Slices of the Takagi function and (other) self-affine sets

Roope Anttila
joint with B. Bárány and A. Käenmäki

18.05.2023

Thermodynamic Formalism: Non-additive Aspects and Related Topics, Będlewo

Takagi function

Figure: The graph of the Takagi function for $\lambda=2 / 3$.

Takagi function

Figure: The graph of the Takagi function for $\lambda=2 / 3$.

- For $\frac{1}{2} \leqslant \lambda<1$, the Takagi function for parameter λ is

$$
T_{\lambda}(x)=\sum_{n=0}^{\infty} \lambda^{n} \operatorname{dist}\left(2^{n} x, \mathbb{Z}\right)
$$

Takagi function

Figure: The graph of the Takagi function for $\lambda=2 / 3$.

- For $\frac{1}{2} \leqslant \lambda<1$, the Takagi function for parameter λ is

$$
T_{\lambda}(x)=\sum_{n=0}^{\infty} \lambda^{n} \operatorname{dist}\left(2^{n} x, \mathbb{Z}\right)
$$

- A well known example of a "pathological" continuous but nowhere differentiable function.

Motivation

Question
What can we say about the size of the slices of T_{λ} with lines?

Motivation

Question

What can we say about the size of the slices of T_{λ} with lines?

- Marstrand's slicing theorem implies that $\operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right) \leqslant \operatorname{dim}_{H}\left(T_{\lambda}\right)-1$, for Lebesgue almost all $V \in \mathbb{R} \mathbb{P}^{1}$ and $x \in \mathbb{R}^{2}$.

Motivation

Question

What can we say about the size of the slices of T_{λ} with lines?

- Marstrand's slicing theorem implies that $\operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right) \leqslant \operatorname{dim}_{H}\left(T_{\lambda}\right)-1$, for Lebesgue almost all $V \in \mathbb{R} \mathbb{P}^{1}$ and $x \in \mathbb{R}^{2}$.
- By Bárány, Hochman and Rapaport we know that $\operatorname{dim}_{H}\left(T_{\lambda}\right)=2-\frac{\log (1 / \lambda)}{\log 2}$.

Motivation

Question

What can we say about the size of the slices of T_{λ} with lines?

- Marstrand's slicing theorem implies that $\operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right) \leqslant \operatorname{dim}_{H}\left(T_{\lambda}\right)-1$, for Lebesgue almost all $V \in \mathbb{R} \mathbb{P}^{1}$ and $x \in \mathbb{R}^{2}$.
- By Bárány, Hochman and Rapaport we know that $\operatorname{dim}_{H}\left(T_{\lambda}\right)=2-\frac{\log (1 / \lambda)}{\log 2}$.
- If $\lambda=\frac{1}{2}$, then $\operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right) \leqslant \frac{1}{2}$, for all $x \in \mathbb{R}^{2}$ and all V with integer slope and the bound is sharp (de Amo et al.).

Motivation

Question

What can we say about the size of the slices of T_{λ} with lines?

- Marstrand's slicing theorem implies that $\operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right) \leqslant \operatorname{dim}_{H}\left(T_{\lambda}\right)-1$, for Lebesgue almost all $V \in \mathbb{R} \mathbb{P}^{1}$ and $x \in \mathbb{R}^{2}$.
- By Bárány, Hochman and Rapaport we know that $\operatorname{dim}_{H}\left(T_{\lambda}\right)=2-\frac{\log (1 / \lambda)}{\log 2}$.
- If $\lambda=\frac{1}{2}$, then $\operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right) \leqslant \frac{1}{2}$, for all $x \in \mathbb{R}^{2}$ and all V with integer slope and the bound is sharp (de Amo et al.).
- What can we say about all slices?

Main result

By interpreting the Takagi function as a self-affine set, we get the following result:

Main result

By interpreting the Takagi function as a self-affine set, we get the following result:

$$
\begin{aligned}
& \text { Theorem (A.-Bárány-Käenmäki, 2023) } \\
& \text { If } T_{\lambda} \text { is the graph of the Takagi function, with } \frac{1}{2}<\lambda<1 \text {, then } \\
& \qquad \max _{\substack{x \in T_{\lambda} \\
V \in \mathbb{R}^{1}}} \operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right)=\operatorname{dim}_{A}\left(T_{\lambda}\right)-1<1 .
\end{aligned}
$$

Weak tangents and Assouad dimension

Let $X \subset \mathbb{R}^{2}$ be compact and $T_{x, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a similarity taking $Q(x, r):=x+[0, r]^{2}$ to the unit cube $Q=[0,1]^{2}$ in an orientation preserving way.

