Torsion Burst and Hadamard Matrix Torsion

Frank H. Lutz

TU Berlin

[Silesaurus, Krasiejów]

Random Models

Random Graphs [Erdős-Rényi, 1959], [Gilbert, 1959]
$G(n, p), \quad n$ vertices, each edge with probability p

Random Models

Random Graphs [Erdős-Rényi, 1959], [Gilbert, 1959]
$G(n, p), \quad n$ vertices, each edge with probability p

Random Simplicial Complexes [Linial, Meshulam, 2006]
$Y_{d}(n, p), \quad n$ vertices, full $(d-1)$-skeleton, each d-face with probability p

Random Models

Random Graphs [Erdős-Rényi, 1959], [Gilbert, 1959]
$G(n, p), \quad n$ vertices, each edge with probability p

Random Simplicial Complexes [Linial, Meshulam, 2006]
$Y_{d}(n, p), \quad n$ vertices, full $(d-1)$-skeleton, each d-face with probability p

Stochastic Process [Kahle, L., Newman, Parsons, 2018]
$\mathcal{Y}_{d}(n), \quad n$ vertices, full $(d-1)$-skeleton, d-faces one by one

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		\mathbb{Z}^{236}

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$
2472	\mathbb{Z}^{4}	$\mathbb{Z}^{233} \times \mathbb{Z} / 2 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$
2472	\mathbb{Z}^{4}	$\mathbb{Z}^{233} \times \mathbb{Z} / 2 \mathbb{Z}$
2473	\mathbb{Z}^{4}	$\mathbb{Z}^{232} \times \mathbb{Z} / 2 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$
2472	\mathbb{Z}^{4}	$\mathbb{Z}^{233} \times \mathbb{Z} / 2 \mathbb{Z}$
2473	\mathbb{Z}^{4}	$\mathbb{Z}^{232} \times \mathbb{Z} / 2 \mathbb{Z}$
2474	\mathbb{Z}^{4}	$\mathbb{Z}^{231} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\ldots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$
2472	\mathbb{Z}^{4}	$\mathbb{Z}^{233} \times \mathbb{Z} / 2 \mathbb{Z}$
2473	\mathbb{Z}^{4}	$\mathbb{Z}^{232} \times \mathbb{Z} / 2 \mathbb{Z}$
2474	\mathbb{Z}^{4}	$\mathbb{Z}^{231} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
2475	\mathbb{Z}^{4}	$\mathbb{Z}^{230} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 79040679454167077902597570 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$
2472	\mathbb{Z}^{4}	$\mathbb{Z}^{233} \times \mathbb{Z} / 2 \mathbb{Z}$
2473	\mathbb{Z}^{4}	$\mathbb{Z}^{232} \times \mathbb{Z} / 2 \mathbb{Z}$
2474	\mathbb{Z}^{4}	$\mathbb{Z}^{231} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
2475	\mathbb{Z}^{4}	$\mathbb{Z}^{230} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 79040679454167077902597570 \mathbb{Z}$
2476	\mathbb{Z}^{5}	$\mathbb{Z}^{230} \times \mathbb{Z} / 2 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\ldots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$
2472	\mathbb{Z}^{4}	$\mathbb{Z}^{233} \times \mathbb{Z} / 2 \mathbb{Z}$
2473	\mathbb{Z}^{4}	$\mathbb{Z}^{232} \times \mathbb{Z} / 2 \mathbb{Z}$
2474	\mathbb{Z}^{4}	$\mathbb{Z}^{231} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
2475	\mathbb{Z}^{4}	$\mathbb{Z}^{230} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 79040679454167077902597570 \mathbb{Z}$
2476	\mathbb{Z}^{5}	$\mathbb{Z}^{230} \times \mathbb{Z} / 2 \mathbb{Z}$
2477	\mathbb{Z}^{5}	$\mathbb{Z}^{229} \times \mathbb{Z} / 2 \mathbb{Z}$

The torsion burst for an instance of $\mathcal{Y}_{2}(75)$ [Kahle, L., Newman, Parsons, 2018]

