Some problems of TC and category-like invariants and groups

Arturo Espinosa Baro

Adam Mickiewicz University
Some problems of Applied and Computational Topology Będlewo, 6 March 2023

Adam Mickiewicz University in Poznań

Homotopical invariants of groups

It is possible to define homotopical invariants of groups as follows:

Homotopical invariants of groups

It is possible to define homotopical invariants of groups as follows:
(1) Visualize a discrete group G as a category $\mathbf{B} G$ with only one object *, and $\operatorname{Mor}_{\mathbf{B} G}(*, *)=G$.

Homotopical invariants of groups

It is possible to define homotopical invariants of groups as follows:
(1) Visualize a discrete group G as a category $\mathbf{B} G$ with only one object *, and $\operatorname{Mor}_{\mathrm{B} G}(*, *)=G$.
(2) Think of every group morphism $f: G \rightarrow H$ as a functor $\mathbf{B} f: \mathbf{B} G \rightarrow \mathbf{B H}$.

Homotopical invariants of groups

It is possible to define homotopical invariants of groups as follows:
(1) Visualize a discrete group G as a category $\mathbf{B} G$ with only one object *, and $\operatorname{Mor}_{\mathrm{B} G}(*, *)=G$.
(2) Think of every group morphism $f: G \rightarrow H$ as a functor $\mathbf{B} f: \mathbf{B} G \rightarrow \mathbf{B H}$.
(3) Consider the geometric realization of the nerve of $\mathbf{B} G$, the classifying space of $G B G=|\mathcal{N} B G|$. This gives rise to a full embedding of the category of groups into the homotopy category of spaces, mapping G to $B G$.

Homotopical invariants of groups

It is possible to define homotopical invariants of groups as follows:
(1) Visualize a discrete group G as a category $\mathbf{B} G$ with only one object *, and $\operatorname{Mor}_{\mathrm{B} G}(*, *)=G$.
(2) Think of every group morphism $f: G \rightarrow H$ as a functor $\mathbf{B} f: \mathbf{B} G \rightarrow \mathbf{B H}$.
(3) Consider the geometric realization of the nerve of $\mathbf{B} G$, the classifying space of $G B G=|\mathcal{N} B G|$. This gives rise to a full embedding of the category of groups into the homotopy category of spaces, mapping G to $B G$.
With this in mind, any homotopy-type invariant 「 of topological spaces allows us to define an isomorphism-type invariant of groups just defining $\Gamma(G)=\Gamma(B G)$.

Homotopical invariants of groups

Fundamental question

Can every homotopical invariant defined as before be characterized purely in terms of algebraic invariants of the group?

Homotopical invariants of groups

Fundamental question

Can every homotopical invariant defined as before be characterized purely in terms of algebraic invariants of the group?

This question has no easy answer. The homotopy type of $B G$ (and hence all of its homotopy-type invariants) is completely determined by G

Homotopical invariants of groups

Fundamental question

Can every homotopical invariant defined as before be characterized purely in terms of algebraic invariants of the group?

This question has no easy answer. The homotopy type of $B G$ (and hence all of its homotopy-type invariants) is completely determined by G BUT the description of the invariant may involve homotopy-theoretical constructions that can not be expressed in terms of classifying spaces.

The setting: sectional category

Sectional category of a map

Given a continuous map $f: X \rightarrow Y$ we define its sectional category secat (f) as the least integer $n \geq 0$ such that there exists an open cover of $Y\left\{U_{i}\right\}_{0 \leq i \leq n+1}$ admitting an homotopy section for every $i, s_{i}: U_{i} \rightarrow X$

The setting: sectional category

Sectional category of a map

Given a continuous map $f: X \rightarrow Y$ we define its sectional category $\operatorname{secat}(f)$ as the least integer $n \geq 0$ such that there exists an open cover of $Y\left\{U_{i}\right\}_{0 \leq i \leq n+1}$ admitting an homotopy section for every $i, s_{i}: U_{i} \rightarrow X$

If X is contractible, then secat (f) becomes the well-known Lusternik-Schnirelmann category of Y.

The setting: sectional category

Sectional category of a map

Given a continuous map $f: X \rightarrow Y$ we define its sectional category secat (f) as the least integer $n \geq 0$ such that there exists an open cover of $Y\left\{U_{i}\right\}_{0 \leq i \leq n}$ admitting an homotopy section for every $i, s_{i}: U_{i} \rightarrow X$

If f corresponds to the path space fibration, i.e

$$
f: P X \rightarrow X \times X
$$

assigning $\gamma \mapsto(\gamma(0), \gamma(1))$ then secat (f) coincides with the Topological Complexity of $X, \mathrm{TC}(X)$.

The setting: sectional category

Let $F \rightarrow E \xrightarrow{p} B$ a fibration, then

The setting: sectional category

Let $F \rightarrow E \xrightarrow{p} B$ a fibration, then
(1) $\operatorname{secat}(p) \leq \operatorname{cat}(B)$.

The setting: sectional category

Let $F \rightarrow E \xrightarrow{p} B$ a fibration, then
(1) $\operatorname{secat}(p) \leq \operatorname{cat}(B)$.
(0) Let $k>0$ the maximal integer such that there exist

$$
u_{1}, \cdots, u_{k} \in \operatorname{ker}\left\{\tilde{H}^{*}(B, R) \xrightarrow{p^{*}} \tilde{H}^{*}(E, R)\right\}
$$

with $u_{1} \smile \cdots \smile u_{k} \neq 0$. Then $\operatorname{secat}(p) \geq k$.

The setting: sectional category

Theorem [Eilenberg-Ganea, 1957]
Let G be a group. If $\operatorname{cat}(G) \geq 3$ then

$$
\operatorname{cat}(G)=\operatorname{cd}(G)=\operatorname{gd}(G)
$$

The setting: sectional category

Theorem [Eilenberg-Ganea, 1957]
Let G be a group. If $\operatorname{cat}(G) \geq 3$ then

$$
\operatorname{cat}(G)=\operatorname{cd}(G)=\operatorname{gd}(G)
$$

Question

Is it possible to generalize the characterization of Eilenberg-Ganea to the setting of TC ?

The setting: sectional category

Theorem [Eilenberg-Ganea, 1957]

Let G be a group. If $\operatorname{cat}(G) \geq 3$ then

$$
\operatorname{cat}(G)=\operatorname{cd}(G)=\operatorname{gd}(G)
$$

Question

Is it possible to generalize the characterization of Eilenberg-Ganea to the setting of TC ?

Further question

Is it possible to define and characterize in terms of algebraic properties of the group a notion of sectional category of group homomorphisms?

The setting: sectional category

Theorem [Eilenberg-Ganea, 1957]

Let G be a group. If $\operatorname{cat}(G) \geq 3$ then

$$
\operatorname{cat}(G)=\operatorname{cd}(G)=\operatorname{gd}(G)
$$

Question

Is it possible to generalize the characterization of Eilenberg-Ganea to the setting of TC ?

Further question

Is it possible to define and characterize in terms of algebraic properties of the group a notion of sectional category of group homomorphisms?

The answer is currently unknown.