Weak tangents and Assouad dimension

Let $X \subset \mathbb{R}^{2}$ be compact and $T_{x, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a similarity taking $Q(x, r):=x+[0, r]^{2}$ to the unit cube $Q=[0,1]^{2}$ in an orientation preserving way. If there is a sequence $T_{x_{n}, r_{n}}$, such that $r_{n} \rightarrow 0$ and

$$
T_{x_{n}, r_{n}}(X) \cap Q \rightarrow T
$$

in the Hausdorff distance, then T is called a weak tangent of X.

Weak tangents and Assouad dimension

Let $X \subset \mathbb{R}^{2}$ be compact and $T_{x, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a similarity taking $Q(x, r):=x+[0, r]^{2}$ to the unit cube $Q=[0,1]^{2}$ in an orientation preserving way. If there is a sequence $T_{x_{n}, r_{n}}$, such that $r_{n} \rightarrow 0$ and

$$
T_{x_{n}, r_{n}}(X) \cap Q \rightarrow T
$$

in the Hausdorff distance, then T is called a weak tangent of X. The collection of weak tangents of X is denoted by $\operatorname{Tan}(X)$.

Weak tangents and Assouad dimension

Let $X \subset \mathbb{R}^{2}$ be compact and $T_{x, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a similarity taking $Q(x, r):=x+[0, r]^{2}$ to the unit cube $Q=[0,1]^{2}$ in an orientation preserving way. If there is a sequence $T_{x_{n}, r_{n}}$, such that $r_{n} \rightarrow 0$ and

$$
T_{x_{n}, r_{n}}(X) \cap Q \rightarrow T
$$

in the Hausdorff distance, then T is called a weak tangent of X. The collection of weak tangents of X is denoted by $\operatorname{Tan}(X)$.

Theorem (Käenmäki-Ojala-Rossi, 2018)

If $X \subset \mathbb{R}^{2}$ is a compact set, then

$$
\operatorname{dim}_{\mathrm{A}}(X)=\max \left\{\operatorname{dim}_{\mathrm{H}}(T): T \in \operatorname{Tan}(X)\right\} .
$$

Self-affine sets

A finite collection $\left\{\varphi_{i}(x)=A_{i} x+t_{i}\right\}_{i=1}^{M}$ of invertible contractive affine maps on \mathbb{R}^{2} is called a self-affine iterated function system (affine IFS).

Self-affine sets

A finite collection $\left\{\varphi_{i}(x)=A_{i} x+t_{i}\right\}_{i=1}^{M}$ of invertible contractive affine maps on \mathbb{R}^{2} is called a self-affine iterated function system (affine IFS). Given an affine IFS, there exists a unique, non-empty compact set X which is invariant under the IFS, that is

$$
X=\bigcup_{i=1}^{M} \varphi_{i}(X)
$$

Self-affine sets

A finite collection $\left\{\varphi_{i}(x)=A_{i} x+t_{i}\right\}_{i=1}^{M}$ of invertible contractive affine maps on \mathbb{R}^{2} is called a self-affine iterated function system (affine IFS). Given an affine IFS, there exists a unique, non-empty compact set X which is invariant under the IFS, that is

$$
X=\bigcup_{i=1}^{M} \varphi_{i}(X)
$$

We say that X satisfies the strong separation condition if $\varphi_{i}(X) \cap \varphi_{j}(X)=\emptyset$, for all $i \neq j$,

Self-affine sets

A finite collection $\left\{\varphi_{i}(x)=A_{i} x+t_{i}\right\}_{i=1}^{M}$ of invertible contractive affine maps on \mathbb{R}^{2} is called a self-affine iterated function system (affine IFS). Given an affine IFS, there exists a unique, non-empty compact set X which is invariant under the IFS, that is

$$
X=\bigcup_{i=1}^{M} \varphi_{i}(X)
$$

We say that X satisfies the strong separation condition if $\varphi_{i}(X) \cap \varphi_{j}(X)=\emptyset$, for all $i \neq j$, The associated symbolic space of infinite words is denoted by $\Sigma=\{1, \ldots, M\}^{\mathbb{N}}$ and the set of finite words of length n by Σ_{n}. The elements of these spaces are denoted by i := $\left(i_{1}, i_{2}, \ldots\right)$.

