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Foreword: A model of multifractal lacunary wavelet series

Denote by D the set of dyadic subintervals of [0, 1], and for all j > 0, D the set of
dyadic subintervals of [0, 1] of generation j

Consider a Meyer wavelet v so that the family (¢r)rp is orthogonal, with

pr(z) =@z —k) if I=[k277,(k+1)277].

Consider v > 0 and a simple model of y-Holder monofractal function over [0, 1] :

271
STrer =30 ST 2727 - k).
IeD j>0 k=0
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Denote by D the set of dyadic subintervals of [0, 1], and for all j > 0, D the set of
dyadic subintervals of [0, 1] of generation j

Consider a Meyer wavelet v so that the family (¢r)rp is orthogonal, with

pr(z) =@z —k) if I=[k277,(k+1)277].

Consider v > 0 and a simple model of y-Holder monofractal function over [0, 1] :

271
STrer =30 ST 2727 - k).
IeD j>0 k=0

Then, S. Jaffard (2000) essentially considers the following model of sparse wavelet
series: introduce a lacunarity parameter 7 € (0,1), (pr)rep a sequence of
independent Bernoulli variables, such that p; ~ B(2~(1=7) if I € D;, and
consider )

Z pr|I|7¢r, where #{I € D; : p; =1} = 27",

IeD

This new series is multifractal.
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Foreword: A model of multifractal lacunary wavelet series

Recall that if f :[0,1] — R is bounded, for all z¢ € [0, 1], the pointwise Holder
exponent of f is defined as

hg(xo) =sup{h > 0: 3P € R[X], deg(P) < |h], f(z)—P(x—x0) = O(|z —z0|™)}
Then, the multifractal spectrum of f is defined as

oy : HeRU{oco} —dim{z € [0,1] : hs(z) = H}.
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Foreword: A model of multifractal lacunary wavelet series

Recall that if f :[0,1] — R is bounded, for all z¢ € [0, 1], the pointwise Holder
exponent of f is defined as

hg(xo) =sup{h > 0: 3P € R[X], deg(P) < |h], f(z)—P(x—x0) = O(\xfxo|h)}
Then, the multifractal spectrum of f is defined as
oy : HeRU{oco} —dim{z € [0,1] : hs(z) = H}.

For fy = ZIG‘D [I|7%r and fy = ZlerI |I|741, one has
g, (H) o, ()

1
1

- ————---®

20 — —
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[e]e] o]

Explanation. Properties of the intervals which survive.

For j > 0and I = [k277,(k+1)279] € Dj, let 1 = k277,

Let
S;j={Ie€D;:pr=1}

There exists a decreasing sequence (£5),>0 converging to 0 such that, with
probability 1, for j large enough,

VJ EDjin—e;))» #1<{I€8;: I CJ}< 275,

€

Definition

For z € [0, 1], the rate of approximation of z by {(zr,r; = 27j("751))}j20, I€s;

logd :TES;
8z = lim sup e , € 5;})
j—oo 10g 2—In

A

Note that §; > 1 for all = € [0, 1].
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Explanation. Wavelet characterization of the pointwise exponent, and
ubiquity properties.

(1) Due to Jaffard, if f = 3 ;cp crepr is Holder continuous, then

1 L1 C 3,
hy(z) = lim ing 2285UPAer| T C 3L, @)}

j—roo log2—7
One can then check that
1 IV : I C3I;
Vo e[0,1], hs () = liminf 28SWPPAIY : TC3L@} v ,
v j—ro0 log 2—J min(n—1,dz)
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Explanation. Wavelet characterization of the pointwise exponent, and
ubiquity properties.

(1) Due to Jaffard, if f = 3 ;cp crepr is Holder continuous, then

1 L1 C 3,
hy(z) = lim ing 2285UPAer| T C 3L, @)}

j—roo log2—7
One can then check that
1 IV : I C3I;
Vo e[0,1], hs () = liminf 28SWPPAIY : TC3L@} v ,
v j—ro0 log 2—J min(n—1,dz)

(2) One deduces from the proposition that
Leb( Ny u B(:c1,2_j("_5j))) =1,
E>0 >k IE€S,

and
V6 > 1, dim{z € [0,1]: 6, > 8} < 1/6.
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Explanation. Wavelet characterization of the pointwise exponent, and
ubiquity properties.