Sectional category of subgroup inclusions

Sectional category of group morphisms

Given a group homomorphism $f: H \rightarrow G$ we define secat (f) as the sectional category of the induced map $B f: B H \rightarrow B G$

Sectional category of subgroup inclusions

Sectional category of group morphisms
Given a group homomorphism $f: H \rightarrow G$ we define secat (f) as the sectional category of the induced map $B f: B H \rightarrow B G$

We will specialize to the particular case of subgroups inclusions.

Sectional category of subgroup inclusions

Sectional category of group morphisms

Given a group homomorphism $f: H \rightarrow G$ we define secat (f) as the sectional category of the induced map $B f: B H \rightarrow B G$

We will specialize to the particular case of subgroups inclusions. Note that $\operatorname{cat}(G)$ can be visualized as secat $(1 \hookrightarrow G)$

Sectional category of subgroup inclusions

Sectional category of group morphisms

Given a group homomorphism $f: H \rightarrow G$ we define secat (f) as the sectional category of the induced map $B f: B H \rightarrow B G$

We will specialize to the particular case of subgroups inclusions. Note that $\operatorname{cat}(G)$ can be visualized as secat $(1 \hookrightarrow G)$ and $\mathrm{TC}(G)$ as $\operatorname{secat}\left(\Delta_{G} \hookrightarrow G \times G\right)$.

Sectional category of subgroup inclusions

A characterization

We have $\operatorname{secat}(H \hookrightarrow G) \leq n$ if and only if the Borel fibration

$$
p_{n}: E G \times{ }_{G} *^{n+1}(G / H) \rightarrow E G / G
$$

has a section (i.e $\operatorname{secat}\left(p_{n}\right)=0$).

Sectional category of subgroup inclusions

A characterization

We have $\operatorname{secat}(H \hookrightarrow G) \leq n$ if and only if the Borel fibration

$$
p_{n}: E G \times{ }_{G} *^{n+1}(G / H) \rightarrow E G / G
$$

has a section (i.e secat $\left(p_{n}\right)=0$).

A further characterization

$\operatorname{secat}(H \hookrightarrow G)$ coincides with the minimal integer $n \geq 0$ such that the G-equivariant map $\rho: E G \rightarrow E_{\langle H\rangle} G$ can be G-equivariantly factored up to G homotopy as

Sectional category of subgroup inclusions

A characterization

We have $\operatorname{secat}(H \hookrightarrow G) \leq n$ if and only if the Borel fibration

$$
p_{n}: E G \times_{G} *^{n+1}(G / H) \rightarrow E G / G
$$

has a section (i.e $\operatorname{secat}\left(p_{n}\right)=0$).

A further characterization

$\operatorname{secat}(H \hookrightarrow G)$ coincides with the minimal integer $n \geq 0$ such that the G-equivariant map $\rho: E G \rightarrow E_{\langle H\rangle} G$ can be G-equivariantly factored up to G homotopy as

Sectional category of subgroup inclusions

It is possible to obtain classic bounds for $\operatorname{secat}(H \hookrightarrow G)$

Sectional category of subgroup inclusions

It is possible to obtain classic bounds for $\operatorname{secat}(H \hookrightarrow G)$

- $\operatorname{secat}(H \hookrightarrow G) \leq \operatorname{cd}(G)$.

Sectional category of subgroup inclusions

It is possible to obtain classic bounds for $\sec a t(H \hookrightarrow G)$

- $\operatorname{secat}(H \hookrightarrow G) \leq \operatorname{cd}(G)$.
- Given a G-module M, define $\operatorname{Div}^{*}(M)=\operatorname{ker}\left\{H^{*}(G, M) \rightarrow H^{*}\left(H, \operatorname{res}_{H}^{G} M\right)\right\}$. If there exists $\left\{x_{i}\right\}_{1 \leq i \leq k}$ with $x_{i} \in \operatorname{Div}^{*}(M)$ such that $x_{1} \smile \cdots \smile x_{k} \neq 0$ then $\operatorname{secat}(H \hookrightarrow G) \geq k$.

Sectional category of subgroup inclusions

It is possible to obtain classic bounds for $\sec a t(H \hookrightarrow G)$

- $\operatorname{secat}(H \hookrightarrow G) \leq c d(G)$.
- Given a G-module M, define $\operatorname{Div}^{*}(M)=\operatorname{ker}\left\{H^{*}(G, M) \rightarrow H^{*}\left(H, \operatorname{res}_{H}^{G} M\right)\right\}$. If there exists $\left\{x_{i}\right\}_{1 \leq i \leq k}$ with $x_{i} \in \operatorname{Div}^{*}(M)$ such that $x_{1} \smile \cdots \smile x_{k} \neq 0$ then $\operatorname{secat}(H \hookrightarrow G) \geq k$.
The temptation here is then to use some relative cohomology.

Relative Bernstein class

Splicing together short exact sequences of G-modules

$$
0 \rightarrow K^{\otimes n+1} \rightarrow \mathbb{Z}[G] \otimes K^{\otimes n} \xrightarrow{\varepsilon \otimes \mathrm{id}} K^{\otimes n} \rightarrow 0
$$

Relative Bernstein class

Splicing together short exact sequences of G-modules

$$
0 \rightarrow K^{\otimes n+1} \rightarrow \mathbb{Z}[G] \otimes K^{\otimes n} \xrightarrow{\varepsilon \otimes \mathrm{id}} K^{\otimes n} \rightarrow 0
$$

yields a G-module free resolution of \mathbb{Z}

$$
\cdots \rightarrow \mathbb{Z}[G] \otimes K^{\otimes n+1} \rightarrow \mathbb{Z}[G] \otimes K^{\otimes n} \rightarrow \cdots \rightarrow \mathbb{Z}[G] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$

Relative Bernstein class

Splicing together short exact sequences of G-modules

$$
0 \rightarrow K^{\otimes n+1} \rightarrow \mathbb{Z}[G] \otimes K^{\otimes n} \xrightarrow{\varepsilon \otimes \mathrm{id}} K^{\otimes n} \rightarrow 0
$$

yields a G-module free resolution of \mathbb{Z}

$$
\cdots \rightarrow \mathbb{Z}[G] \otimes K^{\otimes n+1} \rightarrow \mathbb{Z}[G] \otimes K^{\otimes n} \rightarrow \cdots \rightarrow \mathbb{Z}[G] \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

Given a short exact sequence of G-modules

$$
0 \rightarrow A \xrightarrow{i} B \rightarrow C \rightarrow 0
$$

and a G-module map $f: B \rightarrow M$ with $f \circ i=0$, we will write \hat{f} for the induced map

Relative Bernstein class

Proposition

Let $[a] \in H^{p}(G, A)$ and $[b] \in H^{q}(G, B)$ be cohomology classes represented by cocycles $a: \mathbb{Z}[G] \otimes K^{\otimes p} \rightarrow A$ and $b: \mathbb{Z}[G] \otimes K^{\otimes q} \rightarrow B$. Then the cup product $[a][b] \in H^{p+q}(G, A \otimes B)$ is represented by the map

$$
\mathbb{Z}[G] \otimes K^{\otimes p+q} \xrightarrow{\varepsilon \otimes \mathrm{Id}} K^{\otimes p+q} \xrightarrow{\hat{\mathrm{a}} \otimes \hat{\mathrm{~b}}} A \otimes B .
$$

Relative Bernstein class

Proposition

Let $[a] \in H^{p}(G, A)$ and $[b] \in H^{q}(G, B)$ be cohomology classes represented by cocycles $a: \mathbb{Z}[G] \otimes K^{\otimes p} \rightarrow A$ and $b: \mathbb{Z}[G] \otimes K^{\otimes q} \rightarrow B$. Then the cup product $[a][b] \in H^{p+q}(G, A \otimes B)$ is represented by the map

$$
\mathbb{Z}[G] \otimes K^{\otimes p+q} \xrightarrow{\varepsilon \otimes \mathrm{Id}} K^{\otimes p+q} \xrightarrow{\hat{\mathrm{a}} \otimes \hat{b}} A \otimes B .
$$

Consider a permutation G-module $\mathbb{Z}[G / H]$ and write $/$ for the kernel of the augmentation homomorphism $\mathbb{Z}[G / H] \rightarrow \mathbb{Z}$.