First example

Figure: A Bedford-McMullen carpet

Second example

Figure: The Takagi function is an attractor of an affine IFS

Definitions

Definitions

- Let $\alpha_{1}(A)>\alpha_{2}(A)$ denote the singular values of A, i.e. the lengths of the longer and shorter semiaxes of $A(B(0,1))$, respectively.

Definitions

- Let $\alpha_{1}(A)>\alpha_{2}(A)$ denote the singular values of A, i.e. the lengths of the longer and shorter semiaxes of $A(B(0,1))$, respectively.
- We assume strict inequality.

Definitions

- Let $\alpha_{1}(A)>\alpha_{2}(A)$ denote the singular values of A, i.e. the lengths of the longer and shorter semiaxes of $A(B(0,1))$, respectively.
- We assume strict inequality.
- Let $\vartheta(A)$ denote the line spanned by the longer semiaxis of $A(B(0,1))$.

Definitions

- For $i \in \Sigma$, let

$$
\begin{aligned}
& \bar{\vartheta}_{1}(\mathrm{i})=\lim _{n \rightarrow \infty} \vartheta\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right), \\
& \bar{\vartheta}_{2}(\mathrm{i})=\lim _{n \rightarrow \infty} \vartheta\left(A_{i_{1}}^{-1} \cdot \ldots \cdot A_{i_{n}}^{-1}\right),
\end{aligned}
$$

if the limit exists.

Definitions

- For $i \in \Sigma$, let

$$
\begin{aligned}
& \bar{\vartheta}_{1}(\mathrm{i})=\lim _{n \rightarrow \infty} \vartheta\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right), \\
& \bar{\vartheta}_{2}(\mathrm{i})=\lim _{n \rightarrow \infty} \vartheta\left(A_{i_{1}}^{-1} \cdot \ldots \cdot A_{i_{n}}^{-1}\right),
\end{aligned}
$$

if the limit exists.

- Geometric interpretation: $\bar{\vartheta}_{1}(i)$ are the limiting directions of the construction cylinders.

Domination

Domination

- A self-affine set X is dominated if there exist constants $C>0$ and $0<\tau<1$, such that

$$
\frac{\alpha_{2}\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right)}{\alpha_{1}\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right)} \leqslant C \tau^{n},
$$

for all $n \in \mathbb{N}$ and $i \in \Sigma_{n}$.

Domination

- A self-affine set X is dominated if there exist constants $C>0$ and $0<\tau<1$, such that

$$
\frac{\alpha_{2}\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right)}{\alpha_{1}\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right)} \leqslant C \tau^{n},
$$

for all $n \in \mathbb{N}$ and $i \in \Sigma_{n}$.

Lemma

If X is dominated, then the limit directions $\bar{\vartheta}_{1}(\mathrm{i})$ and $\bar{\vartheta}_{2}(\mathrm{i})$ exist for all $\mathrm{i} \in \Sigma$ and the convergence is uniform. Moreover, the sets $Y_{F}:=\bar{\vartheta}_{1}(\Sigma)$ and $X_{F}:=\bar{\vartheta}_{2}(\Sigma)$ are disjoint compact sets.

Domination

- A self-affine set X is dominated if there exist constants $C>0$ and $0<\tau<1$, such that

$$
\frac{\alpha_{2}\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right)}{\alpha_{1}\left(A_{i_{1}} \cdot \ldots \cdot A_{i_{n}}\right)} \leqslant C \tau^{n},
$$

for all $n \in \mathbb{N}$ and $i \in \Sigma_{n}$.

Lemma

If X is dominated, then the limit directions $\bar{\vartheta}_{1}(i)$ and $\bar{\vartheta}_{2}(i)$ exist for all $i \in \Sigma$ and the convergence is uniform. Moreover, the sets $Y_{F}:=\bar{\vartheta}_{1}(\Sigma)$ and $X_{F}:=\bar{\vartheta}_{2}(\Sigma)$ are disjoint compact sets.