2-faces	H_{2}	H_{1}
0	0	\mathbb{Z}^{2701}
1	0	\mathbb{Z}^{2700}
2	0	\mathbb{Z}^{2699}
\cdots		
2469	\mathbb{Z}^{4}	\mathbb{Z}^{236}
2470	\mathbb{Z}^{4}	$\mathbb{Z}^{235} \times \mathbb{Z} / 2 \mathbb{Z}$
2471	\mathbb{Z}^{4}	$\mathbb{Z}^{234} \times \mathbb{Z} / 2 \mathbb{Z}$
2472	\mathbb{Z}^{4}	$\mathbb{Z}^{233} \times \mathbb{Z} / 2 \mathbb{Z}$
2473	\mathbb{Z}^{4}	$\mathbb{Z}^{232} \times \mathbb{Z} / 2 \mathbb{Z}$
2474	\mathbb{Z}^{4}	$\mathbb{Z}^{231} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
2475	\mathbb{Z}^{4}	$\mathbb{Z}^{230} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 79040679454167077902597570 \mathbb{Z}$
2476	\mathbb{Z}^{5}	$\mathbb{Z}^{230} \times \mathbb{Z} / 2 \mathbb{Z}$
2477	\mathbb{Z}^{5}	$\mathbb{Z}^{229} \times \mathbb{Z} / 2 \mathbb{Z}$
2478	\mathbb{Z}^{6}	\mathbb{Z}^{229}

The torsion burst for an instance of $\mathcal{Y}_{3}(25)$

3-faces	H_{3}	H_{2}
1949	\mathbb{Z}^{4}	\mathbb{Z}^{79}
1950	\mathbb{Z}^{4}	$\mathbb{Z}^{78} \times \mathbb{Z} / 6 \mathbb{Z}$
1951	\mathbb{Z}^{4}	$\mathbb{Z}^{77} \times \mathbb{Z} / 7780167918307023583785903521760 \mathbb{Z}$
1952	\mathbb{Z}^{5}	$\mathbb{Z}^{77} \times \mathbb{Z} / 5 \mathbb{Z}$
1953	\mathbb{Z}^{6}	\mathbb{Z}^{77}

The torsion burst for an instance of $\mathcal{Y}_{4}(17)$

4-faces	H_{4}	H_{3}
1787	\mathbb{Z}^{10}	\mathbb{Z}^{43}
1788	\mathbb{Z}^{10}	$\mathbb{Z}^{42} \times \mathbb{Z} / 2 \mathbb{Z}$
1789	\mathbb{Z}^{10}	$\mathbb{Z}^{41} \times \mathbb{Z} / 2 \mathbb{Z}$
1790	\mathbb{Z}^{10}	$\mathbb{Z}^{40} \times \mathbb{Z} / 2 \mathbb{Z}$
1791	\mathbb{Z}^{10}	$\mathbb{Z}^{39} \times \mathbb{Z} / 49234986784469188898774 \mathbb{Z}$
1792	\mathbb{Z}^{11}	\mathbb{Z}^{39}

The torsion burst for an instance of $\mathcal{Y}_{5}(16)$

5-faces	H_{5}	H_{4}
2972	\mathbb{Z}^{6}	\mathbb{Z}^{37}
2973	\mathbb{Z}^{6}	$\mathbb{Z}^{36} \times \mathbb{Z} / 1147712621067945810235354141226409657574376675 \mathbb{Z}$
2974	\mathbb{Z}^{7}	\mathbb{Z}^{36}

The torsion burst for an instance of $\mathcal{Y}_{5}(16)$

5 -faces	H_{5}	H_{4}
2972	\mathbb{Z}^{6}	\mathbb{Z}^{37}
2973	\mathbb{Z}^{6}	$\mathbb{Z}^{36} \times \mathbb{Z} / 1147712621067945810235354141226409657574376675 \mathbb{Z}$
2974	\mathbb{Z}^{7}	\mathbb{Z}^{36}

Conjecture (Łuczak and Peled, 2018)

For every $d \geq 2$ and $p=p(n)$ there is a constant c_{d} such that if $\left|n p-c_{d}\right|$ is bounded away from 0 , then $H_{d-1}\left(Y_{d}(n, p) ; \mathbb{Z}\right)$ is torsion-free with high probability.

The torsion burst for an instance of $\mathcal{Y}_{5}(16)$

5 -faces	H_{5}	H_{4}
2972	\mathbb{Z}^{6}	\mathbb{Z}^{37}
2973	\mathbb{Z}^{6}	$\mathbb{Z}^{36} \times \mathbb{Z} / 1147712621067945810235354141226409657574376675 \mathbb{Z}$
2974	\mathbb{Z}^{7}	\mathbb{Z}^{36}

Conjecture (Łuczak and Peled, 2018)
For every $d \geq 2$ and $p=p(n)$ there is a constant c_{d} such that if $\left|n p-c_{d}\right|$ is bounded away from 0 , then $H_{d-1}\left(Y_{d}(n, p) ; \mathbb{Z}\right)$ is torsion-free with high probability.
[Aronshtam, Linial, 2013]: Torsion occurs near $p=c_{d} / n$, with $c_{2} \approx 2.75381, c_{3} \approx 3.90708$.

How much torsion can there be?

How much torsion can there be?