(1) Due to Jaffard, if f = 3 ;cp crepr is Holder continuous, then
log sup{Jer| : T € 31;(2)}

hg(x) = liminf

j—roo log2—7
One can then check that
1 IV : I C3I;
Vo e[0,1], hs () = liminf 28SWPPAIY : TC3L@} v ,
v j—ro0 log 2—J min(n—1,dz)

(2) One deduces from the proposition that
Leb( Ny u B(:c1,2_j("_5j))) =1,
E>0 >k IE€S,

and
V6 > 1, dim{z € [0,1]: 6, > 8} < 1/6.

Then, by the mass transference principle (Jaffard (’00), Beresnevich-Velani (’08))

1
V> 1, dim{z € [0,1]: §z =6} =dim{z € [0,1] : 6, > 6} = 3

IH if HE [y,
hence o> (H) =47 ' by v/m) .
Iy —oo otherwise
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Multifractal formalism for capacities
[ Jolelele}

Capacities

Now, one can more generally consider any Hélder continuous wavelet series

f= Z crYr and make it lacunary f: Zpl crr.

1€D I1eD

Recall that the multifractal analysis of these functions consists respectively in the
multifractal analysis of the level sets of the exponents

1 I C31;
() — i BRIl 1 € 31, (2))
Jj—oo log2—J
logsup{prcr : I C 31;(x)}
log2—7J '

h+(xz) = liminf

f Jj—oo

This reduces back to the multifractal analysis of some non-decreasing functions of
intervals, namely capacities.

Precisely, given a real sequence (¢ = ¢y)rep, define, for any interval J C [0, 1]
M(c)(J) = sup{lcs|: T €D, I C J}.

Clearly, J C K =5 M(c)(J) < M(c)(K) and h(z) = liminf log (M(€)(B(z, 7))
r—0+ log(r)
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Multifractal formalism for capacities
[¢] lele]e}

Multifractal analysis of capacities on [0, 1]. Multifractal spectrum

If p is a capacity over [0, 1], its topological support is defined as
supp(p) = {@ € [0,1] : u(B(x,7)) >0, ¥r > 0},

We will assume that supp(u) = [0, 1] and define the L7-spectrum of p as

1
Tu: ¢ € R liminf —— log, E w(l)?

T, (@)
The multifractal spectrum of p is then defined as
ou: H— dimEH(H), H e R,

where

— i i 108 (HBL(@))
E,(H)= {x € supp() : liminf e (BLED H}

One has

oup(H) <7 (H) = inf{Hq—7.(q) : g € R} € Ry U{—o0}.
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[e]e] lele}

Multifractal analysis of capacities on [0, 1]. Multifractal spectrum

If 11 is a capacity over [0, 1], its topological support is defined as
supp(p) = {z € [0,1] : u(B(z,7)) >0, Vr > 0}.
We will assume that supp(p) = [0, 1] and define the L?-spectrum of p as

1
Tyt ¢ € R liminf —— log, Z w(I)?

Ty, (a)
The multifractal spectrum of p is then defined as

op: H s dimE,(H), HER,

where
1 B
E ,(H)= (¢ x €supp(p): liminfM =H
" r—0+ log(r)
dimy, . (1,z)
One has

oup(H) <7, (H) = inf{Hq—7.(q) : g € R} € Ry U{—o0}.
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Multifractal formalism for capacities
[e]e]e] lo}

Multifractal analysis of capacities on [0, 1]. Large deviations spectra

One is also interested also in the asymptotic statistical distribution of p via large
deviations:

(1) Do we have
() = lim 757

(2) For He R, j€Nand e >0, let

} log u(1)
En(j,H+e)=<31€D;: ———€c[H—¢,H+¢];.
wxe = {re; ) e |
Then, the lower and upper large deviations spectra of p are respectively defined

as

J(H) = lim lim inf 282 #Eu(0 H£)

i e—0j—+4oc0 7

f ! (5, H
and 7, (H) = lim limsup 282 #&n U H £¢)

20 j5+too J

Does the following large deviations principle hold:

£, () =T, (H) =77 7
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Multifractal formalism for capacities
[e]e]e]e] ]

The fundamental example of Gibbs measures and capacities

Let ¢ : R — R be Z-invariant Holder continuous potential. It is standard that

vp(dz) = f[o,l] oxp (S (1)) Leb(d1) Leb(dz), where Sho(x) = 2 p(2"z),

exp (Snp(x)) =

converges vaguely to a measure fully supported on R (Ruelle). Denote by v the
restriction of this Gibbs measure to [0, 1].

A Gibbs capacity p is a capacity such that u ~ v7, where v > 0 and v is a Gibbs
measure on [0, 1] as above.
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[e]e]e]e] ]

The fundamental example of Gibbs measures and capacities

Let ¢ : R — R be Z-invariant Holder continuous potential. It is standard that

vp(dz) = f[o,l] oxp (S (1)) Leb(d1) Leb(dz), where Sho(x) = 2 p(2"z),

exp (Snp(x)) 3

converges vaguely to a measure fully supported on R (Ruelle). Denote by v the
restriction of this Gibbs measure to [0, 1].

A Gibbs capacity p is a capacity such that u ~ v7, where v > 0 and v is a Gibbs
measure on [0, 1] as above.

Classical results on Gibbs measures (Ruelle,Collet-Lebowitz-Porzio) give :

o 7, = lim;_,o 7p,j. Moreover, 7, is analytic, concave increasing and

limg s o0 7w (q) = +o00.

o 0, = 7; also dom(c,) = [7/,(c0, 7/,(—00)] C (0, 00).

e The large deviations principle iu(H) = f,(H) = 7; holds.
The same properties are true for any Gibbs capacity pu.
Moreover, p is multifractal, i.e. dom(o,) is not a singleton, iff ¢ is not
cohomologous to a constant on R/Z endowed with the dynamics x2, i.e. u 5 Leb?.
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Sparse sampling and dilation operations
[ Je]

Dilation operation on capacities

Let p be a fully supported capacity on [0,1]. For any ¢ € (0,1), we define the
dilation operation on p restricted to D:

co(p)(I) = u(I°) (should be thought of as wavelet coefficients)

where, if I € Dj, I¢ is the dyadic interval of generation |gj] that contains I.

Then we consider the capacity
Mo(1) = M(co() : J > sup{u(1%) : 1 €D, 1 C J}.
Observe that if M is doubling, then
Mo(B(z, 7)) = n(B(z,79));
also
oM, (u)(H) = o (H/o) for all H € R
TMQ(M)(L]) =0— 1+ o7u(q) for all g € R.

In particular, 7y ) (H) = o) (H/p) + 1 — p, so if u is multifractal and ¢ € (0, 1),
e

then the multifractal formalism fails everywhere for My, except at H = o7, (0).
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Sparse sampling and dilation operations
oe

Combining dilation with sparse sampling (or lacunarisation) operation

Remark: In the very beginning, we considered the situation pu = Leb”. In this
case, u(12) ~ Leb7?, so we stay in the class of monofractal Gibbs capacities.

Finally, we consider, for ¢ € (0,1/n],
Egn(“)(l) = pru(1°7)
(should be thought of as wavelet coefficients of a lacunary series), and

Mg,y = M(Con(n)) : J > sup{prpu(1®") : 1 €D, 1 C J}.
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Sparse sampling and dilation operations
oe

Combining dilation with sparse sampling (or lacunarisation) operation

Remark: In the very beginning, we considered the situation pu = Leb”. In this
case, u(12) ~ Leb7?, so we stay in the class of monofractal Gibbs capacities.

