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Abstract

Let G be a �nite group acting on a closed manifold M. We estimate
the size of a minimal triangulation of M for which the action of G
is simplicial and regular. We show that the number of vertices of
such triangulations are bounded below by the G -covering type of
M, which is de�ned as the minimal cardinality of a G -equivariant
good cover of a space that is G -homotopy equivalent to M.
The G -covering type is a G -homotopy invariant, so it can be
estimated by other G -invariants like the equivariant LS-category,
G -genus and the multiplicative structure of any equivariant
cohomology theory. In particular, we give a complete description of
the number of vertices and their orbits for orientation preserving
actions on orientable surfaces.
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De�nition ((1) see [Bredon, Sec. II.1])

1 A simplicial G -complex is a simplicial complex K together with
an action of G on K by simplicial maps.

2 A simplicial G -complex K is regular if the action of G on K
satis�es the following conditions:
R1) If vertices v and gv belong to the same simplex in K , then

v = gv .
R2) If ⟨v0, . . . , vn⟩ is a simplex of K and if for some choice of

g0, . . . , gn ∈ H ≤ G the points g0v0, . . . , gnvn also span a
simplex of K , then there exist g ∈ H, such that gvi = givi , for
i = 0, . . . n (in other words, ⟨g0v0, . . . , gnvn⟩ = g⟨v0, . . . , vn⟩).

The regularity condition is quite stringent. For example, neither R1
nor R2 hold for the Z3-action that rotates the 2-simplex.
Furthermore, R1 is satis�ed for the induced action on the
barycentric subdivision of the 2-simplex, but R2 is not.
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Proposition ((2) [Bredon, Prop. II.1.1])

If K is any simplicial G-complex, then the induced action on the
barycentric subdivision K ′ satisi�es condition R1. Moreover, if the
action of G on K satis�es R1, then the induced action on K ′

satis�es R2. Therefore, any simplicial action of G on K induces a
regular action on the second barycentric subdivision of K .

By condition R2, if two n-simplices in K have vertices from the
same set of orbits, then they belong to an orbit of the action of G
on K . Thus, if K is a regular G -complex, then one can naturally
build a quotient simplicial complex K/G whose vertices are the
orbits of the action of G on the vertices of K , and whose simplices
are the orbits of the action of G on the simplices of K . Clearly, the
geometric realization |K/G | of the quotient complex is
homeomorphic to the quotient space |K |/G .
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Yang [Yang] has introduced an analogous notion for G -covers.

De�nition ((3))

An open G -cover U of a G -space X is regular if the following
conditions hold:

RC1) For every U ∈ U and g ∈ G , either U = gU or U ∩ gU = ∅
RC2) If U0, . . . ,Un are elements of U with non-empty intersection

and if for some choice of elements g0, . . . , gn ∈ H ≤ G the
intersection of sets g0U0, . . . , gnUn is also non-empty, then
there exists g ∈ H such that gUi = giUi for i ≤ n.

In short, U is a regular G -cover if its nerve N(U) is a regular
G -complex.
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Let U = {Uα}α∈I be an open G -cover of G -space X . For any
subgroup H ⊂ G and α ∈ I , let UH

α = Uα ∩XH . Denote by UH the
collection of {UH

α }α∈I . It is clear that UH is an open cover of XH .
After [Yang], we de�ne.

De�nition ((4) Equivariant good cover I)

An G -cover U is called an G -equivariant good cover, or shortly a
good G -cover, of X if it is a regular G -cover (see De�nition 3) and
UH is a good cover of XH for all subgroups H ⊂ G .

Theorem 2.11 of [Yang]: every smooth G -manifold has a good
G -cover.
Another natural extension onto the equivariant case.

De�nition ((5) Equivariant good cover II)

A regular open G -cover U split into orbits Ũ = GU is said to be a
good G -cover if all orbits Ũ of elements of U and all their
non-empty �nite intersections are G -contractible.
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Remark (6)

Directly from the de�nition of G -good cover U (Def. 5), it follows

that the family of images U∗ = π(U) of projection U∗ = {U∗}
forms a good cover of the orbit space X ∗ = X/G .