- We call the sets Y_{F} and X_{F} the forward and backward Furstenberg directions, respectively.

Assouad dimension of self-affine sets

- There is a natural connection between the Assouad dimension of self-affine sets and the dimensions of their slices and projections. (Mackay, Fraser, Fraser-Rutar, Bárány-Käenmäki-Rossi)

Assouad dimension of self-affine sets

- There is a natural connection between the Assouad dimension of self-affine sets and the dimensions of their slices and projections. (Mackay, Fraser, Fraser-Rutar, Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)
Let X be a strongly separated, dominated self-affine set with $\operatorname{dim}_{H}(X) \geqslant 1$ and such that X_{F} is not a singleton. Then

$$
\operatorname{dim}_{A}(X)=1+\max _{\substack{x \in X \\ V \in X_{F}}} \operatorname{dim}_{H}(X \cap(V+x))
$$

Assouad dimension of self-affine sets

- There is a natural connection between the Assouad dimension of self-affine sets and the dimensions of their slices and projections. (Mackay, Fraser, Fraser-Rutar, Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)
Let X be a strongly separated, dominated self-affine set with $\operatorname{dim}_{H}(X) \geqslant 1$ and such that X_{F} is not a singleton. Then

$$
\max _{\substack{x \in X \\ V \in X_{F}}} \operatorname{dim}_{\mathrm{H}}(X \cap(V+x))=\operatorname{dim}_{\mathrm{A}}(X)-1
$$

Assouad dimension of self-affine sets

- There is a natural connection between the Assouad dimension of self-affine sets and the dimensions of their slices and projections. (Mackay, Fraser, Fraser-Rutar, Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)

Let X be a strongly separated, dominated self-affine set with $\operatorname{dim}_{H}(X) \geqslant 1$ and such that X_{F} is not a singleton. Then

$$
\max _{\substack{x \in X \\ V \in X_{F}}} \operatorname{dim}_{\mathrm{H}}(X \cap(V+x))=\operatorname{dim}_{\mathrm{A}}(X)-1
$$

- We want to apply this to the Takagi function.

Assouad dimension of self-affine sets

- There is a natural connection between the Assouad dimension of self-affine sets and the dimensions of their slices and projections. (Mackay, Fraser, Fraser-Rutar, Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)

Let X be a strongly separated, dominated self-affine set with $\operatorname{dim}_{H}(X) \geqslant 1$ and such that X_{F} is not a singleton. Then

$$
\begin{aligned}
& \max _{x \in X} \operatorname{dim}_{H}(X \cap(V+x))=\operatorname{dim}_{A}(X)-1 . \\
& V \in X_{F}
\end{aligned}
$$

- We want to apply this to the Takagi function.
- Strong separation condition is not satisfied.

Bounded neighbourhood condition

A self-affine set X satisfies the bounded neighbourhood condition (BNC) if there is a constant M, such that

$$
\#\left\{\varphi_{\mathrm{i}} \mid \alpha_{2}\left(A_{\mathrm{i}}\right) \approx r, B(x, r) \cap \varphi_{\mathrm{i}}(X) \neq \emptyset\right\} \leqslant M
$$

for all $x \in X$ and $r>0$.

Bounded neighbourhood condition

Theorem (A.-Bárány-Käenmäki, 2023)
If X is a dominated self-affine set satisfying the BNC, such that $\operatorname{dim}_{H}\left(\operatorname{proj}_{V} \perp X\right)=1$ for all $V \in X_{F}$, then

$$
\begin{aligned}
\operatorname{dim}_{A}(X) & =1+\max _{\substack{x \in X \\
V \in X_{F}}} \operatorname{dim}_{H}(X \cap(V+x)) \\
& =1+\max _{\substack{x \in X \\
V \in \mathbb{R}^{P} \backslash Y_{F}}} \operatorname{dim}_{A}(X \cap(V+x)) .
\end{aligned}
$$

Bounded neighbourhood condition

Theorem (A.-Bárány-Käenmäki, 2023)

If X is a dominated self-affine set satisfying the BNC, such that $\operatorname{dim}_{H}\left(\operatorname{proj}_{V} \perp X\right)=1$ for all $V \in X_{F}$, then

$$
\begin{aligned}
\operatorname{dim}_{A}(X) & =1+\max _{\substack{x \in X \\
V \in X_{F}}} \operatorname{dim}_{H}(X \cap(V+x)) \\
& =1+\max _{\substack{x \in X \\
V \in \mathbb{R}^{1} \backslash Y_{F}}} \operatorname{dim}_{A}(X \cap(V+x)) .
\end{aligned}
$$

- The Takagi function is a dominated self-affine set and satisfies the BNC.