Finally, we consider, for ¢ € (0,1/n],
Con(p)(I) = pru(1°7)
(should be thought of as wavelet coefficients of a lacunary series), and
Mg,y = M(Con(n)) : J > sup{prpu(1®") : 1 €D, 1 C J}.

Goals: (1) Discuss the validity of the multifractal formalism and the large
deviations principle for M, »;

(2) Express Mg,y and TM,,, il terms of o, and 7, respectively, and discuss the
real analyticity properties of these spectra.

Expectation: That it be feasible, and the model be versatile.
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Sparse sampling and dilation operations
oe

Combining dilation with sparse sampling (or lacunarisation) operation

Remark: In the very beginning, we considered the situation pu = Leb”. In this
case, u(12) ~ Leb7?, so we stay in the class of monofractal Gibbs capacities.

Finally, we consider, for ¢ € (0,1/n],
Con(p)(I) = pru(1°7)
(should be thought of as wavelet coefficients of a lacunary series), and
Mg,y = M(Con(n)) : J > sup{prpu(1®") : 1 €D, 1 C J}.

Goals: (1) Discuss the validity of the multifractal formalism and the large
deviations principle for M, »;

(2) Express oM, and TM,,, il terms of o, and 7, respectively, and discuss the
real analytlclty propertles of these spectra.

Expectation: That it be feasible, and the model be versatile.

From now we take p in the set of multifractal Gibbs capacities.

J. Barral Sparse sampling, dilation, Gibbs capacities, multifrs



Results
®0000000000000

Validity of the LDP and MF for M, ,,

Fix p a multifractal Gibbs capacity. For g € (0,1/n], let
Mo = M(@on (1)) : J -+ suplpra(I") - €D, 1C J}.

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for M, ;)

Fiz o € (0,1/n]. With probability 1,
Q@ (LDP) Mgy = limj o0 M., s and the LDP holds.
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Validity of the LDP and MF for M, ,,

Fix p a multifractal Gibbs capacity. For g € (0,1/n], let
Mo = M(@on (1)) : J -+ suplpra(I") - €D, 1C J}.

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for M, ;)

Fiz o € (0,1/n]. With probability 1,
Q@ (LDP) Mgy = limj o0 M., s and the LDP holds.

@ (MF) owm,, is concave and dom(owm, , ) = dom('r,\’jlg 77).
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Validity of the LDP and MF for M, ,,

Fix p a multifractal Gibbs capacity. For g € (0,1/n], let
Mo = M(@on (1)) : J -+ suplpra(I") - €D, 1C J}.

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for M, ;)

Fiz o € (0,1/n]. With probability 1,
Q@ (LDP) Mgy = limj o0 M., s and the LDP holds.
@ (MF) owm,, is concave and dom(owm, , ) = dom('r,\’jlgm).
o If o € [1,1/n], then the MF holds for My, over dom(om, ,)-
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Validity of the LDP and MF for M, ,,

Fix p a multifractal Gibbs capacity. For g € (0,1/n], let
Mo = M(@on (1)) : J -+ suplpra(I") - €D, 1C J}.

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for M, ;)

Fiz o € (0,1/n]. With probability 1,
Q@ (LDP) Mgy = limj o0 M., s and the LDP holds.
@ (MF) owm,, is concave and dom(owm, , ) = dom('r,\’jlgm).
o If o € [1,1/n], then the MF holds for My, over dom(om, ,)-
o If 0 €[0,1), then dom(owm, ,) = [gn‘r; (00), QTL(—OO)], and there exists a

strict compact subinterval J, , of [gn'r[c(oo), QT[L(O)) such that the MF holds
only at points of Jo n U {QT; (0)}.

Moreover, the three possible situations can occur, i.e. J, , can be either
non trivial, a singleton or empty.
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Formula for my

when ¢ € (0,1).