[Kalai, 1983]

The highest possible asymptotic torsion growth for 2-dimensional simplicial complexes with n vertices is in $\Theta\left(2^{n^{2}}\right)$.

Definition (Kalai, 1983)

A d-dimensional \mathbb{Q}-acyclic complex is

- a d-dimensional simplicial complex X
- with complete ($d-1$)-skeleton,
- $\binom{n-1}{d} d$-dimensional faces,
- $\beta_{d}(X, \mathbb{Q})=0$, and $\beta_{d-1}(X, \mathbb{Q})=0$.

Definition (Kalai, 1983)

A d-dimensional \mathbb{Q}-acyclic complex is

- a d-dimensional simplicial complex X
- with complete $(d-1)$-skeleton,
- $\binom{n-1}{d} d$-dimensional faces,
- $\beta_{d}(X, \mathbb{Q})=0$, and $\beta_{d-1}(X, \mathbb{Q})=0$.
\mathbb{Q}-acyclic d-complexes are higher-dimensional generalizations of trees. However, unlike trees, \mathbb{Q}-acyclic d-complexes may have finite but nontrivial $(d-1)$ st homology.

Let $\mathcal{T}^{d}(n)$ be the collection of all d-dimensional \mathbb{Q}-acyclic complexes on n vertices.

Let $\mathcal{T}^{d}(n)$ be the collection of all d-dimensional \mathbb{Q}-acyclic complexes on n vertices.

[Kalai, 1983]:

- Generalization of Cayley's formula for counting spanning trees:

$$
\sum_{X \in \mathcal{T}^{d}(n)}\left|H_{d-1}(X)\right|^{2}=n^{\binom{n-2}{d}}
$$

Let $\mathcal{T}^{d}(n)$ be the collection of all d-dimensional \mathbb{Q}-acyclic complexes on n vertices.

[Kalai, 1983]:

- Generalization of Cayley's formula for counting spanning trees:

$$
\sum_{X \in \mathcal{T}^{d}(n)}\left|H_{d-1}(X)\right|^{2}=n^{\binom{n-2}{d}}
$$

- $\mathbb{E}\left[\left|H_{d-1}(X)\right|\right] \geq \exp \left(\Theta\left(n^{d}\right)\right)$.

Let $\mathcal{T}^{d}(n)$ be the collection of all d-dimensional \mathbb{Q}-acyclic complexes on n vertices.

[Kalai, 1983]:

- Generalization of Cayley's formula for counting spanning trees:

$$
\sum_{X \in \mathcal{T}^{d}(n)}\left|H_{d-1}(X)\right|^{2}=n^{\binom{n-2}{d}}
$$

- $\mathbb{E}\left[\left|H_{d-1}(X)\right|\right] \geq \exp \left(\Theta\left(n^{d}\right)\right)$.
- $\left|H_{d-1}(X)\right| \leq \sqrt{d+1}\binom{n-2}{d}$.

How to obtain explicit examples with high torsion?

Definition (Matrix Disc Complexes; Lofano \& L, 2021)

Let $M=\left(M_{i j}\right)$ be an ($m \times n$)-matrix with integer entries.
Matrix disc complexes $D C(M)$ associated with M comprise the 2-dimensional CW complexes constructed level-wise:

- Every complex in $D C(M)$ has a single 0 -cell.
- The 1-skeleton of a complex in $D C(M)$ has an edge cycle a_{j} for every column index $j \in\{1, \ldots, n\}$ of the matrix M.
- Every row i of M with row sum $s_{i}=\left|M_{i 1}\right|+\ldots+\left|M_{i n}\right|$, $i \in\{1, \ldots, m\}$, contributes a polygonal disc with s_{i} edges.
For every positive entry $M_{i j}, M_{i j}$ edges of the disc are oriented coherently and are assigned with the label a_{j}. In the case of a negative entry, the direction of the corresponding edges is reversed; in the case of a zero-entry, the respective edge does not occur.
$M=\left(\begin{array}{ll}2 & 2\end{array}\right)$

Klein bottle

pinched $\mathbb{R} P^{2}$
$M=\left(\begin{array}{ll}2 & 2\end{array}\right)$

Klein bottle

pinched $\mathbb{R} P^{2}$
$H(2)=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$

$\mathbb{R} P^{2}$

Lemma

All examples in $D C(M)$ have the same integer homology H_{*}.

Lemma

All examples in $D C(M)$ have the same integer homology H_{*}.

Proof:

- By construction, a representative $C \in D C(M)$ has a single vertex only, so C is connected and $H_{0}(C)=\mathbb{Z}$.

Lemma

All examples in $D C(M)$ have the same integer homology H_{*}.