Relative Bernstein class

Proposition

Let $[a] \in H^{P}(G, A)$ and $[b] \in H^{q}(G, B)$ be cohomology classes represented by cocycles $a: \mathbb{Z}[G] \otimes K^{\otimes p} \rightarrow A$ and $b: \mathbb{Z}[G] \otimes K^{\otimes q} \rightarrow B$. Then the cup product $[a][b] \in H^{p+q}(G, A \otimes B)$ is represented by the map

$$
\mathbb{Z}[G] \otimes K^{\otimes p+q} \xrightarrow{\varepsilon \otimes I \mathrm{Id}} K^{\otimes p+q} \xrightarrow{\hat{\partial} \otimes \hat{b}} A \otimes B .
$$

Consider a permutation G-module $\mathbb{Z}[G / H]$ and write $/$ for the kernel of the augmentation homomorphism $\mathbb{Z}[G / H] \rightarrow \mathbb{Z}$.

Bernstein relative class

$\omega \in H^{1}(G, I)$ is the class represented by a G-module homomorphism

$$
\xi: \mathbb{Z}[G] \otimes K \rightarrow I
$$

Relative Bernstein class

Proposition

Let $[a] \in H^{P}(G, A)$ and $[b] \in H^{q}(G, B)$ be cohomology classes represented by cocycles $a: \mathbb{Z}[G] \otimes K^{\otimes p} \rightarrow A$ and $b: \mathbb{Z}[G] \otimes K^{\otimes q} \rightarrow B$. Then the cup product $[a][b] \in H^{p+q}(G, A \otimes B)$ is represented by the map

$$
\mathbb{Z}[G] \otimes K^{\otimes p+q} \xrightarrow{\varepsilon \otimes \mathrm{Id}} K^{\otimes p+q} \xrightarrow{\hat{a} \otimes \hat{b}} A \otimes B .
$$

Consider a permutation G-module $\mathbb{Z}[G / H]$ and write $/$ for the kernel of the augmentation homomorphism $\mathbb{Z}[G / H] \rightarrow \mathbb{Z}$.

Bernstein relative class

$\omega \in H^{1}(G, I)$ is the class represented by a G-module homomorphism

$$
\xi: \mathbb{Z}[G] \otimes K \rightarrow I
$$

defined as the composition of $\varepsilon \otimes \mathrm{id}$ and the map $\mu: K \rightarrow I$ induced by the canonical projection $G \rightarrow G / H$

Relative Bernstein class

Powers of the relative Bernstein class

By cup product description, the n-th power $\omega^{n} \in H^{n}\left(G, I^{\otimes n}\right)$ is represented by the map

$$
\mathbb{Z}[G] \otimes K^{\otimes n} \xrightarrow{\varepsilon \otimes \mathrm{Id}} K^{\otimes n} \xrightarrow{\mu^{\otimes n}} I^{\otimes n} .
$$

Relative Bernstein class

Powers of the relative Bernstein class

By cup product description, the n-th power $\omega^{n} \in H^{n}\left(G, \|^{\otimes n}\right)$ is represented by the map

$$
\mathbb{Z}[G] \otimes K^{\otimes n} \xrightarrow{\varepsilon \otimes \mathrm{Id}} K^{\otimes n} \xrightarrow{\mu^{\otimes n}} I^{\otimes n} .
$$

Proposition (Generalized Costa-Farber)
If $n=\operatorname{cd} G \geq 3$, then $\operatorname{secat}(H \hookrightarrow G) \leq n-1$ if and only if $\omega^{n}=0$.

Adamson relative cohomology

($G: H$)-exactness
Given $H \leq G$, an exact sequence of G-modules

$$
\cdots \rightarrow M_{n} \xrightarrow{f_{n}} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \rightarrow \cdots
$$

is said to be $(G: H)$-exact if $M_{i} \cong \operatorname{ker} f_{i} \oplus N_{i}$ as H-module, for every i.

Adamson relative cohomology

($G: H$)-exactness

Given $H \leq G$, an exact sequence of G-modules

$$
\cdots \rightarrow M_{n} \xrightarrow{f_{n}} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \rightarrow \cdots
$$

is said to be $(G: H)$-exact if $M_{i} \cong \operatorname{ker} f_{i} \oplus N_{i}$ as H-module, for every i.
($G: H$)-projective modules
A G-module P is $(G: H)$-projective if it has the lifting property for short $(G: H)$-exact sequences.

Adamson relative cohomology

($G: H$)-exactness

Given $H \leq G$, an exact sequence of G-modules

$$
\cdots \rightarrow M_{n} \xrightarrow{f_{n}} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \rightarrow \cdots
$$

is said to be $(G: H)$-exact if $M_{i} \cong \operatorname{ker} f_{i} \oplus N_{i}$ as H-module, for every i.

($G: H$)-projective modules

A G-module P is $(G: H)$-projective if it has the lifting property for short $(G: H)$-exact sequences. The permutation module $C_{n}(G / H)=\mathbb{Z}\left[(G / H)^{n+1}\right]$ is $(G: H)$-projective, and the augmented resolution $C_{*}(G / H) \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0$ is a $(G: H)$-projective resolution of \mathbb{Z} as a trivial G-module.

Adamson relative cohomology

Adamson relative cohomology

Given $H \leq G$ we define the $n^{\text {th }}$-Adamson cohomology group of G with respect to H as

$$
H^{n}([G: H], M)=\operatorname{Ext}_{(G, H)}^{n}(\mathbb{Z}, M)
$$

Adamson relative cohomology

Adamson relative cohomology

Given $H \leq G$ we define the $n^{\text {th }}$-Adamson cohomology group of G with respect to H as

$$
H^{n}([G: H], M)=\operatorname{Ext}_{(G, H)}^{n}(\mathbb{Z}, M)=\mathrm{H}^{n}\left(\operatorname{Hom}_{G}\left(\mathcal{P}_{*}, M\right)\right)
$$

Adamson relative cohomology

Adamson relative cohomology

Given $H \leq G$ we define the $n^{t h}$-Adamson cohomology group of G with respect to H as

$$
H^{n}([G: H], M)=\operatorname{Ext}_{(G, H)}^{n}(\mathbb{Z}, M)=\mathrm{H}^{n}\left(\operatorname{Hom}_{G}\left(\mathcal{P}_{*}, M\right)\right)
$$

Cohomological dimension

The Adamson cohomological dimension $\operatorname{cd}(G: H)$ is the length of the shortest possible $(G: H)$-projective resolution of \mathbb{Z}.

