Fundamental Groups of Small Simplicial Complexes

Dejan Govc

Faculty of Mathematics and Physics University of Ljubljana

Będlewo, 2023

Dejan Govc Fundamental Groups of Small Simplicial Complexes

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Let G = 2I be the binary icosahedral group and $P = S^3/G$.

- Björner-Lutz (2000): *P* has a triangulation with 16 vertices.
- Bagchi-Datta (2005): ≥12 vertices needed to triangulate P.

イロト イボト イヨト 一日

Sar

Let G = 2I be the binary icosahedral group and $P = S^3/G$.

- Björner-Lutz (2000): *P* has a triangulation with 16 vertices.
- Bagchi-Datta (2005): ≥12 vertices needed to triangulate *P*.

Conjecture (Björner-Lutz)

The minimal triangulation of P has 16 vertices.

A D A A D A A D A A D A

Sar

If τ is a facet of *P* (resp. a *d*-manifold *M*, $d \ge 3$):

$$\pi_1(\boldsymbol{P}) \cong \pi_1(\boldsymbol{P} \setminus \tau) \cong \pi_1(\boldsymbol{P} \setminus \bigcup_{\boldsymbol{v} \in \tau} \operatorname{St}(\boldsymbol{v})).$$

Dejan Govc Fundamental Groups of Small Simplicial Complexes

If τ is a facet of *P* (resp. a *d*-manifold *M*, $d \ge 3$):

$$\pi_1(\boldsymbol{P}) \cong \pi_1(\boldsymbol{P} \setminus \tau) \cong \pi_1(\boldsymbol{P} \setminus \bigcup_{\boldsymbol{v} \in \tau} \operatorname{St}(\boldsymbol{v})).$$

Corollary If *M* (*d*-manifold) can be triangulated with *n* vertices, there is a complex *X* with n - d - 1 vertices such that $\pi_1(X) \cong \pi_1(M)$.

Observation (Björner-Lutz)

There is a complex X with 10 vertices such that $\pi_1(X) = \pi_1(P)$.

イロト イロト イヨト イヨト 二日

San

Complexes with \leq 5 vertices

Up to homotopy, these are all (sums of) wedges of spheres:

 2 → < 2 →

500

Complexes with \leq 5 vertices

Up to homotopy, these are all (sums of) wedges of spheres:

Therefore, $\pi_1(X) \cong F_n$ (free group).

→ Ξ → < Ξ →</p>

Complexes with \leq 6 vertices

With 6 vertices, $\mathbb{R}P^2$ can be realized:

イロト イロト イヨト イヨト

Э

Complexes with \leq 6 vertices

With 6 vertices, $\mathbb{R}P^2$ can be realized:

In fact, either $\pi_1(X) \cong F_n$ or $\pi_1(X) = \mathbb{Z}_2$.

イロト イロト イヨト

Э

Dedekind Numbers

How many complexes on 7 vertices are there?

n	d _n	r _n
0	2	2
1	3	3
2	6	5
3	20	10
4	168	30
5	7 581	210
6	7 828 354	16353
7	2 414 682 040 998	490 013 148
8	56 130 437 228 687 557 907 788	1 392 195 548 889 993 358
9	???	???

<ロト < 回 ト < 三 ト < 三 ト - 三 - のへ()

Number of 2-Pure Complexes

Observation

WLOG, X is pure 2-dimensional, since $\pi_1(X) \cong \pi_1(X^{(2)})$.

- 4 E

4 3 b

Э

A Lemma

Dejan Govc Fundamental Groups of Small Simplicial Complexes

シック・ 川 ・山・山・山・・山・

Procedure:

- Generate 2-pure complexes using nauty-geng.
- Use cone-and-collapse (in Mathematica) to exclude obvious wedges of spheres. This leaves 602 complexes.
- Compute π_1 for these complexes in SageMath.

イロト イポト イヨト イヨト

-

Sar

Procedure:

- Generate 2-pure complexes using nauty-geng.
- Use cone-and-collapse (in Mathematica) to exclude obvious wedges of spheres. This leaves 602 complexes.
- Compute π_1 for these complexes in SageMath.

Result

If X is a (connected) complex on \leq 7 vertices:

•
$$\pi_1(X) \cong F_n$$
, where $0 \le n \le 15$,

•
$$\pi_1(X) \cong \mathbb{Z}_2 * F_n$$
, where $0 \le n \le 5$, or

•
$$\pi_1(X) \cong \mathbb{Z} \times \mathbb{Z}$$
.

