Sparse sampling and dilation operations on a Gibbs weighted tree, and multifractal formalism

J. Barral, Sorbonne Paris Nord University (joint work with S. Seuret, Paris-Est Créteil University)

Thermodynamic Formalism: Non-additive Aspects and Related Topics,

May 15-19 2023

Denote by \mathcal{D} the set of dyadic subintervals of [0, 1], and for all $j \ge 0$, \mathcal{D} the set of dyadic subintervals of [0, 1] of generation j

Consider a Meyer wavelet ψ so that the family $(\psi_I)_{I\mathcal{D}}$ is orthogonal, with

$$\psi_I(x) = \psi(2^j x - k)$$
 if $I = [k2^{-j}, (k+1)2^{-j}].$

Consider $\gamma > 0$ and a simple model of γ -Hölder monofractal function over [0, 1]:

$$\sum_{I\in\mathcal{D}}|I|^{\gamma}\psi_{I}=\sum_{j\geq 0}\sum_{k=0}^{2^{j}-1}2^{-j\gamma}\psi(2^{j}\cdot-k).$$

- 4 同 6 4 日 6 4 日 6

3

Denote by \mathcal{D} the set of dyadic subintervals of [0, 1], and for all $j \ge 0$, \mathcal{D} the set of dyadic subintervals of [0, 1] of generation j

Consider a Meyer wavelet ψ so that the family $(\psi_I)_{I\mathcal{D}}$ is orthogonal, with

$$\psi_I(x) = \psi(2^j x - k)$$
 if $I = [k2^{-j}, (k+1)2^{-j}].$

Consider $\gamma > 0$ and a simple model of γ -Hölder monofractal function over [0, 1]:

$$\sum_{I\in\mathcal{D}}|I|^{\gamma}\psi_{I}=\sum_{j\geq 0}\sum_{k=0}^{2^{j}-1}2^{-j\gamma}\psi(2^{j}\cdot-k).$$

Then, S. Jaffard (2000) essentially considers the following model of sparse wavelet series: introduce a **lacunarity parameter** $\eta \in (0, 1), (p_I)_{I \in \mathcal{D}}$ a sequence of independent Bernoulli variables, such that $p_I \sim B(2^{-(1-\eta)j})$ if $I \in \mathcal{D}_j$, and consider

$$\sum_{I \in \mathcal{D}} p_I |I|^{\gamma} \psi_I, \quad \text{where } \#\{I \in \mathcal{D}_j : p_I = 1\} \approx 2^{j\eta}.$$

This new series is multifractal.

マロト イラト イラト

Recall that if $f : [0, 1] \mapsto \mathbb{R}$ is bounded, for all $x_0 \in [0, 1]$, the pointwise Hölder exponent of f is defined as

 $h_f(x_0) = \sup\{h \ge 0: \exists P \in \mathbb{R}[X], \deg(P) \le \lfloor h \rfloor, \ f(x) - P(x - x_0) = O(|x - x_0|^h)\}$

Then, the multifractal spectrum of f is defined as

 $\sigma_f: H \in \mathbb{R} \cup \{\infty\} \mapsto \dim\{x \in [0,1]: h_f(x) = H\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that if $f : [0, 1] \mapsto \mathbb{R}$ is bounded, for all $x_0 \in [0, 1]$, the pointwise Hölder exponent of f is defined as

 $h_f(x_0) = \sup\{h \ge 0 : \exists P \in \mathbb{R}[X], \deg(P) \le \lfloor h \rfloor, \ f(x) - P(x - x_0) = O(|x - x_0|^h)\}$

Then, the multifractal spectrum of f is defined as

 $\sigma_f : H \in \mathbb{R} \cup \{\infty\} \mapsto \dim\{x \in [0,1] : h_f(x) = H\}.$

Explanation. Properties of the intervals which survive.