Adamson relative cohomology

Adamson relative cohomology

Given $H \leq G$ we define the $n^{t h}$-Adamson cohomology group of G with respect to H as

$$
H^{n}([G: H], M)=\operatorname{Ext}_{(G, H)}^{n}(\mathbb{Z}, M)=\mathrm{H}^{n}\left(\operatorname{Hom}_{G}\left(\mathcal{P}_{*}, M\right)\right)
$$

Cohomological dimension

The Adamson cohomological dimension $\operatorname{cd}(G: H)$ is the length of the shortest possible $(G: H)$-projective resolution of \mathbb{Z}. Equivalently, the least integer n such that $H^{k}([G: H], M)=0 \forall M$ and $k>n$.

Cup product in Adamson cohomology and canonical class

 It's time to define cup products in Adamson cohomology.
Cup product in Adamson cohomology and canonical class

 It's time to define cup products in Adamson cohomology. Consider the augmentation short exact sequence$$
0 \rightarrow I \hookrightarrow \mathbb{Z}[G / H] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$

with I the corresponding augmentation ideal.

Cup product in Adamson cohomology and canonical class

 It's time to define cup products in Adamson cohomology. Consider the augmentation short exact sequence$$
0 \rightarrow I \hookrightarrow \mathbb{Z}[G / H] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$

with I the corresponding augmentation ideal. If we apply $-\otimes I^{\otimes k}$, and splice together the resulting sequences, we can build a $(G: H)$-projective resolution of the form

$$
\cdots \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes k} \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes k-1} \rightarrow \cdots \rightarrow \mathbb{Z}[G / H] \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

Cup product in Adamson cohomology and canonical class

 It's time to define cup products in Adamson cohomology. Consider the augmentation short exact sequence$$
0 \rightarrow I \hookrightarrow \mathbb{Z}[G / H] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$

with I the corresponding augmentation ideal. If we apply $-\otimes I^{\otimes k}$, and splice together the resulting sequences, we can build a $(G: H)$-projective resolution of the form

$$
\cdots \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes k} \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes k-1} \rightarrow \cdots \rightarrow \mathbb{Z}[G / H] \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

So given $\alpha \in H^{n}([G: H], M)$, we have $\alpha=[a]$ for some $a: \mathbb{Z}[G / H] \otimes I^{\otimes n} \rightarrow M$.

Cup product in Adamson cohomology and canonical class

 It's time to define cup products in Adamson cohomology. Consider the augmentation short exact sequence$$
0 \rightarrow I \hookrightarrow \mathbb{Z}[G / H] \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

with I the corresponding augmentation ideal. If we apply $-\otimes I^{\otimes k}$, and splice together the resulting sequences, we can build a $(G: H)$-projective resolution of the form

$$
\cdots \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes k} \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes k-1} \rightarrow \cdots \rightarrow \mathbb{Z}[G / H] \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

So given $\alpha \in H^{n}([G: H], M)$, we have $\alpha=[a]$ for some $a: \mathbb{Z}[G / H] \otimes I^{\otimes n} \rightarrow M$.

Cup product

If $\alpha_{i}=\left[a_{i}\right]$ we define the cup product $\alpha_{1} \smile \alpha_{2}$ as the class represented by the composition

$$
\mathbb{Z}[G / H] \otimes I^{\otimes\left(n_{1}+n_{2}\right)} \xrightarrow{\varepsilon \otimes \mathbb{I}} \boldsymbol{I}^{\otimes\left(n_{1}+n_{2}\right)} \xrightarrow{\widehat{a_{1}} \otimes \widehat{\mathrm{a}_{2}}} M \otimes M
$$

Cup product in Adamson cohomology and canonical class

Canonical class

Define the Adamson canonical class $\phi \in \mathrm{H}^{1}([G: H], I)$ as the class represented by the cocycle

$$
\mathbb{Z}[G / H] \otimes I \xrightarrow{\varepsilon \otimes \mathrm{ld}} I .
$$

Cup product in Adamson cohomology and canonical class

Canonical class

Define the Adamson canonical class $\phi \in \mathrm{H}^{1}([G: H], I)$ as the class represented by the cocycle

$$
\mathbb{Z}[G / H] \otimes I \xrightarrow{\varepsilon \otimes \mathrm{ld}} I .
$$

Universality of the canonical class

The class ϕ is universal in the sense that for every other $\lambda \in H^{n}([G: H], M)$ there exists a G-morphism $f: I^{\otimes n} \rightarrow M$ such that $\lambda=f^{*}\left(\phi^{n}\right)$.

Cup product in Adamson cohomology and canonical class

Canonical class

Define the Adamson canonical class $\phi \in \mathrm{H}^{1}([G: H], I)$ as the class represented by the cocycle

$$
\mathbb{Z}[G / H] \otimes I \xrightarrow{\varepsilon \otimes \mathrm{ld}} I .
$$

Universality of the canonical class

The class ϕ is universal in the sense that for every other $\lambda \in H^{n}([G: H], M)$ there exists a G-morphism $f: I^{\otimes n} \rightarrow M$ such that $\lambda=f^{*}\left(\phi^{n}\right)$.

As a corollary, $c d(G: H)=\operatorname{height}(\phi)$

Cup product in Adamson cohomology and canonical class

Canonical class

Define the Adamson canonical class $\phi \in \mathrm{H}^{1}([G: H], I)$ as the class represented by the cocycle

$$
\mathbb{Z}[G / H] \otimes I \xrightarrow{\varepsilon \otimes \mathrm{ld}} I .
$$

Universality of the canonical class

The class ϕ is universal in the sense that for every other $\lambda \in H^{n}([G: H], M)$ there exists a G-morphism $f: I^{\otimes n} \rightarrow M$ such that $\lambda=f^{*}\left(\phi^{n}\right)$.
As a corollary, $c d(G: H)=\operatorname{height}(\phi)=\max \{n \mid \overbrace{\phi \smile \cdots \smile \phi}^{n} \neq 0\}$.

Adamson cohomology and zero divisors

Adamson cohomology and zero divisors

Denote

$$
\operatorname{ker}\left[H^{1}\left(G, \operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right) \rightarrow H^{1}\left(H, \operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right)\right]
$$

by $\operatorname{Div}^{1}\left(\operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right)$

Adamson cohomology and zero divisors

Denote

$$
\operatorname{ker}\left[H^{1}\left(G, \operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right) \rightarrow H^{1}\left(H, \operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right)\right]
$$

by $\operatorname{Div}^{1}\left(\operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right)$

Proposition

For any G-module M and $n \geq 1$, we have that

$$
H^{n}([G: H], M)=\operatorname{Div}^{1}\left(\operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right) .
$$

Adamson cohomology and zero divisors

Denote

$$
\operatorname{ker}\left[H^{1}\left(G, \operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right) \rightarrow H^{1}\left(H, \operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right)\right]
$$

by $\operatorname{Div}^{1}\left(\operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right)$

Proposition

For any G-module M and $n \geq 1$, we have that

$$
H^{n}([G: H], M)=\operatorname{Div}^{1}\left(\operatorname{Hom}_{\mathbb{Z}}\left(I^{\otimes n-1}, M\right)\right)
$$

In particular, there exists $\rho^{*}: H^{*}([G: H], M) \rightarrow H^{*}(G, M)$ inducing $H^{1}([G: H], M)=\operatorname{Div}^{1}(M)$ as above, but $H^{n}([G: H], M)$ can only be identified with $\operatorname{Div}^{n}(M)$ under very restrictive hypothesis.