We have the following fact

Proposition ((7) Comparison of De�nitions)

Let U = {Us}, split into orbits Ũi∈I be a good G -cover of X in the
sense of De�nition (5). Then it is a good G -cover of X in the sense
of De�nition (4).
Conversely, if U = {Us}, split into orbits Ũi∈I is a good G -cover of
X in the sense of De�nition (5) then it is a good G -cover of X in
the sense of De�nition (4).
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Theorem (8)

If U is a locally �nite, e.g. �nite, equivariant good cover of a G -CW

complex X , then |N (U)| of N (U) is G -homotopy equivalent to X .

De�nition ((9) Strict covering and covering type)

By the de�nition, the strict G -covering type of a given space
G -space X , denoted by sctG (X ) is the minimal cardinality of orbits
an G -invariant regular good cover for X .
We de�ne the G -covering type of a G -space X as the minimal value
of sctG (Y ) of spaces Y that are G -homotopy equivalent to X :

ctG (X ) := min{sctG (Y ) | Y G≃X}

sctG (X ) can be ∞ (e.g., if X is an in�nite discrete ) or even
unde�ned, if the space (e.g. the Hawaiian earring with the cyclic
group C2 permuting every consecutive pair of its loops). In what
follows we will assume that the spaces admit �nite good covers.
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G -invariant regular open cover U of X induces an open good cover
of the orbit space X/G as the projection map π : X → X/G is
open and G -contraction of Ũ to an orbit Gx induces a contraction
of p(Ũ) to ∗ = [Gx ] in X/G .

Corollary (10)

For a G -space X which is a G -CW complex we have

sct(X/G ) ≤ sctG (X ) and respectively ct(X/G ) ≤ ctG (X )

We end with a direct consequence of the De�nition 5. ∆(K ) the
number of vertices of K and ∆∗(K ) the number of orbits of
vertices of K , i.e. the number of vertices of K/G .

Proposition (11)

We have
ctG (|K |) ≤ sctG (|K |) ≤ ∆∗(K )
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With complex K of dim d is associated a d + 1-dimensional vector
f⃗ (K ) = (f0(k), f1(K ), . . . fd(K )), where fi (K ) is the number of
i-dimensional simplices in K . If K is a G -complex of dimension d
with a simplicial regular action of G , then we de�ne

f⃗G (K ) := (fG ,0(K ), fG ,1(K ), . . . fG ,d(K )) (1)

where fG ,i (K ) is # of orbits of i-dim simplices of K . Note that
the coordinates of classical vector

f⃗ (K ) := (f0(K ), f1(K ), . . . fd(K ))

where fi (K ) is i-dimensional simplices of K are related to the
corresponding coordinates of the f⃗G (K ) by the formula

fi (K ) =
∑
σi

|G/Gσi | =
fG ,i∑
1

|G/Gσ|,

where the sum is taken over representatives of all orbits of
i-simplices σ of K or equivalently of
all i-simplices of the induced triangulation of K/G .
The aim of this paper is to give some lower estimates of fG ,0(K )
and also f0(K ).

Wacªaw Marzantowicz, UAM Dejan Govc, Petar Pavesic, UL Minimal triangulation of �nite groups actions



Theorem (12)

Let X be a G -complex or more general G -CW complex. Assume

that ∃ [!] minimal orbit type for the action on X , e.g. if the orbit

types on X are ordered linearly (H1) ≥ (H2) ≥ · · · ≥ (Hk). Then

ctG (X ) ≥ 1
2
γG (X ) (γG (X ) + 1) .