0,7

Theorem (L%-spectrum of My 5; 0 € (0,1])
Fiz p € (0,1]. Let qo be the unique solution of o — 1+ o1, (q) = 0. With
probability 1,
_ Jo—1+omu(q) if ¢ < qo,
TMQm(H)(q) = ;
n(e—1+emu(q) ifaq2 g

In particular there is a first order phase transition at qo, and 7, is real analytic
over R\ {go}-
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Results
00@00000000000

when p € [1,1/n]

Formulas for

0,7

-spectrum of My ;5 0 € [1,1/7))

Fiz o€ [1,1/n]. Let g, be the unique solution of o — 1+ p7u(q) = 0.
Let Hy = min{H >0 : ou(H) >1—1/p} and gp = oM(HQ)

With probability 1,

Tu(q) — ) g if g <gq,,

9o
My (@) = 4 Me—1+emu() if g0 <a<,
et (de) - 4 if go < 400 and g > Qp.

In particular there is a first order phase transition at qo, and possibly a second
order phase transition at o if this number is finite, i.e. if ou(7/,(00)) <1—1/0.

Also, 7, is real analytic over R\ {qo,qo}-
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Tu(q) ™™g,y (9)

9o

9o

Sparse sampling, dilatio

Phase
transitions
do 9o

Gibbs capacities,



Results
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Formula for oy, . when g € [1,1/7)]

0,7

— *
Here Mo = Ty

Theorem (Multifractal spectrum of My, for o € [1,1/7])

Fiz p € [1,1/n]. Let qo be the unique solution of o — 1+ p1.(q) = 0.

Let Ho = 7/,(q0); H,=min{H >0:0,(H) >1—1/g} and H, = 7%%),
e

With probability 1, My, satisfies the multifractal formalism with

n(1— o+ gou(H/on)) if enHy < H < onHy,

- (H) = qoH if QWH9§H<Hg+fIgv
Mg, (1) - = . = / =]
ou(H — Hyp) if Ho+ Ho < H < 7)(00) + Hy,
—0o0 otherwise.
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Spectrum of My,

Figure: Spectrum of My, for a given spectrum of u, n = 0.7 here: 3 phases.
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Results
000000800000 00

when ¢ € (0,1)

Formula for o

0,1

Theorem (Multifractal spectrum of My ; 0 € (0,1))

Fiz o € (0,1). With probability 1,

Don(H) if 7797';‘(00) <H< QTL(O)
OM,,, (H) = q ou(H/0) if o7/,(0) < H < o1/, (—00)
—o0 otherwise
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1-p
1/n—o

Explicit formula for D, ,; case 0,,(7),(c0)) >

Let 0, be the mapping defined as

. ’ ’ eHoy(H)
0o : H € [1/,(00),7,(0)] — ?NQO'M(}I).

Suppose that o, (7/,(c0)) > %. One has

(1 — o+ oou(H/en)) if ent),(c0) < H < onHy,

ou(Hp) .
=7 if onHy < H < 0,(H,),
DM,Q,W(H) = QQ(I_{Q) ¢ ee (1)
ou(fg " (H)) if 0o(H,) < H < 07,,(0),
ou(H/o) if o7}, (0) < H < o7/ (~00),
and Dy o.n(H) = —oo otherwise.
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1-p
1/n—o

xplicit formula for D, ,; case 0,,(7),(c0)) >

o1 0z 03 4 s 6 o7 o8 os 1 moo 13 1 s

Figure: Spectrum of M, ,, when ¢ = 0.55, n = 0.5, case o, (‘r; (00)) > 1};759: 4 phases.
Original spectrum in dashed blue, Legendre spectrum in dashed black.
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nlici ~ - . /
Explicit formula for D, ,; case J#(TH

Suppose that o, (7,(c0)) < 1/ . Let Hyn € [Hmin,7;,(0)] be the unique
solution to 1
-0
H
ou(He,p) = Un—2o

Let Hy = 7,,(qo), where 0 — 1+ 07,,(qo) = 0.
Q If H,,, < Hy, then set

ou(H/on) if onT),(00) < H < onHp,n,
n(1— o+ o0ou(H/on)) if onHem < H < onH,,
o, (H .
Dypon(H) = 2u(Ho) it onH, < H < 0,(H),  (2)
99(111’9)
ou(b " (H)) if 0,(H,) < H < o7,,(0),
ou(H/0) if 07/,(0) < H < o7/,(—00),
and Dy, o.n(H) = —oo otherwise.