A spectral sequence

Take the (G, H)-projective resolution of \mathbb{Z}

$$
\cdots \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes n} \rightarrow \cdots \rightarrow \mathbb{Z}[G / H] \otimes I \rightarrow \mathbb{Z}[G / H] \rightarrow \mathbb{Z} \rightarrow 0
$$

A spectral sequence

Take the (G, H)-projective resolution of \mathbb{Z}

$$
\cdots \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes n} \rightarrow \cdots \rightarrow \mathbb{Z}[G / H] \otimes I \rightarrow \mathbb{Z}[G / H] \rightarrow \mathbb{Z} \rightarrow 0
$$

As an object in the category of sequences of G-modules consider a G-projective resolution of it, which gives us a double complex $\left\{P_{i, j}, \delta_{i, j}\right\}_{i, j}$.

A spectral sequence

Take the (G, H)-projective resolution of \mathbb{Z}

$$
\cdots \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes n} \rightarrow \cdots \rightarrow \mathbb{Z}[G / H] \otimes I \rightarrow \mathbb{Z}[G / H] \rightarrow \mathbb{Z} \rightarrow 0
$$

As an object in the category of sequences of G-modules consider a G-projective resolution of it, which gives us a double complex $\left\{P_{i, j}, \delta_{i, j}\right\}_{i, j}$. Every $P_{i, j}$ is G-projective, every column is a G-projective resolution, and each row (except the first one) is split exact.

A spectral sequence

Take the (G, H)-projective resolution of \mathbb{Z}

$$
\cdots \rightarrow \mathbb{Z}[G / H] \otimes I^{\otimes n} \rightarrow \cdots \rightarrow \mathbb{Z}[G / H] \otimes I \rightarrow \mathbb{Z}[G / H] \rightarrow \mathbb{Z} \rightarrow 0 .
$$

As an object in the category of sequences of G-modules consider a G-projective resolution of it, which gives us a double complex $\left\{P_{i, j}, \delta_{i, j}\right\}_{i, j}$. Every $P_{i, j}$ is G-projective, every column is a G-projective resolution, and each row (except the first one) is split exact.

Proposition

There exists a spectral sequence

$$
\mathrm{E}_{2}^{p, q}=H^{p}\left(\mathrm{Ext}_{G}^{q}\left(\mathbb{Z}[G / H] \otimes I^{\otimes *}, M\right)\right) \Rightarrow H^{p+q}(G, M)
$$

such that $\mathrm{E}_{2}^{p, 0}=H^{p}([G: H], M)$.

Some results

A lower bound for secat $(H \hookrightarrow G)$

Let M be a G-module such that $\rho^{*}: H^{n}([G: H], M) \rightarrow H^{*}(G, M)$ is non trivial. Then $\operatorname{secat}(H \hookrightarrow G) \geq n$.

Some results

A lower bound for secat $(H \hookrightarrow G)$

Let M be a G-module such that $\rho^{*}: H^{n}([G: H], M) \rightarrow H^{*}(G, M)$ is non trivial. Then $\operatorname{secat}(H \hookrightarrow G) \geq n$.

Small corollary

Let $n>\operatorname{secat}(H \hookrightarrow G)$ and M a G-module such that $\operatorname{Div}^{n}(M) \neq 0$. Then there exists a subgroup $U \leq H$ and an integer $m<n$ such that $H^{m}(U, M) \neq 0$.

What to do now?

The natural conjecture is that $\operatorname{secat}(H \hookrightarrow G) \leq c d(G: H)$.

What to do now?

The natural conjecture is that secat $(H \hookrightarrow G) \leq c d(G: H)$.

- It is known that $\operatorname{secat}\left(\Delta_{G} \hookrightarrow G \times G\right)$ (i.e, $\left.\mathrm{TC}(G)\right)$ is bounded above by Bredon cohomological dimension for dimensions greater than 3. And Adamson cohomological dimension is also bounded above by said cohomological dimension.

What to do now?

The natural conjecture is that secat $(H \hookrightarrow G) \leq c d(G: H)$.

- It is known that $\operatorname{secat}\left(\Delta_{G} \hookrightarrow G \times G\right)$ (i.e, $\left.\mathrm{TC}(G)\right)$ is bounded above by Bredon cohomological dimension for dimensions greater than 3.
And Adamson cohomological dimension is also bounded above by said cohomological dimension.
- Given any n, it is easy to construct examples such that $\operatorname{cd}(G: H)-\operatorname{secat}(H \hookrightarrow G)=n$.

What to do now?

The equality in TC is FALSE in general

What to do now?

The equality in TC is FALSE in general Counter example by Grant, Li, Meir and Patchkoria (2023)

What to do now?

The equality in TC is FALSE in general Counter example by Grant, Li, Meir and Patchkoria (2023)

Example

If $G=A *_{C} A$ amalgam for $C \unlhd A$ then

$$
\operatorname{cd}_{\mathcal{G}}(G \rtimes G)=\operatorname{cd}_{\left\langle\Delta_{G}\right\rangle}(G \times G) \geq \operatorname{cd}(A / C)
$$

What to do now?

The equality in TC is FALSE in general Counter example by Grant, Li, Meir and Patchkoria (2023)

Example

If $G=A *_{C} A$ amalgam for $C \unlhd A$ then

$$
\operatorname{cd}_{\mathcal{G}}(G \rtimes G)=\operatorname{cd}_{\left\langle\Delta_{G}\right\rangle}(G \times G) \geq \operatorname{cd}(A / C)
$$

If $(A: C)<\infty$, those cd are infinite.

What to do now?

The equality in TC is FALSE in general Counter example by Grant, Li, Meir and Patchkoria (2023)

Example

If $G=A *_{C} A$ amalgam for $C \unlhd A$ then

$$
\operatorname{cd}_{\mathcal{G}}(G \rtimes G)=\operatorname{cd}_{\left\langle\Delta_{G}\right\rangle}(G \times G) \geq \operatorname{cd}(A / C)
$$

If $(A: C)<\infty$, those cd are infinite. But if G torsion free, $\mathrm{TC}(G)$ finite.

Essential classes

Farber and Mescher defined essential cohomology classes in $H^{*}(\pi \times \pi, M)$.

Essential classes

Farber and Mescher defined essential cohomology classes in $H^{*}(\pi \times \pi, M)$. A class $\alpha \in H^{n}(\pi \times \pi, M)$ is essential if there exists a homomorphism of $\mathbb{Z}[\pi \times \pi]$-modules $\mu: I^{n} \rightarrow M$ such that

$$
\mu^{*}\left(\mathbf{v}^{n}\right)=\alpha
$$

where I denotes the augmentation ideal and \mathbf{v} denotes the 1-dimensional Bernstein canonical class, represented by the short exact sequence of ($\pi \times \pi$)-modules

$$
0 \rightarrow I \rightarrow \mathbb{Z}[\pi] \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

Essential classes

Farber and Mescher defined essential cohomology classes in $H^{*}(\pi \times \pi, M)$. A class $\alpha \in H^{n}(\pi \times \pi, M)$ is essential if there exists a homomorphism of $\mathbb{Z}[\pi \times \pi]$-modules $\mu: I^{n} \rightarrow M$ such that

$$
\mu^{*}\left(\mathbf{v}^{n}\right)=\alpha
$$

where I denotes the augmentation ideal and \mathbf{v} denotes the 1-dimensional Bernstein canonical class, represented by the short exact sequence of ($\pi \times \pi$)-modules

$$
0 \rightarrow I \rightarrow \mathbb{Z}[\pi] \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

Relative essential classes

Let (G, H) a pair group, we say that $\alpha \in H^{*}(G, M)$ is essential relative to H if there exists a homomorphism of $\mathbb{Z}[G]$-modules $\mu: I^{n} \rightarrow M$ such that

$$
\mu^{*}\left(\omega^{n}\right)=\alpha
$$

Essential classes

The canonical map

$$
\rho^{*}: H^{*}([G: H], M) \rightarrow H^{*}(G, M) .
$$

preserves product structures, and send $\rho^{*}(\phi)=\omega$.