Proof:

- By construction, a representative $C \in D C(M)$ has a single vertex only, so C is connected and $H_{0}(C)=\mathbb{Z}$.
- Each edge of C is a cycle, i.e., the first homology group $H_{1}(C)$ of C is determined by the n rows of M as relations, and therefore H_{1} coincides for all the examples in $D C(M)$.

Lemma

All examples in $D C(M)$ have the same integer homology H_{*}.

Proof:

- By construction, a representative $C \in D C(M)$ has a single vertex only, so C is connected and $H_{0}(C)=\mathbb{Z}$.
- Each edge of C is a cycle, i.e., the first homology group $H_{1}(C)$ of C is determined by the n rows of M as relations, and therefore H_{1} coincides for all the examples in $D C(M)$.
- Further, the second homology H_{2} of any representative C is simply the kernel of the matrix M.

Lemma

All examples in $D C(M)$ have the same integer homology H_{*}.

Proof:

- By construction, a representative $C \in D C(M)$ has a single vertex only, so C is connected and $H_{0}(C)=\mathbb{Z}$.
- Each edge of C is a cycle, i.e., the first homology group $H_{1}(C)$ of C is determined by the n rows of M as relations, and therefore H_{1} coincides for all the examples in $D C(M)$.
- Further, the second homology H_{2} of any representative C is simply the kernel of the matrix M.

In particular, if M is a square matrix with $\operatorname{det}(M) \neq 0$, then $\left|H_{1}(C)\right|=|\operatorname{det}(M)|$.

[Speyer, 2010]

There are matrix disc complexes that have triangulations with $\Theta(n)$ vertices and torsion growth $\Theta\left(2^{n}\right)$.

Speyer's construction

Let $k \geq 2$ be an integer and $k=\gamma_{m} 2^{m}+\gamma_{m-1} 2^{m-1}+\ldots+\gamma_{0} 2^{0}$ be its binary expansion, with leading coefficient $\gamma_{m}=1$ and otherwise $\gamma_{i} \in\{0,1\}$ for all $0 \leq i \leq m-1$.
$M(k)$ is the $((m+1) \times(m+1))$-matrix:

- First row contains the entries $(-1)^{i} \gamma_{m-i}$ for $i \in\{0, \ldots, m\}$.
- The lower part of $M(k)$ has 1 's on the first diagonal followed by 2's on the diagonal to the right, and all other entries equal to zero. It is then easy to see that $\operatorname{det}(M(k))=k$.

For $k=11=8+2+1$:

$$
M(11)=\left(\begin{array}{rrrr}
1 & 0 & 1 & -1 \\
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2
\end{array}\right) .
$$

Four subdivided triangles of the complex associated to $M(11)$.

Hadamard matrix torsion

Hadamard matrices:

$$
H(1)=(1)
$$

$$
\begin{aligned}
H\left(2^{k}\right) & =\left(\begin{array}{rr}
H\left(2^{k-1}\right) & H\left(2^{k-1}\right) \\
H\left(2^{k-1}\right) & -H\left(2^{k-1}\right)
\end{array}\right), \text { for } k \geq 1 \\
\text { with }|\operatorname{det}(H(n))| & =n^{n / 2}, \text { for } n=2^{k} .
\end{aligned}
$$

Hadamard matrix torsion

Hadamard matrices:

$$
H(1)=(1)
$$

$$
H\left(2^{k}\right)=\left(\begin{array}{rr}
H\left(2^{k-1}\right) & H\left(2^{k-1}\right) \\
H\left(2^{k-1}\right) & -H\left(2^{k-1}\right)
\end{array}\right), \text { for } k \geq 1
$$

with $|\operatorname{det}(H(n))|=n^{n / 2}$, for $n=2^{k}$.
[Lofano, L., 2021]
For each $n=2^{k}, k \geq 1$, there is a \mathbb{Q}-acyclic 2-dimensional simplicial complex $\operatorname{HMT}(n)$ with

$$
\begin{aligned}
f(\operatorname{HMT}(n)) & =\left(5 n-1,3 n^{2}+9 n-6,3 n^{2}+4 n-4\right), \\
H_{*}(\operatorname{HMT}(n)) & =(\mathbb{Z}, T(\operatorname{HMT}(n)), 0), \\
T(\operatorname{HMT}(n)) & =\left(\mathbb{Z}_{2}\right)\binom{k}{1} \times\left(\mathbb{Z}_{4}\right)^{\binom{k}{2}} \times \cdots \times\left(\mathbb{Z}_{2^{k}}\right)\binom{k}{k}, \\
|T(\operatorname{HMT}(n))| & =n^{n / 2} \in \Theta\left(2^{n \log n}\right) .
\end{aligned}
$$

The examples $\operatorname{HMT}(n)$ can be constructed algorithmically in quadratic time $\Theta\left(n^{2}\right)$.