Q If Hyy > H,, then set

ou(H/en)  if onj(00) < H < onHo,y,
Dyon(H) = § 0(05 1 (H)) if onHoy < H < 07, (0), (3)
ou(H/0) if ¢7/,(0) < H < o1/,(—00),

and Dy o,n(H) = —oo otherwise.
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000000000

Figure: Top: Spectrum of M, , for a given spectrum of u when o = 0.8, n = 0.8, case
(TM(T/L(OO)) < 1};59 and H, , < H,: 5 phases. Bottom: Spectrum when ¢ = 0.7,

n = 0.4, case 0“(7';(00)) < J:TQQ and H, , > H,: 3 phases. Original spectrum in
dashed blue, Legendre spectrum in dashed black.

ibbs capacities, multi
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Some explanations for the decreasing part of the spectrum

Recall that
Sj:{IGDj :pr =1}

and for z € [0, 1],

log d :Ies;
0z = limsup ogd(z {z1 - € S;}) .
j—o0 log2—n

Proposition

With probability 1, Vx € [0,1], if z = 1, then dim; (Mg 4, ) = odim,, . (k, x).

In particular, if H = o7/,(q) for some ¢ € R, then ow, , (H) > o,(H/0), since the
unique ergodic Gibbs measure v4 of maximal dimension supported on Ey (7/,(q)) is
such that vg({z : d =1}) = 1.

With probability 1, for all H € R, dim,, (Mg, x)) = H implies that
dimloc(/"vx)) > H/Q~

This implies that om, , (H) < ou(H/o) if H > o7/,(0).
Consequently, om, , (H) = ou(H/o) for all H = o7,(q), ¢ < 0.
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Some explanations for the increasing part of the spectrum

Definition (Conditioned ubiquity)

Let h>0,6>1,e>0, and f:: (&5)j>1 a non-decreasing positive sequence.
Set

Apnis = Nn u U B(zz, (2—]-(77—5]‘))5)‘

J21 527 res;:ren|"tEi <p(reny<|ren|h =4
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Some explanations for the increasing part of the spectrum

Definition (Conditioned ubiquity)

Let h>0,6>1,e>0, and f;: (&5)j>1 a non-decreasing positive sequence.
Set

Ao fs = ﬂ U U B(ml’(2_j(n_5j))5>‘

J>1 j>J 1es;: |1en "85 <p(remy<|ren | =%

There exists a sequence E decreasing to zero such that for all h > 0 such that

T (h) > 0 and all 6 > 1, there exists a Borel probability measure v, p 5 such that

l’g,h,&(A&h,g’(;) =1 and

. . (1—0+ h
dim(vy,1,5) > min (125000 5 ),

Also, dim A = min (1—94—%@7“(}07 Uu(h)).

0.h,€,6
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Some explanations for the increasing part of the spectrum

Recall that

1— o+ 00u(h) oh
—_— 0< —< <6< .
S o) 1 0< S < H 1<6<1/n)
For each H € [0, ¢7/,(0)) such that Dy, (H) > 0, in fact Dy y(H) is uniquely
attained at some (h, d) such that 6 € [1,1/7], oh/6 = H. Also,

D, ,(H) = max { min (

< .
(1) A, 25 C B (H) = {z: dimyyo(Mg,n,2) < H).

E|\§/|QJ7(H) - ﬂ U Ag,h,.(s)]zl.ﬁ»

€>0 h>0,5€[1,1/n], QL <H+e

which implies that

. <
oMy (H) < dim B (H) < Doy (H).

i

Since for all k > 1 one has dimgﬁ,lg ,(H = 1/k) < Dy (H = 1/k) < Do,y (H), we
get Y
Vg’h’é(AQﬁ,gﬁ OEMQ,W (H) =1
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