For
$$j \ge 0$$
 and $I = [k2^{-j}, (k+1)2^{-j}] \in \mathcal{D}_j$, let $x_I = k2^{-j}$

Let

$$\mathcal{S}_j = \{ I \in \mathcal{D}_j : p_I = 1 \}.$$

Proposition

There exists a decreasing sequence $(\varepsilon_j)_{j\geq 0}$ converging to 0 such that, with probability 1, for j large enough,

$$\forall J \in \mathcal{D}_{\lfloor j(\eta - \varepsilon_j) \rfloor}, \ \#1 \leq \{I \in \mathcal{S}_j : I \subset J\} \leq 2^{j\varepsilon_j}.$$

Definition

For $x \in [0, 1]$, the rate of approximation of x by $\{(x_I, r_I = 2^{-j(\eta - \varepsilon_j)})\}_{j \ge 0, I \in S_j}$

$$\delta_x = \limsup_{j \to \infty} \frac{\log d(x, \{x_I : I \in S_j\})}{\log 2^{-j\eta}}$$

Note that $\delta_x \ge 1$ for all $x \in [0, 1]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Explanation. Wavelet characterization of the pointwise exponent, and ubiquity properties.

(1) Due to Jaffard, if $f = \sum_{I \in \mathcal{D}} c_I \psi_I$ is Hölder continuous, then

$$h_f(x) = \liminf_{j \to \infty} \frac{\log \sup\{|c_I| : I \subset 3I_j(x)\}}{\log 2^{-j}}$$

One can then check that

$$\forall x \in [0,1], \ h_{\tilde{f}_{\gamma}}(x) = \liminf_{j \to \infty} \frac{\log \sup\{\frac{p_I|I|^{\gamma} : I \subset 3I_j(x)\}}{\log 2^{-j}} = \frac{\gamma}{\min(\eta^{-1}, \delta_x)}.$$

・伺 ト ・ヨト ・ヨト

э

Explanation. Wavelet characterization of the pointwise exponent, and ubiquity properties.

(1) Due to Jaffard, if $f = \sum_{I \in \mathcal{D}} c_I \psi_I$ is Hölder continuous, then

$$h_f(x) = \liminf_{j \to \infty} \frac{\log \sup\{|c_I| : I \subset 3I_j(x)\}}{\log 2^{-j}}$$

One can then check that

$$\forall x \in [0,1], \ h_{\tilde{f}_{\gamma}}(x) = \liminf_{j \to \infty} \frac{\log \sup\{p_I | I|^{\gamma} : I \subset 3I_j(x)\}}{\log 2^{-j}} = \frac{\gamma}{\min(\eta^{-1}, \delta_x)}.$$

(2) One deduces from the proposition that

$$\operatorname{Leb}\left(\bigcap_{k\geq 0}\bigcup_{j\geq k}\bigcup_{I\in\mathcal{S}_j}B(x_I,2^{-j(\eta-\varepsilon_j)})\right)=1,$$

and

$$\forall \delta \ge 1, \dim \{x \in [0,1] : \delta_x \ge \delta\} \le 1/\delta.$$

→ Ξ →

Explanation. Wavelet characterization of the pointwise exponent, and ubiquity properties.

(1) Due to Jaffard, if $f = \sum_{I \in \mathcal{D}} c_I \psi_I$ is Hölder continuous, then

$$h_f(x) = \liminf_{j \to \infty} \frac{\log \sup\{|c_I| : I \subset 3I_j(x)\}}{\log 2^{-j}}$$

One can then check that

$$\forall x \in [0,1], \ h_{\tilde{f}_{\gamma}}(x) = \liminf_{j \to \infty} \frac{\log \sup\{p_I | I|^{\gamma} : I \subset 3I_j(x)\}}{\log 2^{-j}} = \frac{\gamma}{\min(\eta^{-1}, \delta_x)}.$$

(2) One deduces from the proposition that

$$\operatorname{Leb}\left(\bigcap_{k\geq 0}\bigcup_{j\geq k}\bigcup_{I\in\mathcal{S}_{j}}B(x_{I},2^{-j(\eta-\varepsilon_{j})})\right)=1,$$

and

 $\forall \, \delta \geq 1, \, \dim \{ x \in [0,1] : \delta_x \geq \delta \} \leq 1/\delta.$

Then, by the mass transference principle (Jaffard ('00), Beresnevich-Velani ('08))

$$\forall \delta \ge 1, \ \dim\{x \in [0,1] : \delta_x = \delta\} = \dim\{x \in [0,1] : \delta_x \ge \delta\} = \frac{1}{\delta},$$

hence
$$\sigma_{\tilde{f}_{\gamma}}(H) = \begin{cases} \frac{\eta}{\gamma}H & \text{if } H \in [\gamma, \gamma/\eta] \\ -\infty & \text{otherwise} \end{cases}$$

Capacities

Now, one can more generally consider any Hölder continuous wavelet series

$$f = \sum_{I \in \mathcal{D}} c_I \psi_I$$
 and make it lacunary $\widetilde{f} = \sum_{I \in \mathcal{D}} p_I c_I \psi_I$.

