Random Simple-Homotopy Theory

Frank H. Lutz
TU Berlin

Aims:

- Reduce the size of complexes
- Identify substructures in complexes
- Test contractibility

Aims:

- Reduce the size of complexes
- Identify substructures in complexes
- Test contractibility

Classical tools:

- Bistellar flips.
- Collapses.
- Discrete Morse theory.
- Collapses and anti-collapses (simple-homotopy).

Aims:

- Reduce the size of complexes
- Identify substructures in complexes
- Test contractibility

Classical tools:

- Bistellar flips.
- Collapses.
- Discrete Morse theory.
- Collapses and anti-collapses (simple-homotopy).

New approach:

- Collapses and (few) elementary expansions.

Bistellar flips

Local modifications of the triangulation by cutting out a (triangulated) ball and replacing it by a re-triangulated ball.

[Pachner, 1986]

Two combinatorial triangulations of a d-manifold are bistellarly equivalent if and only if they are PL homeomorphic.

Bistellar flips on the torus

9-vertex torus

Möbius' 7-vertex torus

Simulated annealing approach

[Björner, L., 2000]

"Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere."
$f=(16,106,180,90)$

Collapses

- i-face is free, if it is contained in a unique $(i+1)$-face.
- Collapsing step: delete pair.
- Complex K is collapsible, if it can be collapsed to a point.

Random discrete Morse theory

[Benedetti, L., 2014]
"Random discrete Morse theory and a new library of triangulations."

- Pick free faces uniformly at random.
- Pick facet as critical face if stuck.
- Rerun.

Random discrete Morse theory

[Benedetti, L., 2014]
"Random discrete Morse theory and a new library of triangulations."

- Pick free faces uniformly at random.
- Pick facet as critical face if stuck.
- Rerun.

Discrete Morse vector: $\quad c=\left(c_{0}, c_{1}, \ldots, c_{d}\right)$
$c_{i}=\#$ critical i-faces

[Whitehead, 1939; Forman, 1998, 2002]

A combinatorial d-manifold is a PL d-sphere if and only if it admits some subdivision with a spherical discrete Morse vector $(1,0, \ldots, 0,1)$.

[Whitehead, 1939; Forman, 1998, 2002]

A combinatorial d-manifold is a PL d-sphere if and only if it admits some subdivision with a spherical discrete Morse vector $(1,0, \ldots, 0,1)$.
[Adiprasito, Benedetti, L, 2017]
"Extremal examples of collapsible complexes and random discrete Morse theory."

Example of a non-PL 5-manifold, with face vector $f=(5013,72300,290944,495912,383136,110880)$,
that is collapsible, but not homeomorphic to a ball.

How can we recognize that a complex is contractible?

Dunce hat (here triangulated with 8 vertices) is contractible, but not collapsible. [Zeeman, 1963]

Simple-homotopy theory

[Whitehead, 1939]

"Simplicial Spaces, Nuclei and m-Groups."

- Allow i-collapses and i-anti-collapses.
- Two simplicial complexes are simple-homotopy equivalent if they can be connected by a sequence of i-collapses and i-anti-collapses.
- Simple-homotopy equivalent implies homotopy equivalent.
(The two notions coincide for complexes with trivial Whitehead group, in particular, for complexes with trivial fundamental group.)

Anti-collapses are problematic

> For every i-anti-collapse that adds an i-simplex to a complex, all the ($i-1$)-faces of the i-simplex, but one, already have to be present.

This often requires to add low-dimensional faces first before an i-simplex can be added.

Pure elementary expansions

[Benedetti, Lai, Lofano, L., 2021+]

Definition

Let K be a d-dimensional complex.
A pure elementary expansion (of dimension $d+1$)
is the gluing of a $(d+1)$-simplex σ to K along an induced pure d-ball on the vertex-set of σ.

Pure elementary expansions

[Benedetti, Lai, Lofano, L., 2021+]

Definition

Let K be a d-dimensional complex.
A pure elementary expansion (of dimension $d+1$)
is the gluing of $a(d+1)$-simplex σ to K along an induced pure d-ball on the vertex-set of σ.

- Bistellar flips can be expressed as pure elementary expansions followed by collapses.

Pure elementary expansions

[Benedetti, Lai, Lofano, L., 2021+]

Definition

Let K be a d-dimensional complex.
A pure elementary expansion (of dimension $d+1$)
is the gluing of $a(d+1)$-simplex σ to K along an induced pure d-ball on the vertex-set of σ.