Remark (13)

The assumption of Theorem (12) is satis�ed if the action is free or

with one orbit type. Also ∀ G -space X if G is a group linearly

ordered subgroups, e.g. if G = Zpk where p prime, and k ≥ 1.
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Example (14)

If we take X = S(V ), where V is n + 1-dimensional complex , i.e.
2n + 2-dimensional real, free representation of G = Zp. Then
γG (S(V )) = dimR(V ) = 2n + 2 (cf. [Bartsch]) and
catG (S(V )) = dimR(V ) = 2n + 2 (cf. [Marzantowicz]).
Consequently, if we substitute it to the formula of Theorem 12 we
get

ctG (S(V )) ≥ (n + 1) (2n + 3) ,

Since here ctG (S(V )) = ct(S(V )/G ) = ct(L2n+1(p)) we get the
same as estimate of ct(L2n+1(p)) as this given in
[Govc, Marzantowicz, Pave²i¢ 3] that is stronger than the previous
of [Govc, Marzantowicz, Pave²i¢ 1].
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De�nition (15)

The (A,K ∗
G ) � cup length of a pair (X ,X ′) of G -spaces is the

smallest r such that there exist A1, A2, . . . ,Ar ∈ A and G -maps
βi : Ai → X , 1 ≤ i ≤ r with the property that for all
γ ∈ K ∗

G (X ,X ′) and for all ωi ∈ ker β∗
i we have

ω1 ∪ ω2 ∪ . . . ∪ ωr ∪ γ = 0 ∈ K ∗
G (X ,X ′).

If there is not such r , we say that the (A,K ∗
G ) � cup length of

(X ,X ′) is ∞. r = 0 means that K ∗
G (X ,X ′) = 0. Moreover, the

(A,K ∗
G ) � cup length of X is by de�nition the cup length of the

pair (X , ∅).
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Taking R := KG (pt) = R(G ) ⊂ K ∗
G (pt), we get

De�nition (16)

The (A,K ∗
G ,R) � length index of a pair (X ,X ′) of G -spaces is the

smallest r such that there exist A1, A2, . . . ,Ar ∈ A with the
following property:
For all γ ∈ K ∗

G (X ,X ′) and all
ωi ∈ R ∩ ker(K ∗

G (pt) → K ∗
G (Ai )) = ker(KG (pt) → KG (Ai )),

i = 1, 2, . . . , r , the product ω1 · ω2 · · · · · ωr · γ = 0 ∈ K ∗
G (X ,X ′) .

From now till the end of this subsection we �x G = Zpn. After
[Bartsch], for given two powers 1 ≤ m ≤ n ≤ pk−1 of p we set

Am,n := {G/H |H ⊂ G ; m ≤ |H| ≤ n }, (2)

where |H| is the cardinality of H. Next we put

ℓn(X ,X ′) = (Am,n,K
∗
G ,R)− length index of (X ,X ′) . (3)
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Theorem ((17) [Bartsch, Theorem 5.8])

Let V be an orth. repr. of G = Zpk with V G = {0} and

d = dimC V = 1

2
dimR V . Fix m, n two powers of p. Then

ℓn(S(V )) ≥

1+
[
(d−1)m

n

]
if AS(V ) ⊂ Am,n,

∞ if AS(V ) ⊈ A1,n ,
where [x ] denotes the least integer greater than or equal to x .
Moreover, if AS(V ) ⊂ An,n, then ℓn(S(V )) = d .

Theorem (18)

Let V be an orthogonal representation of G = Zpk , and m, n, , d
as in Theorem (17). If AS(V ) ⊂ Am,n then

ctG (S(V )) ≥ 1
2

(
1+

[(d − 1)m
n

])(
2+

[(d − 1)m
n

])
Note that if k ≥ 2 then S(V ) and m ̸= n then S(V ) in Theorem
(17) is not a G -space with one orbit type.
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We estimate the G -cov. type in a bit more complicated situation.