Recall that the multifractal analysis of these functions consists respectively in the multifractal analysis of the level sets of the exponents

$$h_f(x) = \liminf_{j \to \infty} \frac{\log \sup\{|c_I| : I \subset 3I_j(x)\}}{\log 2^{-j}}$$
$$h_{\widetilde{f}}(x) = \liminf_{j \to \infty} \frac{\log \sup\{p_I c_I : I \subset 3I_j(x)\}}{\log 2^{-j}}$$

This reduces back to the multifractal analysis of some non-decreasing functions of intervals, namely capacities.

Precisely, given a real sequence $(c = c_I)_{I \in \mathcal{D}}$, define, for any interval $J \subset [0, 1]$

$$\mathsf{M}(c)(J) = \sup\{|c_I| : I \in \mathcal{D}, I \subset J\}.$$

 $\text{Clearly, } J \subset K \Longrightarrow \mathsf{M}(c)(J) \leq \mathsf{M}(c)(K) \text{ and } h_f(x) = \liminf_{r \to 0^+} \frac{\log\left(\mathsf{M}(c)(B(x,r))\right)}{\log(r)}.$

Multifractal analysis of capacities on [0, 1]. Multifractal spectrum

If μ is a capacity over [0, 1], its topological support is defined as

 $\mathrm{supp}(\mu) = \{ x \in [0,1]: \ \mu(B(x,r)) > 0, \ \forall \, r > 0 \}.$

We will assume that $supp(\mu) = [0, 1]$ and define the L^q -spectrum of μ as

$$\tau_{\mu}: q \in \mathbb{R} \mapsto \liminf_{j \to \infty} \underbrace{-\frac{1}{j} \log_2 \sum_{I \in \mathcal{D}_j} \mu(I)^q}_{\tau_{\mu,j}(q)}$$

The *multifractal spectrum* of μ is then defined as

$$\sigma_{\mu}: H \mapsto \dim \underline{E}_{\mu}(H), \quad H \in \mathbb{R},$$

where

$$\underline{E}_{\mu}(H) = \left\{ x \in \operatorname{supp}(\mu) : \liminf_{j \to \infty} \frac{\log \left(\mu(3I_j(x)) \right)}{\log(|3I_j(x)|)} = H \right\}.$$

One has

$$\sigma_{\mu}(H) \leq \tau_{\mu}^{*}(H) = \inf\{Hq - \tau_{\mu}(q) : q \in \mathbb{R}\} \in \mathbb{R}_{+} \cup \{-\infty\}.$$

Multifractal analysis of capacities on [0, 1]. Multifractal spectrum

If μ is a capacity over [0, 1], its topological support is defined as

$$\operatorname{supp}(\mu) = \{ x \in [0,1] : \, \mu(B(x,r)) > 0, \, \, \forall \, r > 0 \}.$$

We will assume that $supp(\mu) = [0, 1]$ and define the L^q -spectrum of μ as

$$\tau_{\mu}: q \in \mathbb{R} \mapsto \liminf_{j \to \infty} \underbrace{-\frac{1}{j} \log_2 \sum_{I \in \mathcal{D}_j} \mu(I)^q}_{\tau_{\mu,j}(q)}$$

The *multifractal spectrum* of μ is then defined as

$$\sigma_{\mu}: H \mapsto \dim \underline{E}_{\mu}(H), \quad H \in \mathbb{R},$$

where

$$\underline{E}_{\mu}(H) = \left\{ x \in \operatorname{supp}(\mu) : \underbrace{\liminf_{r \to 0^+} \frac{\log\left(\mu(B(x,r))\right)}{\log(r)}}_{\underline{\dim}_{\operatorname{loc}}(\mu,x)} = H \right\}.$$

One has

$$\sigma_{\mu}(H) \leq \tau_{\mu}^{*}(H) = \inf\{Hq - \tau_{\mu}(q) : q \in \mathbb{R}\} \in \mathbb{R}_{+} \cup \{-\infty\}.$$

Multifractal analysis of capacities on [0, 1]. Large deviations spectra

One is also interested also in the asymptotic statistical distribution of μ via large deviations:

