Fundamental Groups of

Small Simplicial Complexes

Dejan Govc

Faculty of Mathematics and Physics
University of Ljubljana
Będlewo, 2023

Motivating example: Poincaré sphere

Let $G=2 I$ be the binary icosahedral group and $P=S^{3} / G$.

- Björner-Lutz (2000): P has a triangulation with 16 vertices.
- Bagchi-Datta (2005): ≥ 12 vertices needed to triangulate P.

Motivating example: Poincaré sphere

Let $G=2 I$ be the binary icosahedral group and $P=S^{3} / G$.

- Björner-Lutz (2000): P has a triangulation with 16 vertices.
- Bagchi-Datta (2005): ≥ 12 vertices needed to triangulate P.

Conjecture (Björner-Lutz)

The minimal triangulation of P has 16 vertices.

General idea

If τ is a facet of P (resp. a d-manifold $M, d \geq 3$):

$$
\pi_{1}(P) \cong \pi_{1}(P \backslash \tau) \cong \pi_{1}\left(P \backslash \bigcup_{v \in \tau} \operatorname{St}(v)\right)
$$

General idea

If τ is a facet of P (resp. a d-manifold $M, d \geq 3$):

$$
\pi_{1}(P) \cong \pi_{1}(P \backslash \tau) \cong \pi_{1}\left(P \backslash \bigcup_{v \in \tau} \operatorname{St}(v)\right)
$$

Corollary
If M (d-manifold) can be triangulated with n vertices, there is a complex X with $n-d-1$ vertices such that $\pi_{1}(X) \cong \pi_{1}(M)$.

Observation (Björner-Lutz)
There is a complex X with 10 vertices such that $\pi_{1}(X)=\pi_{1}(P)$.

Complexes with ≤ 5 vertices

Up to homotopy, these are all (sums of) wedges of spheres:

Complexes with ≤ 5 vertices

Up to homotopy, these are all (sums of) wedges of spheres:

Therefore, $\pi_{1}(X) \cong F_{n}$ (free group).

Complexes with ≤ 6 vertices

With 6 vertices, $\mathbb{R} P^{2}$ can be realized:

Complexes with ≤ 6 vertices

With 6 vertices, $\mathbb{R} P^{2}$ can be realized:

In fact, either $\pi_{1}(X) \cong F_{n}$ or $\pi_{1}(X)=\mathbb{Z}_{2}$.

Dedekind Numbers

How many complexes on 7 vertices are there?

n	d_{n}	r_{n}
0	2	2
1	3	3
2	6	5
3	20	10
4	168	30
5	7581	210
6	7828354	16353
7	2414682040998	490013148
8	56130437228687557907788	1392195548889993358
9	$? ? ?$	$? ? ?$

Number of 2-Pure Complexes

Observation

WLOG, X is pure 2-dimensional, since $\pi_{1}(X) \cong \pi_{1}\left(X^{(2)}\right)$.

n	t_{n}
0	1
1	1
2	1
3	2
4	5
5	34
6	2136
7	7013320
8	1788782616656
9	53304527811667897248

A Lemma

Complexes with ≤ 7 vertices

Procedure:

- Generate 2-pure complexes using nauty-geng.
- Use cone-and-collapse (in Mathematica) to exclude obvious wedges of spheres. This leaves 602 complexes.
- Compute π_{1} for these complexes in SageMath.

Complexes with ≤ 7 vertices

Procedure:

- Generate 2-pure complexes using nauty-geng.
- Use cone-and-collapse (in Mathematica) to exclude obvious wedges of spheres. This leaves 602 complexes.
- Compute π_{1} for these complexes in SageMath.

Result

If X is a (connected) complex on ≤ 7 vertices:

- $\pi_{1}(X) \cong F_{n}$, where $0 \leq n \leq 15$,
- $\pi_{1}(X) \cong \mathbb{Z}_{2} * F_{n}$, where $0 \leq n \leq 5$, or
- $\pi_{1}(X) \cong \mathbb{Z} \times \mathbb{Z}$.

This reproves: ≥ 12 vertices needed to triangulate P.

What next?