Essential classes

The canonical map

$$
\rho^{*}: H^{*}([G: H], M) \rightarrow H^{*}(G, M) .
$$

preserves product structures, and send $\rho^{*}(\phi)=\omega$.

Essential dimension

The essential dimension of a pair (G, H) (denoted by $\left.\rho_{[G: H]}^{*}\right)$ as the greatest integer $n \geq 0$ such that the canonical homomorphism in cohomology defined above

$$
\rho^{n}: H^{n}([G: H], M) \rightarrow H^{n}(G, M)
$$

is non trivial for some G-module M.

Essential classes

The canonical map

$$
\rho^{*}: H^{*}([G: H], M) \rightarrow H^{*}(G, M)
$$

preserves product structures, and send $\rho^{*}(\phi)=\omega$.

Essential dimension

The essential dimension of a pair (G, H) (denoted by $\left.\rho_{[G: H]}^{*}\right)$ as the greatest integer $n \geq 0$ such that the canonical homomorphism in cohomology defined above

$$
\rho^{n}: H^{n}([G: H], M) \rightarrow H^{n}(G, M) .
$$

is non trivial for some G-module M.
How much can be read from the spectral sequence in Adamson and ker ρ^{*} ?

A-genus (Clapp, Puppe)

G group, X a G-space and \mathcal{A} a family of G-spaces. The \mathcal{A}-genus of X, is the smallest integer $r \geq 0$ such that there exists a G-invariant covering X_{0}, \cdots, X_{r} of X having the property that for every $i=0, \cdots, r$ there exists $A_{i} \in \mathcal{A}$ and a G-equivariant map $X_{i} \rightarrow A_{i}$.

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

Proposition

Let X be a connected $C W$-complex. If $q: \hat{X} \rightarrow X$ is a connected covering, then $\operatorname{secat}(q)=\mathcal{A}$-genus (\tilde{X}) where $\mathcal{A}=\left\{\pi_{1}(X) / \pi_{1}(\hat{X})\right\}$.

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

Proposition

Let X be a connected $C W$-complex. If $q: \hat{X} \rightarrow X$ is a connected covering, then $\operatorname{secat}(q)=\mathcal{A}$-genus (\tilde{X}) where $\mathcal{A}=\left\{\pi_{1}(X) / \pi_{1}(\hat{X})\right\}$.

Corollary (TC as \mathcal{A}-genus)

Let X be a connected $C W$-complex with $\pi_{1}(X)=G$ and $\mathcal{A}=\{(G \times G) / \Delta G\}$. If X is aspherical, then $\operatorname{TC}(X)=\mathcal{A}$-genus $(\tilde{X} \times \tilde{X})$.

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

We can recover the classical properties of TC in terms of \mathcal{A} - genus and also derive some new boundaries, like

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

We can recover the classical properties of TC in terms of \mathcal{A} - genus and also derive some new boundaries, like

- $\mathrm{TC}(G) \leq \mathcal{A}-\operatorname{genus}\left(E_{\mathcal{F}}(G \times G)\right)$.

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

We can recover the classical properties of TC in terms of \mathcal{A} - genus and also derive some new boundaries, like

- $\operatorname{TC}(G) \leq \mathcal{A}-\operatorname{genus}\left(E_{\mathcal{F}}(G \times G)\right)$.
- $\mathrm{TC}(G) \leq \mathrm{cd}_{\langle H\rangle} G \times G$ for any $H \subset G \times G$ subconjugate to ΔG.

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

For any H overgroup of ΔG take $\mathcal{B}=\{(G \times G) / H\}$.

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

For any H overgroup of ΔG take $\mathcal{B}=\{(G \times G) / H\}$.

Proposition

$$
\mathcal{B} \text {-genus }(E(G \times G)) \leq \mathcal{A} \text {-genus }(E(G \times G))=\mathrm{TC}(G) .
$$

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

For any H overgroup of ΔG take $\mathcal{B}=\{(G \times G) / H\}$.

Proposition

$$
\mathcal{B} \text {-genus }(E(G \times G)) \leq \mathcal{A} \text {-genus }(E(G \times G))=\mathrm{TC}(G) .
$$

\mathcal{B}-genus $(E(G \times G))$ corresponds with $\sec (H \hookrightarrow G \times G)$

TC of $K(G, 1)$-spaces: \mathcal{A}-genus

For any H overgroup of ΔG take $\mathcal{B}=\{(G \times G) / H\}$.

Proposition

$$
\mathcal{B}-\operatorname{genus}(E(G \times G)) \leq \mathcal{A} \text {-genus }(E(G \times G))=\mathrm{TC}(G) .
$$

\mathcal{B}-genus $(E(G \times G))$ corresponds with secat $(H \hookrightarrow G \times G)$

Proposition

There is a one to one correspondence between overgroups H of ΔG in $G \times G$ and normal subgroups $N \unlhd G$.

\mathcal{A}-genus and proper category-like invariants

\mathcal{A}-genus and proper category-like invariants

Proper TC

Define the proper topological complexity of G, denoted by $\mathrm{TC}(G)$ as

$$
\mathrm{TC}(G)=\mathrm{TC}(\underline{B} G)
$$

\mathcal{A}-genus and proper category-like invariants

Proper TC

Define the proper topological complexity of G, denoted by $\mathrm{TC}(G)$ as

$$
\underline{\mathrm{TC}}(G)=\mathrm{TC}(\underline{B} G)
$$

Theorem [Leary-Nucinkis, 01]

For any connected $C W$-complex X there exists a discrete group G_{X} and a contractible proper $G_{X}-C W$-complex E_{X} such that E_{X} / G_{X} is homotopy equivalent to X.

\mathcal{A}-genus and proper category-like invariants

Definition

Let G an arbitrary group, and \mathcal{F} in the closed family of finite subgroups. Define the proper genus of the group, $G \operatorname{genus}(G)$, as \mathcal{F} in-genus $(\underline{E} G)$.

\mathcal{A}-genus and proper category-like invariants

Definition

Let G an arbitrary group, and \mathcal{F} in the closed family of finite subgroups. Define the proper genus of the group, $G \operatorname{genus}(G)$, as \mathcal{F} in-genus $(\underline{E} G)$.