(1) Do we have

$$\tau_{\mu}(q) = \lim_{j \to \infty} \tau_{\mu,j} ?$$

(2) For
$$H \in \mathbb{R}$$
, $j \in \mathbb{N}$ and $\varepsilon > 0$, let

$$\mathcal{E}_{\mu}(j, H \pm \varepsilon) = \left\{ I \in \mathcal{D}_j : \frac{\log \mu(I)}{\log(|I|)} \in [H - \varepsilon, H + \varepsilon] \right\}.$$

Then, the lower and upper large deviations spectra of μ are respectively defined as

$$\begin{split} \underline{f}_{\mu}(H) &= \liminf_{\varepsilon \to 0} \liminf_{j \to +\infty} \frac{\log_2 \# \mathcal{E}_{\mu}(j, H \pm \varepsilon)}{j} \\ \text{and} \quad \overline{f}_{\mu}(H) &= \limsup_{\varepsilon \to 0} \limsup_{j \to +\infty} \frac{\log_2 \# \mathcal{E}_{\mu}(j, H \pm \varepsilon)}{j} \end{split}$$

Does the following large deviations principle hold:

$$\underline{f}_{\mu}(H) = \overline{f}_{\mu}(H) = \tau_{\mu}^* ?$$

The fundamental example of Gibbs measures and capacities

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be \mathbb{Z} -invariant Hölder continuous potential. It is standard that

$$\nu_n(\mathrm{d}x) = \frac{\exp\left(S_n\varphi(x)\right)}{\int_{[0,1]} \exp\left(S_n\varphi(t)\right)\operatorname{Leb}(\mathrm{d}t)} \operatorname{Leb}(\mathrm{d}x), \quad \text{where } S_n\varphi(x) = \sum_{k=0}^{n-1} \varphi(2^n x),$$

converges vaguely to a measure fully supported on \mathbb{R} (Ruelle). Denote by ν the restriction of this *Gibbs* measure to [0, 1].

Definition

A Gibbs capacity μ is a capacity such that $\mu \approx \nu^{\gamma}$, where $\gamma > 0$ and ν is a Gibbs measure on [0, 1] as above.

・伺 ト ・ヨト ・ヨト

The fundamental example of Gibbs measures and capacities

Let $\varphi:\mathbb{R}\to\mathbb{R}$ be $\mathbb{Z}\text{-invariant}$ Hölder continuous potential. It is standard that

$$\nu_n(\mathrm{d}x) = \frac{\exp\left(S_n\varphi(x)\right)}{\int_{[0,1]}\exp\left(S_n\varphi(t)\right)\operatorname{Leb}(\mathrm{d}t)}\operatorname{Leb}(\mathrm{d}x), \quad \text{where } S_n\varphi(x) = \sum_{k=0}^{n-1}\varphi(2^nx),$$

converges vaguely to a measure fully supported on \mathbb{R} (Ruelle). Denote by ν the restriction of this *Gibbs* measure to [0, 1].

Definition

A Gibbs capacity μ is a capacity such that $\mu \approx \nu^{\gamma}$, where $\gamma > 0$ and ν is a Gibbs measure on [0, 1] as above.

Classical results on Gibbs measures (Ruelle, Collet-Lebowitz-Porzio) give :

- $\tau_{\nu} = \lim_{j \to \infty} \tau_{\nu,j}$. Moreover, τ_{ν} is analytic, concave increasing and $\lim_{q \to +\infty} \tau_{\nu}(q) = +\infty$.
- $\sigma_{\nu} = \tau_{\nu}^*$; also dom $(\sigma_{\mu}) = [\tau'_{\mu}(\infty, \tau'_{\mu}(-\infty)] \subset (0, \infty).$
- The large deviations principle $\underline{f}_{\mu}(H)=\overline{f}_{\mu}(H)=\tau_{\mu}^{*}$ holds.

The same properties are true for any Gibbs capacity μ . Moreover, μ is multifractal, i.e. dom(σ_{μ}) is not a singleton, iff φ is not cohomologous to a constant on \mathbb{R}/\mathbb{Z} endowed with the dynamics $\times 2$, i.e. $\mu \not\cong \text{Leb}_{\mathbb{P}}^{\gamma}$.