Proposition (19)

Let G = Zm be the cyclic group with m = pk1
1
pk2
2

· · · pkrr , pi
prime. Let next, for each 1 ≤ i ≤ r Vi be an or. repr. of G given
by a representation of Z

p
ki
i

, denoted by Vi , and the projection from

G onto Z
p
ki
i

. Assume V G
i = {0} for all i . Then

ctG (S(V1 ⊕ V2 ⊕ · · · ⊕ Vr )) = ctG1
(S(V1)) + · · · ctGr (S(Vr )) ,

where Gi = Zpki and ctGi
(S(Vi )) is estimated in Theorem 18.

Let W be an orth. r. of G = Zm of dimension d such that the
action of G = Zm ⊂ S(C) rhe roots of unity is free on S(W ). Note
that d odd if m = 2, otherwise d must be even. Let V = W ⊕ R1.
Then S(V ) = S(W ) ∗ S(R) and the action of G on S(V ) is free
out of the poles. Then ctG (S(V ) ≤ ct(S(R)) + ctG (S(W ))
= 2+ ctG (S(W )). If dimW = 2 then ctG (S(V ) ≤ 2+ 3 = 5. If
d = 2 then dimR(S(W )) = 1 and consequently dimS(V ) = 2.
Applying Theorem (29): ctG (SV )) = ct(S(V )/G ) = ct(S2) = 4.
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Let h∗G ( · ) be a generalized equivariant cohomology theory. If X is a
G�CW-complex, which is �ltered by its skeletons X (s), we can
de�ne a �ltration of h∗G (X ) by setting
h∗G ,s(X ) := ker(h∗G (X ) → h∗G (X

(s−1))).
The �ltration of h∗G (X ) de�ned above is decreasing:
h∗G (X ) = h∗G ,0(X ) ⊃ h∗G ,1(X ) ⊃ · · · h∗G ,d−1

(X ) ⊃ h∗G ,d(X ) = 0
where d = dimX . And h∗G (X ) is a �ltered ring
h∗G ,s(X ) · h∗G ,s′(X ) ⊂ h∗G ,s+s′(X )
Thus h∗G ,s(X ) is an ideal in h∗G (X ). Also we have the following
characterization of h∗G ,1(X ) (cf. [Segal] Proposition 5.1(i), page
146) h∗G ,1(X ) = ker(h∗G (X ) →

∏
x∈X h∗G (G/Gx)) =

=
⋂

x∈X ker(h∗G (X ) → h∗G (G/Gx))

De�nition (20)

We say that an element u of h∗G (X ) is of degree greater or equal to
i , denoted by |u| ≥ i , if u ∈ h∗G ,i (X ). We say that an element
u ∈ h∗G (X ) is of degree i if |u| ≥ i , but |u| ≱ i + 1.
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Theorem (21)

Let u1, . . . un ∈ h∗G (X ), |uk | ≥ ik be such that

u1 · u2 · · · · un ̸= 0 ∈ h∗G (X ) . Then
ctG (i1, . . . in) ≥ i1 + 2 i2 + · · · + nin + (n + 1) .
If i1, . . . in are not all equal, then

ctG (X ) ≥ i1 + 2 i2 + · · · + nin + (n + 2) .

Lemma (22)

Let X = U ∪ V where U,V ⊂ X be open G -inv., and

u, u ∈ h̃∗G (X ) be cohomology classes with u · v ̸= 0. If U is

G -categorical in X then i∗V (u) is non-trivial in h∗G (V ) (iV : V
G
↪→X ).

Lemma (23)

For u ∈ h∗G (X ), if |u| ≥ i then ctG (X ) ≥ i + 2.

Theorem (21) doesn't require any condition on the orbits in X .
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Let V be a complex representation of G of complex dim n + 1 and
P(V ) the projective space of V . The action of G on V induces an
action on P(V ), since g(λ v) = λ g(v) for λ ∈ S1 ⊂ C. Therefore
([Segal]) we have K 0

G (P(V )) = R(G )[η]/e(V ) , where R(G ) is a
representation ring of G and e(V ) is an ideal in R(G ) generated by

the element
n∑

i=0

(−1)i ∧i (V ) ηn+1−i . Here η is G -vector bundle

conjugated to the G -Hopf bundle over P(V ). K 1

G (P(V )) = 0.