Proposition

G be a discrete group with torsion such that $\underline{B} G$ has dimension n and $H^{n}(\underline{B} G, M)$ for some G-module M. Then, we have

$$
\operatorname{dim}_{G}(\underline{E} G)=\operatorname{cd}_{\mathcal{F} \text { in }}(G) \leq \underline{\operatorname{genus}}(G)
$$

\mathcal{A}-genus and proper category-like invariants

Definition

Let G an arbitrary group, and \mathcal{F} in the closed family of finite subgroups. Define the proper genus of the group, $G \operatorname{genus}(G)$, as \mathcal{F} in-genus $(\underline{E} G)$.

Proposition

G be a discrete group with torsion such that $\underline{B} G$ has dimension n and $H^{n}(\underline{B} G, M)$ for some G-module M. Then, we have

$$
\operatorname{dim}_{G}(\underline{E} G)=\operatorname{cd}_{\mathcal{F} \text { in }}(G) \leq \underline{\operatorname{genus}}(G)
$$

As a consequence the difference between genus and TC may be arbitrarily great.

Symmetries in the configuration spaces

Symmetries in the configuration spaces

Symmetries in the configuration spaces

The original topological complexity does not take this sort of phenomena into account!

Symmetries in the configuration spaces

Several attempts to intertwine this symmetries with the definition of TC:

Symmetries in the configuration spaces

Several attempts to intertwine this symmetries with the definition of TC: $P X$ is a G space by the formula $(g \gamma)(-)=g(\gamma(-))$.

Symmetries in the configuration spaces

Several attempts to intertwine this symmetries with the definition of TC: $P X$ is a G space by the formula $(g \gamma)(-)=g(\gamma(-)) . X \times X$ is a G-space by diagonal action.

Symmetries in the configuration spaces

Several attempts to intertwine this symmetries with the definition of TC: $P X$ is a G space by the formula $(g \gamma)(-)=g(\gamma(-)) . X \times X$ is a G-space by diagonal action. Then $\pi_{1}: P X \rightarrow X \times X$ is a G-fibration,

Equivariant TC

$\mathrm{TC}_{G}(X)$ is the minimal number $k \geq 0$ such that there exists an open G-invariant cover of $X \times X$ by $k-1$ sets which admit G-equivariant motion planners.

Strongly equivariant TC

$\mathrm{TC}_{G}^{*}(X)$ is defined as TC_{G} but using the component-wise $(G \times G)$ action.

Symmetries in the configuration spaces

$P X \times{ }_{X / G} P X=(\gamma, \delta) \in P X \times P X \mid G \gamma(1)=G \delta(0)$ as a $(G \times G)$-space component-wise.

Symmetries in the configuration spaces

$P X \times{ }_{X / G} P X=(\gamma, \delta) \in P X \times P X \mid G \gamma(1)=G \delta(0)$ as a $(G \times G)$-space component-wise. The map $\pi_{2}: P X \times_{X / G} P X \rightarrow X \times X$ given by $\pi_{2}(\gamma, \delta)=(\gamma(0), \delta(1))$ is a $(G \times G)$-fibration.

Symmetries in the configuration spaces

$P X \times{ }_{x / G} P X=(\gamma, \delta) \in P X \times P X \mid G \gamma(1)=G \delta(0)$ as a $(G \times G)$-space component-wise. The map $\pi_{2}: P X \times{ }_{X / G} P X \rightarrow X \times X$ given by $\pi_{2}(\gamma, \delta)=(\gamma(0), \delta(1))$ is a $(G \times G)$-fibration.

Invariant TC

$\mathrm{TC}^{G}(X)$ is defined as the least integer $k \geq 0$ such that there exists an open $(G \times G)$-invariant cover of $k-1$ sets with local homotopy sections of π_{2}.

Symmetries in the configuration spaces

How they relate to each other?

Symmetries in the configuration spaces

How they relate to each other?

- $\mathrm{TC}(X) \leq \mathrm{TC}_{G}(X) \leq \mathrm{TC}_{G}^{*}(X)$.
- There is no obvious relationship between $\operatorname{TC}^{G}(X)$ and $\operatorname{TC}(X)$. - All three have $\operatorname{TC}\left(X^{G}\right)$ as a lower bound.

Symmetries in the configuration spaces

How they relate to each other?

- $\mathrm{TC}(X) \leq \mathrm{TC}_{G}(X) \leq \mathrm{TC}_{G}^{*}(X)$.
- There is no obvious relationship between $\operatorname{TC}^{G}(X)$ and $\operatorname{TC}(X)$.
- All three have $\operatorname{TC}\left(X^{G}\right)$ as a lower bound.

All of them focus on motion planning algorithms that are symmetric.

Symmetries in the configuration spaces

How they relate to each other?

- $\mathrm{TC}(X) \leq \mathrm{TC}_{G}(X) \leq \mathrm{TC}_{G}^{*}(X)$.
- There is no obvious relationship between $\operatorname{TC}^{G}(X)$ and $\operatorname{TC}(X)$.
- All three have $\operatorname{TC}\left(X^{G}\right)$ as a lower bound.

All of them focus on motion planning algorithms that are symmetric. What about using the symmetries already present to simplify the task of motion planning?

Effective TC

G group, X a G-space. Define

Effective TC

G group, X a G-space. Define

$$
\mathcal{P}_{k}(X)=\left\{\left(\gamma_{1}, \cdots, \gamma_{k}\right) \in(P X)^{k} \mid G \gamma_{i}(1)=G \gamma_{i+1}(0)\right\} .
$$

Define the map

$$
\pi_{k}\left(\gamma_{1}, \cdots, \gamma_{k}\right)=\left(\gamma_{1}(0), \gamma_{k}(1)\right)
$$

Effective TC

G group, X a G-space. Define

$$
\mathcal{P}_{k}(X)=\left\{\left(\gamma_{1}, \cdots, \gamma_{k}\right) \in(P X)^{k} \mid G \gamma_{i}(1)=G \gamma_{i+1}(0)\right\}
$$

Define the map

$$
\pi_{k}\left(\gamma_{1}, \cdots, \gamma_{k}\right)=\left(\gamma_{1}(0), \gamma_{k}(1)\right)
$$

This is a fibration:

Effective TC

G group, X a G-space. Define

$$
\mathcal{P}_{k}(X)=\left\{\left(\gamma_{1}, \cdots, \gamma_{k}\right) \in(P X)^{k} \mid G \gamma_{i}(1)=G \gamma_{i+1}(0)\right\} .
$$

Define the map

$$
\pi_{k}\left(\gamma_{1}, \cdots, \gamma_{k}\right)=\left(\gamma_{1}(0), \gamma_{k}(1)\right)
$$

This is a fibration:

$T C^{G, k}$
$\mathrm{TC}^{G, k}(X)=\operatorname{secat}\left(\pi_{k}\right)$.