On 8 vertices we have:

- $\sim 1.4 * 10^{18}$ non-isomorphic complexes,
- $\sim 1.8 * 10^{12}$ non-isomorphic 2-pure complexes.

Needs to be reduced to compute efficiently.

Some reductions \#1

Observation
We have $X=Y \cup C A$, where Y has 7 vertices and $A \leq Y$.

$x=y \cup C A$

Some reductions \#1

Observation
We have $X=Y \cup C A$, where Y has 7 vertices and $A \leq Y$.

$$
x=y \cup C A
$$

Observation (WLOG \#1)
We can assume X has no free faces.

Some reductions \#1

Observation
We have $X=Y \cup C A$, where Y has 7 vertices and $A \leq Y$.

$x=y \cup C A$

Observation (WLOG \#1)
We can assume X has no free faces.
Observation (WLOG \#2)
We can assume Y is connected and pure 2-dimensional.

Some reductions \#2

Observation

If A has n components and $\pi_{1}(Y) \cong G$, there is a $H \unlhd G$:

$$
\pi_{1}(X) \cong(G / H) * F_{n-1} .
$$

Some reductions \#2

Observation

If A has n components and $\pi_{1}(Y) \cong G$, there is a $H \unlhd G$:

$$
\pi_{1}(X) \cong(G / H) * F_{n-1}
$$

Observation (Almost-WLOG \#3)
We can assume $\pi_{1}(Y) \neq 1, \mathbb{Z}, \mathbb{Z}_{2}$.
This loses some information. Only 332710 possible Y remain.

Some reductions \#3

Observation (WLOG \#4)
We can assume A is at most 1-dimensional.

Some reductions \#3

Observation (WLOG \#4)
We can assume A is at most 1-dimensional.
Observation (WLOG \#5)
We can assume A contains all free edges of Y.
There are (at most) $\sim 4.5 \cdot 10^{9}$ possible complexes $X=Y \cup C A$.

Testing the complexes
Observation
Suppose the vertices of X can be split as $V=V_{1} \cup V_{2}$, where V_{1} span ≥ 3 triangles and V_{2} spans ≥ 2 triangles of X. Then:

$$
\pi_{1}(X) \cong \mathbb{Z}_{m} * F_{n}, \quad m \in \mathbb{N}, n \in \mathbb{N}_{0} .
$$

$$
\Rightarrow \pi_{1}(x) \cong \underbrace{(\mathbb{Z} / H)}_{\mathbb{Z} O R \mathbb{R}_{m} .} * F_{n} .
$$

Complexes with ≤ 8 vertices

Procedure (mostly in Mathematica):

- Generate the $\sim 4.5 \cdot 10^{9}$ complexes $X=Y \cup C A$.
- Test for $(4+4)$-splitting. This leaves 3807843 complexes.
- Reduce further using "WLOG \#3" and cone-and-collapse.
- Compute π_{1} of remaining 201574 complexes in SageMath.

Complexes with ≤ 8 vertices

Procedure (mostly in Mathematica):

- Generate the $\sim 4.5 \cdot 10^{9}$ complexes $X=Y \cup C A$.
- Test for $(4+4)$-splitting. This leaves 3807843 complexes.
- Reduce further using "WLOG \#3" and cone-and-collapse.
- Compute π_{1} of remaining 201574 complexes in SageMath.

Result

For any complex X on ≤ 8 vertices, we have

$$
\pi_{1}(X) \cong G * F_{n}
$$

where $n \in \mathbb{N}_{0}$ and G is one of the following:

- $G \cong \mathbb{Z}_{m}$ (for certain m, e.g. $m=2,3$),
- $G \cong \mathbb{Z} \times \mathbb{Z}$ (π_{1} of torus),
- $G \cong \mathbb{Z} \rtimes \mathbb{Z}\left(\pi_{1}\right.$ of Klein bottle),
- $G \cong B_{3}$ (braid group on 3 strands = trefoil knot group).

Conclusion

Corollary
Any triangulation of the Poincaré sphere has ≥ 13 vertices.
(The same conclusion holds for many other manifolds, e.g. T^{3}.)

Thank you for your attention!