Bounded neighbourhood condition

Theorem (A.-Bárány-Käenmäki, 2023)

If X is a dominated self-affine set satisfying the BNC, such that $\operatorname{dim}_{H}\left(\operatorname{proj}_{V_{\perp}} X\right)=1$ for all $V \in X_{F}$, then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}}(X) & =1+\max _{\substack{x \in X \\
V \in X_{F}}} \operatorname{dim}_{H}(X \cap(V+x)) \\
& =1+\max _{\substack{x \in X \\
V \in \mathbb{R}^{1} \backslash Y_{F}}} \operatorname{dim}_{A}(X \cap(V+x)) .
\end{aligned}
$$

- The Takagi function is a dominated self-affine set and satisfies the BNC.
- Since T_{λ} is continuous, it projects to a line segment in all directions and in particular $\operatorname{dim}_{\mathrm{H}}\left(\operatorname{proj}_{V \perp} T_{\lambda}\right)=1$, for all $V \in \mathbb{R} \mathbb{P}^{1}$.

Proof: Upper bound

- Strategy: Bound Hausdorff dimension of all weak tangents from above.

Proof: Upper bound

- Strategy: Bound Hausdorff dimension of all weak tangents from above.

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

Proof: Upper bound

- Take any $T \in \operatorname{Tan}(X)$.

Proof: Upper bound

- Take any $T \in \operatorname{Tan}(X)$.
- Iterate deep in the construction of T.

Proof: Upper bound

- Take any $T \in \operatorname{Tan}(X)$.
- Iterate deep in the construction of T.
- Pull back the "approximate tangent" with the inverse map.

Proof: Upper bound

- Take any $T \in \operatorname{Tan}(X)$.
- Iterate deep in the construction of T.
- Pull back the "approximate tangent" with the inverse map.
- Extract a subsequence and obtain a projection of the tangent into a slice of the original set.

Proof: Upper bound

- Take any $T \in \operatorname{Tan}(X)$.
- Iterate deep in the construction of T.
- Pull back the "approximate tangent" with the inverse map.
- Extract a subsequence and obtain a projection of the tangent into a slice of the original set.
$\rightarrow \operatorname{dim}_{\mathrm{H}}(T) \leqslant 1+\operatorname{dim}_{\mathrm{H}}(X \cap(V+x))$, where $V \in X_{F}$.

Proof: Upper bound

- Take any $T \in \operatorname{Tan}(X)$.
- Iterate deep in the construction of T.
- Pull back the "approximate tangent" with the inverse map.
- Extract a subsequence and obtain a projection of the tangent into a slice of the original set.
$\rightarrow \operatorname{dim}_{\mathrm{H}}(T) \leqslant 1+\operatorname{dim}_{\mathrm{H}}(X \cap(V+x))$, where $V \in X_{F}$.
$\rightarrow \operatorname{dim}_{\mathrm{A}}(X) \leqslant 1+\max _{\substack{x \in X \\ V \in X_{F}}} \operatorname{dim}_{H}(X \cap(V+x))$.

Proof: Lower bound

- Strategy: Bound Assouad dimension of slices from above.

Proof: Lower bound

- Strategy: Bound Assouad dimension of slices from above.

Proof: Lower bound

Proof: Lower bound

Proof: Lower bound

Proof: Lower bound

Proof: Lower bound

- Take any line $V \in \mathbb{R P}^{1} \backslash Y_{F}$ and $x \in X$.

Proof: Lower bound

- Take any line $V \in \mathbb{R P}^{1} \backslash Y_{F}$ and $x \in X$.
- Let S be a weak tangent of the slice $X \cap(V+x)$ of maximal dimension.