Theorem (24)

Let V be a complex representation of a �nite group G of complex

dimension n + 1 and P(V ) the projective space of V . Then

ctG (P(V )) ≥ (n + 1)2 .

The topological dimension dimP(V ) is equal to d = 2n, i.e.
n = d

2
. Substituting it to the formula of Theorem (24) we get

ctG (P(V )) ≥ (d+2)2

4
, which express the estimate in term of the

geometric dimension of P(V ).
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Theorem (25)

Let Sn be an n-dimensional manifold being Fp-cohomology sphere

on which acts the group G = Zk
p , p-prime, k ≥ 1. Assume �rst

that SG = ∅. Depending on p we have

ctG (Sn) ≥ (n+1)(n+2)
2

if p = 2 ,

ctG (Sn) ≥ (d)(d+1)
2

if p > 2, where d = n+1

2
then .

If SG ̸= ∅ then SG ∼
Fp

Sr is a Fp coh. sph. of dim. r ≥ 0 and

sctG (Sn) ≥ (r + 2) + (n−r−1)(n−r+2)
2

if p = 2 ,

ctG (Sn) ≥ (r + 2) + (d−1)(d+1)
2

if p > 2, where d = n−r
2

.
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Let Σg be oriented surface of genus g ≥ 0. Suppose that G acts
e�ectively on Σg preserving orientation , i.e. it is a subgroup of
Homeo+(Σg). It is know (Hurwitz for Σg with g ≥ 1, Brouwer,
Kerekjarto and Eilenberg for Σg = S2 and a folklore for Σg = T2) )
that there exists a holomorphic structure H on Σg in which
Homeo+(Σg) is equal to the group of biholomorphic isomorphisms
Hol(Σg,H) of (Σ,H). More precisely we have the following

Theorem ((26) Geometrization of action)

Given a �nite group G of orientation-preserving homeomorphisms

of a compact surface of an arbitrary genus g, there is a complex

structure on X with respect to which G is a subgroup of the group

Hol of all its conformal maps. Furthermore, the orbit space

X ′ = X/G is a compact surface of genus g′ < g. Moreover the

relation between g and g′ is given by the Riemann-Hurwitz formula

(4).

Moreover, Hurwitz' theorem says that the order of Hol(Σg,H) is
≤ 84(g − 1) if g ≥ 2.
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Let Σg be a compact surface of genus g > 1 and let G be a group
of holomorphic automorphisms of Σg. Let Σg′ = Σg/G be the
quotient surface of genus g′ with the projection π : X → X ′ and let
{x ′

1
, . . . , x ′r} be the set of all points over which π is branched.

Denote by S the set of images of singular orbits {x ′
1
, . . . , x ′r} in Σ′.

Riemann-Hurwitz formula:

g = 1+m(g′ − 1) +
1
2
m

r∑
j=1

(1− 1
mj

), (4)

which let us also express g′ as a function of g.
We have a classical result which is converse to the
Riemann-Hurwitz formula (see [Broughton, Proposition 2.1]).

Proposition ((27) Riemann's Existence Theorem)

The group G acts on the surface Σg, of genus g, with branching
data (g′, r ,m1, . . . ,mr , ) if and only if the Riemann-Hurwitz
equation (4) above is satis�ed, and G has a generating
(g′ : m1, . . . ,mr )-vector.
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We shall use the fact for any closed surface, also non-oriented, the
number of vertices of minimal triangulation is given by

Theorem ((28) Jungerman and Ringel)

Let Σg be a closed surface di�erent from the orientable surface of

genus 2 (M2), the Klein bottle (N2) and the non-orientable surface

of genus 3 (N3). There exists a triangulation of Sg with n vertices

if and only if

(+) n ≥ ng =

[
7+
√

49−24χ(Σg)

2

]
.

For (M2), (N2) and (N3), ng is replaced by ng + 1 in this formula.