This reproves: \geq 12 vertices needed to triangulate *P*.

イロト イポト イヨト イヨト

San

On 8 vertices we have:

- $\sim 1.4 * 10^{18}$ non-isomorphic complexes,
- $\sim 1.8*10^{12}$ non-isomorphic 2-pure complexes.

Needs to be reduced to compute efficiently.

・ロト ・ 同ト ・ ヨト ・ ヨト

 \equiv

Observation We have $X = Y \cup CA$, where Y has 7 vertices and $A \leq Y$.

Dejan Govc Fundamental Groups of Small Simplicial Complexes

イロト イロト イヨト イヨト

-

Observation We have $X = Y \cup CA$, where Y has 7 vertices and $A \leq Y$.

Observation (WLOG #1)

We can assume X has no free faces.

イロト イロト イヨト イヨト

Observation We have $X = Y \cup CA$, where Y has 7 vertices and $A \leq Y$.

Observation (WLOG #1)

We can assume X has no free faces.

Observation (WLOG #2)

We can assume Y is connected and pure 2-dimensional.

・ロト ・ 日 ト ・ 日 ト

Э

Observation

If A has n components and $\pi_1(Y) \cong G$, there is a $H \trianglelefteq G$:

 $\pi_1(X) \cong (G/H) * F_{n-1}.$

イロト イボト イヨト イヨト 三日

Observation

If A has n components and $\pi_1(Y) \cong G$, there is a $H \trianglelefteq G$:

 $\pi_1(X) \cong (G/H) * F_{n-1}.$

Observation (Almost-WLOG #3)

We can assume $\pi_1(Y) \not\cong 1, \mathbb{Z}, \mathbb{Z}_2$.

This loses some information. Only 332710 possible Y remain.

・ロト ・ 同ト ・ ヨト ・ ヨト

Observation (WLOG #4)

We can assume A is at most 1-dimensional.

イロト イボト イヨト イヨト 三日

Observation (WLOG #4)

We can assume A is at most 1-dimensional.

Observation (WLOG #5)

We can assume A contains all free edges of Y.

There are (at most) $\sim 4.5 \cdot 10^9$ possible complexes $X = Y \cup CA$.

イロト イボト イヨト 一日

Testing the complexes

Observation

Suppose the vertices of X can be split as $V = V_1 \cup V_2$, where V_1 span \geq 3 triangles and V_2 spans \geq 2 triangles of X. Then:

 $\pi_1(X) \cong \mathbb{Z}_m * F_n, \qquad m \in \mathbb{N}, n \in \mathbb{N}_0.$

Complexes with \leq 8 vertices

Procedure (mostly in Mathematica):

- Generate the $\sim 4.5 \cdot 10^9$ complexes $X = Y \cup CA$.
- Test for (4 + 4)-splitting. This leaves 3807843 complexes.
- Reduce further using "WLOG #3" and cone-and-collapse.
- Compute π_1 of remaining 201574 complexes in SageMath.

イロト イポト イヨト イヨト

Sar

Complexes with \leq 8 vertices

Procedure (mostly in Mathematica):

• Generate the $\sim 4.5 \cdot 10^9$ complexes $X = Y \cup CA$.

- Test for (4 + 4)-splitting. This leaves 3807843 complexes.
- Reduce further using "WLOG #3" and cone-and-collapse.
- Compute π_1 of remaining 201574 complexes in SageMath.

Result

For any complex X on \leq 8 vertices, we have

$$\pi_1(X)\cong G*F_n$$

where $n \in \mathbb{N}_0$ and G is one of the following:

- $G \cong \mathbb{Z}_m$ (for certain m, e.g. m = 2, 3),
- $G \cong \mathbb{Z} \times \mathbb{Z}$ (π_1 of torus),
- $G \cong \mathbb{Z} \rtimes \mathbb{Z}$ (π_1 of Klein bottle),

• $G \cong B_3$ (braid group on 3 strands = trefoil knot group).

Corollary

Any triangulation of the Poincaré sphere has \geq 13 vertices.

(The same conclusion holds for many other manifolds, e.g. T^3 .)

イロト イボト イヨト イヨト 三日

Sar

Thank you for your attention!