- Bistellar flips can be expressed as pure elementary expansions followed by collapses.
- Every pure elementary expansion can be expressed as a sequence of i-anti-collapses (possibly of different dimensions).

Algorithm: Random simple-homotopy (RSHT)

[Benedetti, Lai, Lofano L., 2021+]
Input: simplicial complex K
Output: modified simplicial complex while $\operatorname{dim}(K) \neq 0$ and $i<$ max_step do
while K has free faces do perform a random elementary collapse
end
if $\operatorname{dim}(K)=d \neq 0$ then perform a single random pure elementary $(d+1)$-expansion [perform an elementary collapse deleting the newly added ($d+1$)-dimensional face and one of its d-faces that was already in K]
end
i++
end
return K

Reduction of (d+1)-expansions to bistellar flips

[Bagchi, Datta, 2005]
Every contractible simplicial complex with $n \leq 7$ vertices is collapsible.

Reduction of (d+1)-expansions to bistellar flips

[Bagchi, Datta, 2005]

Every contractible simplicial complex with $n \leq 7$ vertices is collapsible.

[Benedetti, Lai, Lofano L., 2021+]

Let K be a triangulated d-manifold with $d \leq 6$.
Then any pure elementary $(d+1)$-expansion followed by collapses (as long as free faces are available) induces a bistellar flip on K.

Manifold stability

[Benedetti, Lai, Lofano L., 2021+]

Let K be a (not necessarily pure) simplicial complex. If we run RSHT on K and at some point reach a simplicial complex K^{\prime} that triangulates a d-manifold with $d \leq 6$, then from then on, whenever there are no free faces in the further run of RSHT, the respective temporary complex \tilde{K} is a d-manifold as well, and \tilde{K} is bistellarly equivalent to K^{\prime}.

(a) Dunce Hat with 8 vertices.

(b) Anticollapsing the tetrahedron 1367.

(c) Collapsing the tetrahedron 1367.

Triangulations of the dunce hat are examples that are contractible, but not collapsible.

The addition of a single tetrahedron makes the 8-vertex triangulation of the dunce hat collapsible.

Bing's house with two rooms

First add five tetrahedra 791114, 111417 18, 7111517,7101117 and $7141517 \ldots$

Contractible non-collapsible complexes

complex	f-vector rounds	\# added tets (minimum)	\# added tets (mean)	
Dunce hat	$(8,24,17)$	10^{4}	1	2.41
Abalone	$(15,50,36)$	10^{4}	3	32.42
Bing's House	$(19,65,47)$	10^{4}	7	58.10
$\mathrm{BH}(3)$	$(43,150,108)$	10^{4}	19	147.97
$\mathrm{BH}(4)$	$(57,200,144)$	10^{4}	29	167.77
$\mathrm{BH}(5)$	$(71,250,180)$	10^{4}	27	195.89
$\mathrm{BH}(6)$	$(85,300,216)$	10^{4}	34	221.26
$\mathrm{BH}(7)$	$(99,350,252)$	10^{4}	41	244.58
Two_optima	$(106,596,1064,573)$	10^{3}	1	7.05
Furch'sknotted ball	$(380,1929,2722,1172)$	10^{3}	1459	1949.95
double_trefoil_ball	$(15,93,145,66)$	10^{3}	1	29.60
triple_trefoil_arc	$(17,127,208,97)$	10^{3}	6	94.68

Substructure identification

- $\mathbb{R} P^{3}$ (11 vertices) to $\mathbb{R} P^{2}$ (6 vertices) (25.25 expansions).
- $\mathbb{R} P^{4}$ (16 vertices) to $\mathbb{R} P^{3}$ (11 vertices) (885.60 expansions).
- $S^{2} \times S^{1}$ ($100 \cdot 10$ vertices) to $S^{2} \vee S^{1}(4+25.8$ vertices $)$ (1108.23 expansions).
- $S^{3} \times S^{2} \times S^{1}$ to $S^{3} \vee S^{2} \vee S^{1} \ldots$

Remove a random facet from a manifold and then simplify!

