . , γ̇k(1)− γ̇0(1)} is linearly
independent)

Theorem

a) (Itoh-Sakai 2007) Assume Cutp(M) contains no conjugate point of p and
that every q ∈ Cutp(M) is non-degenerate. Then (CN, CN−1, . . . , C1) is a
stratification of Cutp(M), where

Ck = {q ∈ Cutp(M) | q is of order k+ 1} ∀k ∈ {1, 2, . . . ,N}

and N is the highest order of a point in Cutp(M).
b) (M.-Stegemeyer 2021) This stratification is inconsistent.
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Geodesic complexity and decompositions of cut loci

Again: Thank you for your attention!
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