Dilation operation on capacities

Let μ be a fully supported capacity on [0, 1]. For any $\rho \in (0, 1)$, we define the dilation operation on μ restricted to \mathcal{D} :

 $c_{\varrho}(\mu)(I) = \mu(I^{\varrho})$ (should be thought of as wavelet coefficients)

where, if $I \in \mathcal{D}_j$, I^{ϱ} is the dyadic interval of generation $\lfloor \varrho j \rfloor$ that contains I.

Then we consider the capacity

 $\mathsf{M}_{\varrho}(\mu) = \mathsf{M}(c_{\varrho}(\mu)) : J \mapsto \sup\{\mu(I^{\varrho}) : I \in \mathcal{D}, I \subset J\}.$

Observe that if M is doubling, then

 $\mathsf{M}_{\varrho}(B(x,r)) \approx \mu(B(x,r^{\varrho}));$

also

$$\begin{split} &\sigma_{\mathsf{M}_{\varrho}(\mu)}(H) = \sigma_{\mu}(H/\varrho) \text{ for all } H \in \mathbb{R} \\ &\tau_{\mathsf{M}_{\varrho}(\mu)}(q) = \varrho - 1 + \varrho \tau_{\mu}(q) \text{ for all } q \in \mathbb{R}. \end{split}$$

In particular, $\tau^*_{\mathsf{M}_{\varrho}(\mu)}(H) = \varrho \tau^*_{\mu}(H/\varrho) + 1 - \varrho$, so if μ is multifractal and $\varrho \in (0, 1)$, then the multifractal formalism fails everywhere for M_{ϱ} , except at $H = \varrho \tau_{\mu}(0)$.

イロト イヨト イヨト ニヨー シック

Combining dilation with sparse sampling (or lacunarisation) operation

Remark: In the very beginning, we considered the situation $\mu = \text{Leb}^{\gamma}$. In this case, $\mu(I^{\varrho}) \approx \text{Leb}^{\gamma \varrho}$, so we stay in the class of monofractal Gibbs capacities.

Finally, we consider, for $\varrho \in (0, 1/\eta]$,

 $\widetilde{c}_{\varrho\eta}(\mu)(I) = p_I \mu(I^{\varrho\eta})$

(should be thought of as wavelet coefficients of a lacunary series), and

 $\mathsf{M}_{\varrho,\eta} = \mathsf{M}(\widetilde{c}_{\varrho\eta}(\mu)) : J \mapsto \sup\{p_I \mu(I^{\varrho\eta}) : I \in \mathcal{D}, I \subset J\}.$

- 4 回 ト - 4 回 ト

Combining dilation with sparse sampling (or lacunarisation) operation

Remark: In the very beginning, we considered the situation $\mu = \text{Leb}^{\gamma}$. In this case, $\mu(I^{\varrho}) \approx \text{Leb}^{\gamma \varrho}$, so we stay in the class of monofractal Gibbs capacities.

Finally, we consider, for $\varrho \in (0, 1/\eta]$,

 $\widetilde{c}_{\varrho\eta}(\mu)(I) = p_I \mu(I^{\varrho\eta})$

(should be thought of as wavelet coefficients of a lacunary series), and

 $\mathsf{M}_{\varrho,\eta} = \mathsf{M}(\widetilde{c}_{\varrho\eta}(\mu)) : J \mapsto \sup\{\mathbf{p}_{I}\mu(I^{\varrho\eta}) : I \in \mathcal{D}, I \subset J\}.$

Goals: (1) Discuss the validity of the multifractal formalism and the large deviations principle for $M_{\rho,\eta}$;

(2) Express $\sigma_{M_{\varrho,\eta}}$ and $\tau_{M_{\varrho,\eta}}$ in terms of σ_{μ} and τ_{μ} respectively, and discuss the real analyticity properties of these spectra.

Expectation: That it be feasible, and the model be versatile.

・ロト ・ 一 ト ・ ヨト ・ ヨト

Combining dilation with sparse sampling (or lacunarisation) operation

Remark: In the very beginning, we considered the situation $\mu = \text{Leb}^{\gamma}$. In this case, $\mu(I^{\varrho}) \approx \text{Leb}^{\gamma \varrho}$, so we stay in the class of monofractal Gibbs capacities.