Effective TC

Interesting properties

- $T C^{G, k}(X) \leq T C^{H, k}(X)$

Effective TC

Interesting properties

- $T C^{G, k}(X) \leq T C^{H, k}(X)$
- $T C^{G, k+1}(X) \leq T C^{G, k}(X)$

Effective TC

Interesting properties

- $T C^{G, k}(X) \leq T C^{H, k}(X)$
- $T C^{G, k+1}(X) \leq T C^{G, k}(X)$
- If there exists G-map $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g \simeq l d_{Y}$ then

Effective TC

Interesting properties

- $T C^{G, k}(X) \leq T C^{H, k}(X)$
- $T C^{G, k+1}(X) \leq T C^{G, k}(X)$
- If there exists G-map $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g \simeq l d_{Y}$ then

$$
T C^{G, k}(Y) \leq T C^{G, k}(X)
$$

Effective TC

Interesting properties

- $T C^{G, k}(X) \leq T C^{H, k}(X)$
- $T C^{G, k+1}(X) \leq T C^{G, k}(X)$
- If there exists G-map $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g \simeq I d_{Y}$ then

$$
T C^{G, k}(Y) \leq T C^{G, k}(X)
$$

$$
\mathrm{TC}(X)=\mathrm{TC}^{\mathrm{G}, 1}(X)
$$

Effective TC

Effective TC

Let $k_{0} \geq 1$ be the minimal number such that $T C^{G, k}(X)=T C^{G, k+1}(X)$ for $k \geq k_{0}$.

Effective TC

Effective TC

Let $k_{0} \geq 1$ be the minimal number such that $T C^{G, k}(X)=T C^{G, k+1}(X)$ for $k \geq k_{0}$.

$$
T C^{G, \infty}(X)=T C^{G, k_{0}}
$$

Effective TC

Effective TC

Let $k_{0} \geq 1$ be the minimal number such that $T C^{G, k}(X)=T C^{G, k+1}(X)$ for $k \geq k_{0}$.

$$
T C^{G, \infty}(X)=T C^{G, k_{0}}
$$

Cohomological lower bounds

If \mathbb{K} is a field of characteristic zero or prime to the order or G then

Effective TC

Effective TC

Let $k_{0} \geq 1$ be the minimal number such that $T C^{G, k}(X)=T C^{G, k+1}(X)$ for $k \geq k_{0}$.

$$
T C^{G, \infty}(X)=T C^{G, k_{0}}
$$

Cohomological lower bounds

If \mathbb{K} is a field of characteristic zero or prime to the order or G then

$$
T C^{G, \infty}(X)>\operatorname{nilker}\left(H^{*}(X / G ; \mathbb{K}) \otimes H^{*}(X / G ; \mathbb{K}) \xrightarrow{\cup} H^{*}(X / G ; \mathbb{K})\right)
$$

Sequences of $\mathrm{TC}^{G, \infty}$

$T(X)=\{(g x, x) \mid g \in G, x \in X\}$.

Sequences of $T C^{G, \infty}$

$\neg(X)=\{(g x, x) \mid g \in G, x \in X\}$. As such, we can decompose $T(X)$ as $\left.\neg(X)=\bigcup_{g_{i} \in G}\right\rceil_{g}(X)$ for $\rceil_{g}(X)=\{(g x, x) \mid x \in X\}$.

Sequences of $\mathrm{TC}^{G, \infty}$

$$
\begin{aligned}
& 7(X)=\{(g x, x) \mid g \in G, x \in X\} \text {. As such, we can decompose } 7(X) \text { as } \\
& 7(X)=\bigcup_{g_{i} \in G} \gamma_{g}(X) \text { for } 7_{g}(X)=\{(g x, x) \mid x \in X\} .
\end{aligned}
$$

Lemma

There is a homotopy equivalence between $7(X)$ and $\mathcal{P}_{2}(X)$.

Sequences of $\mathrm{TC}^{G, \infty}$

$$
\begin{aligned}
& 7(X)=\{(g x, x) \mid g \in G, x \in X\} \text {. As such, we can decompose } 7(X) \text { as } \\
& 7(X)=\bigcup_{g_{i} \in G} \gamma_{g}(X) \text { for } 7_{g}(X)=\{(g x, x) \mid x \in X\} .
\end{aligned}
$$

Lemma

There is a homotopy equivalence between $7(X)$ and $\mathcal{P}_{2}(X)$.

Sequences of $T C^{G, \infty}$

Lemma

Let X be a G-CW complex, such that $\operatorname{cd}\left(X^{H}\right) \leq \operatorname{cd}(X)$ for all non-trivial subgroup $H \leqslant G$. Then, for any L list of elements of G, $\operatorname{cd}\left(7_{L}(X)\right) \leq \operatorname{cd}(X)+|L|-1$. In particular

$$
\operatorname{cd}(7(X)) \leq \operatorname{cd}(X)+|G|-1 .
$$

Sequences of $\mathrm{TC}^{G, \infty}$

Lemma

Let X be a G-CW complex, such that $\operatorname{cd}\left(X^{H}\right) \leq \operatorname{cd}(X)$ for all non-trivial subgroup $H \leqslant G$. Then, for any L list of elements of G, $\operatorname{cd}\left(7_{L}(X)\right) \leq \operatorname{cd}(X)+|L|-1$. In particular

$$
\operatorname{cd}(7(X)) \leq \operatorname{cd}(X)+|G|-1
$$

Corollary

Under those conditions, if $|G| \leq \operatorname{cd}(X)$ then $\operatorname{TC}^{G, 2}(X)>0$.

Sequences of $\mathrm{TC}^{G, \infty}$

Lemma

Let X be a G-CW complex, such that $\operatorname{cd}\left(X^{H}\right) \leq \operatorname{cd}(X)$ for all non-trivial subgroup $H \leqslant G$. Then, for any L list of elements of G, $\operatorname{cd}\left(ד_{L}(X)\right) \leq \operatorname{cd}(X)+|L|-1$. In particular

$$
\operatorname{cd}(7(X)) \leq \operatorname{cd}(X)+|G|-1
$$

Corollary

Under those conditions, if $|G| \leq \operatorname{cd}(X)$ then $\operatorname{TC}^{G, 2}(X)>0$.

- What for $\mathrm{TC}^{G, 2}(X)>0$?

Sequences of $\mathrm{TC}^{G, \infty}$

Lemma

Let X be a G-CW complex, such that $\operatorname{cd}\left(X^{H}\right) \leq \operatorname{cd}(X)$ for all non-trivial subgroup $H \leqslant G$. Then, for any L list of elements of G, $\operatorname{cd}\left(ד_{L}(X)\right) \leq \operatorname{cd}(X)+|L|-1$. In particular

$$
\operatorname{cd}(7(X)) \leq \operatorname{cd}(X)+|G|-1
$$

Corollary

Under those conditions, if $|G| \leq \operatorname{cd}(X)$ then $\operatorname{TC}^{G, 2}(X)>0$.

- What for $\mathrm{TC}^{G, 2}(X)>0$? Good homotopy models coming from $7(X)$.

Sequences of $\mathrm{TC}^{G, \infty}$

Lemma

Let X be a G-CW complex, such that $\operatorname{cd}\left(X^{H}\right) \leq \operatorname{cd}(X)$ for all non-trivial subgroup $H \leqslant G$. Then, for any L list of elements of G, $\operatorname{cd}\left(ד_{L}(X)\right) \leq \operatorname{cd}(X)+|L|-1$. In particular

$$
\operatorname{cd}(7(X)) \leq \operatorname{cd}(X)+|G|-1
$$

Corollary

Under those conditions, if $|G| \leq \operatorname{cd}(X)$ then $\operatorname{TC}^{G, 2}(X)>0$.

- What for $\mathrm{TC}^{G, 2}(X)>0$? Good homotopy models coming from $T(X)$.
- What could be done with MV spectral sequence?

¡Gracias por su atención! Thank you for your attention! Dziękuję za uwagę!