Here ⌈α⌉ means the ceiling of a real number α.
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Theorem (29)

Let Σg be an oriented surface of genus g. Suppose that a �nite

group G acts on Σg preserving orientation and Σg′ = Σg/G is the

quotient surface. Let r = |S| be the number of singular �bers of

the projection π : Σg → Σg′ , ng′ be the number de�ned in Theorem

28, and n1
g′ the number de�ned above.

Then for the number of orbits of minimal regular G -triangulation K
of Σg we have the estimate

ng′ ≤ fG ,0(K ) ≤ ng′ + n1
g′(r) ,

ng′ ≤ fG ,0(K ) ≤ r + n1
g′(r) if r > ng′ .

And the number of its vertices is estimated by∑r
j=1

m
mj

+ (ng′ − r)m ≤ f0(K ) ≤
∑r

j=1

m
mj

+ (ng′ − r + n1
g′(r))m ,

if r ≤ ng′ , or∑r
j=1

m
mj

≤ f0(K ) ≤
∑r

j=1

m
mj

+ n1
g′(r)m if r > ng′ .
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Let X = |K | be the body of one-dimensional simplicial connected
complex, i.e. a �nite graph, with a regular simplicial action of the
group G . It means that G permutes vertices and edges of K and
g [v1, v2] ⊂ [v1, v2] implies that g = id[v1,v2] for every edge
e = [v1, v2].
Before the discussion let us remind the corresponding result for the
not equivariant case, i.e. when there is not action of G , or
equivalently G = e (cf. [Karoubi, Weibel, Proposition 4.1]
If Xh is a bouquet of h > 0 circles then

ct(Xh) =

⌈
3+

√
1+ 8h
2

⌉
(5)

That is, ct(Xh) is the unique integer n such that(
n − 2
2

)
< h ≤

(
n − 1
2

)
(6)
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If X is as above and e1, . . . ep be all edges outgoing (or
equivalently ingoing) from {∗} then by X ′

(H) we denote
X \Nϵ({∗}), where Nϵ(A) is a open and invariant neighbourhood of
invariant set A. Let next 0 ≤ h(H)(X ), shortly h(H), be the number
of loops of X ′

(H)/G , i.e.the number of generators of π1(X ′
(H)/G ).

By X ′
(H) we denote the compact closed set (graph)

X \ Nϵ(X
(K)⊁(H)). Next 0 ≤ h(H)(X ), shortly h(H), be the number

of loops of X ′
(H)/G , i.e.the number of generators of π1(X ′

(H)/G ).

De�nition

Let X be a �nite regular G -graph and (H) an orbit type such that
X(H) ̸= ∅. We say that (H) is essential in X if for every regular

G -graph K , X
G∼K such that f0(K ) = ctG (X ), there exists a vertex

v ∈ K with the isotropy group Gv = H.
Otherwise we call a nonempty X(H) ̸= ∅ orbit type nonessential.

Wacªaw Marzantowicz, UAM Dejan Govc, Petar Pavesic, UL Minimal triangulation of �nite groups actions



For a connected component of an essential orbit type X ∗
(H),i) of

X ∗
(H) = X(H)/G , 1 ≤ i ≤ c(H) we put

ĉt(X ∗
(H),i ) =

⌈
3+
√

1+8h(H)(i)

2

⌉
if we have nontrivial loops in

(X ∗
(H))(H),i , or ĉt((X

∗
(H))(H),i ) = 1 otherwise, i.e. if (X ∗

(H))(H),i is a

tree. If X ∗
(H),i) is nonessential we put ĉt((X ∗

(H))(H),i ) = 0.

Theorem (31)

Let X be a �nite connected graph with a regular simplicial action of

a �nite group G . Let next SG (X ) be the subset of the set of all

orbit types SG consisting of all (H) such that X(H) ̸= ∅. Then

ctG (X ) =
∑

(H)∈SG (X )

c(H)∑
i=1

ĉt((X ∗
(H))(H),i ) ,
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