Proof: Lower bound

- Take any line $V \in \mathbb{R P}^{1} \backslash Y_{F}$ and $x \in X$.
- Let S be a weak tangent of the slice $X \cap(V+x)$ of maximal dimension.
- Then $S \subset T \cap(V+y)$, where $T \in \operatorname{Tan}(X)$.

Proof: Lower bound

- Take any line $V \in \mathbb{R P}^{1} \backslash Y_{F}$ and $x \in X$.
- Let S be a weak tangent of the slice $X \cap(V+x)$ of maximal dimension.
- Then $S \subset T \cap(V+y)$, where $T \in \operatorname{Tan}(X)$.
- Fiber structure \Longrightarrow " $S \times$ interval $\subset T$ "

Proof: Lower bound

- Take any line $V \in \mathbb{R P}^{1} \backslash Y_{F}$ and $x \in X$.
- Let S be a weak tangent of the slice $X \cap(V+x)$ of maximal dimension.
- Then $S \subset T \cap(V+y)$, where $T \in \operatorname{Tan}(X)$.
- Fiber structure \Longrightarrow " $S \times$ interval $\subset T$ "
- $\operatorname{dim}_{\mathrm{A}}(X) \geqslant \operatorname{dim}_{\mathrm{H}}(T) \geqslant 1+\operatorname{dim}_{\mathrm{H}}(S)=$ $1+\operatorname{dim}_{\mathrm{A}}(X \cap(V+x)) \geqslant 1+\operatorname{dim}_{\mathrm{H}}(X \cap(V+x))$.

Back to the Takagi function

Theorem (A.-Bárány-Käenmäki, 2023)
If T_{λ} is the graph of the Takagi function, with $\frac{1}{2}<\lambda<1$, then

$$
\max _{\substack{x \in T_{\lambda} \\ V \in \mathbb{R}^{\mathbf{1}}}} \operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right)=\operatorname{dim}_{A}\left(T_{\lambda}\right)-1<1
$$

Extending Marstrand's theorem

- Our theorem leaves two possibilities:

Extending Marstrand's theorem

- Our theorem leaves two possibilities:

1. $\operatorname{dim}_{\mathrm{A}}\left(T_{\lambda}\right)=\operatorname{dim}_{\mathrm{H}}\left(T_{\lambda}\right)$, and the bound of Marstrand's slicing theorem extends to all slices.

Extending Marstrand's theorem

- Our theorem leaves two possibilities:

1. $\operatorname{dim}_{\mathrm{A}}\left(T_{\lambda}\right)=\operatorname{dim}_{\mathrm{H}}\left(T_{\lambda}\right)$, and the bound of Marstrand's slicing theorem extends to all slices.
2. $\operatorname{dim}_{\mathrm{A}}\left(T_{\lambda}\right)>\operatorname{dim}_{\mathrm{H}}\left(T_{\lambda}\right)$ and there is at least one slice which fails Marstrand's slicing theorem.

Extending Marstrand's theorem

Theorem (A.-Bárány-Käenmäki, 2023)

If T_{λ} is the graph of the Takagi function, with $\frac{1}{2}<\lambda<1$, and μ is the projection of the uniform Bernoulli measure on the symbolic space to T_{λ}, then $\operatorname{dim}_{A}\left(T_{\lambda}\right)=\operatorname{dim}_{H}\left(T_{\lambda}\right)$ and in particular

$$
\max _{\substack{x \in T_{\lambda} \\ V \in \mathbb{R}^{1}}} \operatorname{dim}_{H}\left(T_{\lambda} \cap(V+x)\right)=\operatorname{dim}_{H}\left(T_{\lambda}\right)-1,
$$

if and only if

$$
\overline{\operatorname{dim}}_{\text {loc }}\left(\operatorname{proj}_{V \perp_{*}} \mu, \operatorname{proj}_{V \perp}(x)\right) \geqslant 1
$$

for all $x \in T_{\lambda}$ and $V \in X_{F}$.

About the proof

- The proof is a technical geometric argument, which establishes a connection between the local dimensions of the projected measure and the box dimensions of the slices of the set along the fibers.

About the proof

- The proof is a technical geometric argument, which establishes a connection between the local dimensions of the projected measure and the box dimensions of the slices of the set along the fibers.
- Unfortunately, we do not know any values of λ where either of the conditions hold.

Thank you for your attention! Questions are welcome!