Finally, we consider, for $\varrho \in (0, 1/\eta]$,

 $\widetilde{c}_{\varrho\eta}(\mu)(I) = p_I \mu(I^{\varrho\eta})$

(should be thought of as wavelet coefficients of a lacunary series), and

 $\mathsf{M}_{\varrho,\eta} = \mathsf{M}(\widetilde{c}_{\varrho\eta}(\mu)) : J \mapsto \sup\{\mathbf{p}_{I}\mu(I^{\varrho\eta}) : I \in \mathcal{D}, I \subset J\}.$

Goals: (1) Discuss the validity of the multifractal formalism and the large deviations principle for $M_{\rho,\eta}$;

(2) Express $\sigma_{M_{\varrho,\eta}}$ and $\tau_{M_{\varrho,\eta}}$ in terms of σ_{μ} and τ_{μ} respectively, and discuss the real analyticity properties of these spectra.

Expectation: That it be feasible, and the model be versatile.

From now we take μ in the set of multifractal Gibbs capacities.

・ロト ・四ト ・ヨト ・

Fix μ a multifractal Gibbs capacity. For $\varrho \in (0, 1/\eta]$, let

```
\mathsf{M}_{\varrho,\eta} = \mathsf{M}(\widetilde{c}_{\varrho\eta}(\mu)) : J \mapsto \sup\{ p_I \mu(I^{\varrho\eta}) : \ I \in \mathcal{D}, \ I \subset J \}.
```

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for $M_{\varrho,\eta}$) Fix $\varrho \in (0, 1/\eta]$. With probability 1, (LDP) $\tau_{M_{\varrho,\eta}} = \lim_{j \to \infty} \tau_{M_{\varrho,\eta},j}$, and the LDP holds.

Fix μ a multifractal Gibbs capacity. For $\varrho \in (0, 1/\eta]$, let

```
\mathsf{M}_{\varrho,\eta} = \mathsf{M}(\widetilde{c}_{\varrho\eta}(\mu)) : J \mapsto \sup\{ p_I \mu(I^{\varrho\eta}) : \ I \in \mathcal{D}, \ I \subset J \}.
```

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for $M_{\varrho,\eta}$) Fix $\varrho \in (0, 1/\eta]$. With probability 1, (LDP) $\tau_{M_{\varrho,\eta}} = \lim_{j \to \infty} \tau_{M_{\varrho,\eta},j}$, and the LDP holds. (MF) $\sigma_{M_{\varrho,\eta}}$ is concave and dom $(\sigma_{M_{\varrho,\eta}}) = \operatorname{dom}(\tau_{M_{\varrho,\eta}}^*)$.

Fix μ a multifractal Gibbs capacity. For $\varrho \in (0, 1/\eta]$, let

```
\mathsf{M}_{\varrho,\eta} = \mathsf{M}(\widetilde{c}_{\varrho\eta}(\mu)) : J \mapsto \sup\{p_I \mu(I^{\varrho\eta}) : I \in \mathcal{D}, I \subset J\}.
```

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for M_{ℓ,η}) Fix ℓ ∈ (0, 1/η]. With probability 1, (LDP) τ_{M_{ℓ,η}} = lim_{j→∞} τ_{M_{ℓ,η},j, and the LDP holds. (MF) σ_{M_{ℓ,η}} is concave and dom(σ_{M_{ℓ,η}}) = dom(τ^{*}_{M_{ℓ,η}}). If ℓ ∈ [1, 1/η], then the MF holds for M_{ℓ,η} over dom(σ_{M_{ℓ,η}}).}

Fix μ a multifractal Gibbs capacity. For $\varrho \in (0, 1/\eta]$, let

```
\mathsf{M}_{\varrho,\eta}=\mathsf{M}(\widetilde{c}_{\varrho\eta}(\mu)):J\mapsto \sup\{p_{I}\mu(I^{\varrho\eta}):\,I\in\mathcal{D},\,I\subset J\}.
```

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for M_{ϱ,η})
Fix ϱ ∈ (0, 1/η]. With probability 1,
(LDP) τ_{M_{ϱ,η}} = lim_{j→∞} τ<sub>M_{ϱ,η}, j, and the LDP holds.
(MF) σ_{M_{ϱ,η}} is concave and dom(σ_{M_{ϱ,η}}) = dom(τ^{*}<sub>M_{ϱ,η}).
If ϱ ∈ [1, 1/η], then the MF holds for M_{ϱ,η} over dom(σ_{M_{ϱ,η}}).
If ϱ ∈ [0, 1), then dom(σ_{M_{ϱ,η}}) = [ϱητ'_μ(∞), ϱτ'_μ(-∞)], and there exists a strict compact subinterval J_{ϱ,η} of [ϱητ'_μ(∞), ϱτ'_μ(0)) such that the MF holds only at points of J_{ϱ,η} ∪ {ϱτ'_μ(0)}.
Moreover, the three possible situations can occur, i.e. J_{ϱ,η} can be either non trivial, a singleton or empty.
</sub></sub>

周 ト イ ヨ ト イ ヨ ト

Formula for $\tau_{\mathsf{M}_{\rho,\eta}}$ when $\varrho \in (0,1)$.