2-complexes with torsion

Starting from lens spaces $L(p, 1) \ldots$

torsion p	f-vector
2	$(6,15,10)$
3	$(8,24,17)$
4	$(8,26,19)$
5	$(9,32,24)$
6	$(9,33,25)$
7	$(9,34,26)$
8	$(9,35,27)$
9	$(9,36,28)$
10	$(9,36,28)$
11	$(10,42,33)$
12	$(10,42,33)$
13	$(10,43,34)$

Substructure identification / surface reconstruction

3-complex	f-vector of 3-complex	final f-vector
$T^{2} \times I$	$(77,511,854,420)$	$(7,21,14)$
$M(2,+) \times I$	$(121,929,1586,780)$	$[(9,32,24)] ? ?$
$M(5,+) \times I$	$(253,2183,3782,1860)$	$(12,60,40)$
$M(6,+) \times I$	$(297,2601,4514,2220)$	$(13,69,46)$
$M(10,+) \times I$	$(473,4273,7442,3660)$	$(18,108,72)$

- take connected sums of the torus T^{2}
- add 100 vertices
- run 200,000 bistellar edge flips
- take cross product with path of length 10
- simplify

Limitations

Akbulut-Kirby 4-spheres

Balanced presentation of the trivial group:
$G:=<x, y \mid x, y>$

Akbulut-Kirby 4-spheres

Nontrivial balanced presentation of the trivial group:

$$
G:=<x, y \mid x^{r}=y^{r-1}, x y x=y x y>
$$

Akbulut-Kirby 4-spheres

Nontrivial balanced presentation of the trivial group:

$$
\begin{gathered}
G:=<x, y \mid x^{r}=y^{r-1}, x y x=y x y> \\
y=x^{-1} y^{-1} x y x
\end{gathered}
$$

Akbulut-Kirby 4-spheres

Nontrivial balanced presentation of the trivial group:

$$
\begin{aligned}
& G:=<x, y \mid x^{r}=y^{r-1}, x y x=y x y> \\
& y
\end{aligned} \begin{aligned}
y^{r} & =x^{-1} y^{-1} x y x \\
& =x^{-1} y^{-1} x^{r} y x \\
& =x^{-1} y^{-1} y^{r-1} y x \\
& =x^{r-1} x
\end{aligned}
$$

Akbulut-Kirby 4-spheres

Nontrivial balanced presentation of the trivial group:

$$
\begin{aligned}
G:=<x, y & \mid x^{r}=y^{r-1}, x y x=y x y> \\
y & =x^{-1} y^{-1} x y x \\
y^{r} & =x^{-1} y^{-1} x^{r} y x \\
& =x^{-1} y^{-1} y^{r-1} y x \\
& =x^{-1} y^{r-1} x \\
& =x^{r}
\end{aligned}
$$

Akbulut-Kirby 4-spheres are defined via these presentations.

[Tsuruga, L., 2014]

The Akbulut-Kirby 4-spheres can be triangulated with face vector

$$
\begin{aligned}
f= & (176+64 r, 2390+1120 r, 7820+3840 r \\
& 9340+4640 r, 3736+1856 r)
\end{aligned}
$$

for $r \geq 3$.

[Tsuruga, L., 2014]

The Akbulut-Kirby 4-spheres can be triangulated with face vector

$$
\begin{aligned}
f= & (176+64 r, 2390+1120 r, 7820+3840 r, \\
& 9340+4640 r, 3736+1856 r)
\end{aligned}
$$

for $r \geq 3$.

$$
\begin{aligned}
r=5: & f=(496,7990,27020,32540,13016), \\
r=6: & f=(560,9110,30860,37180,14872), \\
r=7: & f=(624,10230,34700,41820,16728) \\
r=8: & f=(688,11350,38540,46460,18584), \\
r=9: & f=(752,12470,42380,51100,20440), \\
r=10: & f=(816,13590,46220,55740,22296),
\end{aligned}
$$

[Tsuruga, L., 2014]

The Akbulut-Kirby 4-spheres can be triangulated with face vector

$$
\begin{aligned}
f= & (176+64 r, 2390+1120 r, 7820+3840 r \\
& 9340+4640 r, 3736+1856 r)
\end{aligned}
$$

for $r \geq 3$.

$$
\begin{aligned}
r=5: & f=(496,7990,27020,32540,13016) \\
r=6: & f=(560,9110,30860,37180,14872) \\
r=7: & f=(624,10230,34700,41820,16728) \\
r=8: & f=(688,11350,38540,46460,18584), \\
r=9: & f=(752,12470,42380,51100,20440), \\
r=10: & f=(816,13590,46220,55740,22296),
\end{aligned}
$$

Reduction with bistellar flips to 23+ vertices.

[Akbulut, 2010]

The Akbulut-Kirby 4-spheres are standard PL 4-spheres.
They are the only known explicit examples of triangulated spheres for which we fail to recognize them heuristically.

[Akbulut, 2010]

The Akbulut-Kirby 4-spheres are standard PL 4-spheres.
They are the only known explicit examples of triangulated spheres for which we fail to recognize them heuristically.

It is open,

- whether all 4-spheres (obtained via balanced presentations of the trivial group) are standard PL 4-spheres
(4-dimensional smooth Poincaré conjecture),
- whether every balanced presentation of the trivial group can be transformed into a trivial presentation by a sequence of Nielsen transformations (Andrews-Curtis conjecture).

Further limitations

[Milnor, 1966]

There are complexes that are homotopy equivalent, but not simple-homotopy equivalent.

Further limitations

[Milnor, 1966]
There are complexes that are homotopy equivalent, but not simple-homotopy equivalent.
[Tancer, 2016]
Checking collapsibility is NP-complete.

Further limitations

[Milnor, 1966]
There are complexes that are homotopy equivalent, but not simple-homotopy equivalent.
[Tancer, 2016]
Checking collapsibility is NP-complete.
[Lewiner, Lopes, Tavares, 2003; Joswig, Pfetsch, 2006]
Computing optimal discrete Morse functions is NP-hard.

Collapsing the k-simplex

Collapsing the k-simplex

k	Rounds	Got stuck	Percentage
7	10^{10}	0	0.0%
8	10^{9}	12	0.0000012%
9	10^{8}	2	0.000002%
10	10^{7}	3	0.00003%
11	10^{7}	12	0.00012%
12	10^{6}	4	0.0004%
13	10^{6}	6	0.0006%
14	10^{5}	4	0.004%
15	10^{5}	8	0.008%
16	10^{4}	4	0.04%
17	10^{4}	10	0.10%
18	10^{3}	2	0.2%
19	10^{3}	6	0.6%
20	10^{3}	13	1.3%
21	10^{3}	62	6.2%
22	10^{3}	153	15%
23	10^{2}	35	35%
24	10^{2}	67	67%
25	$5 \cdot 10^{1}$	46	92%

"The worst way to collapse a simplex"

[Lofano, Newman, 2019]
For $n \geq 8$ and $k \notin\{1, n-3, n-2, n-1\}$,
there is a collapsing sequence of the $(n-1)$-simplex on n vertices that gets stuck at dimension k.

This result is best possible.

Mousetraps I

[Adiprasito, Benedetti, L, 2017]

There is a contractible, but non-collapsible 3-dimensional simplicial complex two_opt ima with face vector $f=(106,596,1064,573)$ that has two distinct optimal discrete Morse vectors, (1, 1, 1, 0) and ($1,0,1,1$).

Mousetraps I

[Adiprasito, Benedetti, L, 2017]

There is a contractible, but non-collapsible 3-dimensional simplicial complex two_opt ima with face vector $f=(106,596,1064,573)$ that has two distinct optimal discrete Morse vectors, ($1,1,1,0$) and ($1,0,1,1$).

[Lofano, 2021+]

There is an 8-point Delaunay triangulation in \mathbb{R}^{3} that collapses to a triangulation of the dunce hat with eight vertices. This example is smallest possible with respect to its number of vertices.
(This answers a question of Edelsbrunner.)

Mousetraps II

[Lofano, 2021+]

There is a simplicial complex with optimal discrete Morse vector ($1,0,0,3$) and whose best discrete Morse vector that can be found using random discrete morse is $(1,1,1,3)$.

Mousetraps II

[Lofano, 2021+]

There is a simplicial complex with optimal discrete Morse vector ($1,0,0,3$) and whose best discrete Morse vector that can be found using random discrete morse is $(1,1,1,3)$.

The addition of the tetrahedron 1367 makes the triangulation collapsible. On top of each of the triangles 136, 137, 167 boundaries of 4 -simplices are added to block the tree triangles.

Horizon for computations

[Joswig, Lofano, L., Tsuruga, 2022]
Random collapses fail in dimensions $d \gg 25$.

Horizon for computations

[Joswig, Lofano, L., Tsuruga, 2022]

Random collapses fail in dimensions $d \gg 25$.

[Adiprasito, Benedetti, L, 2017]

Let K be any simplicial complex of dimension $d \geq 3$.
Then the random discrete Morse algorithm, applied to the k-th barycentric subdivision $\operatorname{sd}^{k} K$, yields an expected number of $\Omega\left(e^{k}\right)$ critical cells a.a.s.

Thank you!