Theorem ($\overline{L^q}$ -spectrum of $\mathsf{M}_{\varrho,\eta}; \ \overline{\varrho \in (0,1]}$)

Fix $\varrho \in (0, 1]$. Let q_{ϱ} be the unique solution of $\varrho - 1 + \varrho \tau_{\mu}(q) = 0$. With probability 1,

$$\tau_{\mathsf{M}_{\varrho,\eta}(\mu)}(q) = \begin{cases} \varrho - 1 + \varrho \tau_{\mu}(q) & \text{if } q < q_{\varrho}, \\ \eta(\varrho - 1 + \varrho \tau_{\mu}(q)) & \text{if } q \geq q_{\varrho}. \end{cases}$$

In particular there is a first order phase transition at q_{ϱ} , and τ_{μ} is real analytic over $\mathbb{R} \setminus \{q_{\varrho}\}$.

・ 「 ト ・ ヨ ト ・ ヨ ト

3

Formulas for $\tau_{\mathsf{M}_{\varrho,\eta}}$ when $\varrho \in [1, 1/\eta]$

Theorem (L^q -spectrum of $\mathsf{M}_{\varrho,\eta}$; $\varrho \in [1, 1/\eta)$)

Fix $\rho \in [1, 1/\eta]$. Let q_{ρ} be the unique solution of $\rho - 1 + \rho \tau_{\mu}(q) = 0$. Let $\widetilde{H}_{\rho} = \min\{H \ge 0 : \sigma_{\mu}(H) \ge 1 - 1/\rho\}$ and $\widetilde{q}_{\rho} = \sigma'_{\mu}(\widetilde{H}_{\rho})$.

With probability 1,

$$\tau_{\mathsf{M}_{\varrho,\eta}(\mu)}(q) = \begin{cases} \tau_{\mu}(q) - \frac{\tau_{\mu}(q_{\varrho})}{q_{\varrho}} \cdot q & \text{if } q \leq q_{\varrho}, \\\\ \eta(\varrho - 1 + \varrho \tau_{\mu}(q)) & \text{if } q_{\varrho} < q < \tilde{q}_{\varrho}, \\\\ \eta_{\varrho} \tau_{\mu}'(\tilde{q}_{\varrho}) \cdot q & \text{if } \tilde{q}_{\varrho} < +\infty \text{ and } q \geq \tilde{q}_{\varrho}. \end{cases}$$

In particular there is a first order phase transition at q_{ϱ} , and possibly a second order phase transition at \tilde{q}_{ϱ} if this number is finite, i.e. if $\sigma_{\mu}(\tau'_{\mu}(\infty)) < 1 - 1/\varrho$. Also, τ_{μ} is real analytic over $\mathbb{R} \setminus \{q_{\varrho}, \tilde{q}_{\varrho}\}$.

向 ト イヨ ト イヨト

・ロト ・回ト ・ヨト ・ヨト

э

Formula for $\sigma_{\mathsf{M}_{\varrho,\eta}}$ when $\varrho \in [1, 1/\eta]$

Here
$$\sigma_{\mathsf{M}_{\varrho,\eta}} = \tau^*_{\mathsf{M}_{\varrho,\eta}}$$

Theorem (Multifractal spectrum of $M_{\varrho,\eta}$ for $\varrho \in [1, 1/\eta]$)

 $\begin{array}{l} Fix \ \varrho \in [1, 1/\eta]. \ Let \ q_{\varrho} \ be \ the \ unique \ solution \ of \ \varrho - 1 + \varrho \tau_{\mu}(q) = 0. \\ Let \ H_{\varrho} = \tau'_{\mu}(q_{\varrho}), \ \widetilde{H}_{\varrho} = \min\{H \ge 0 : \sigma_{\mu}(H) \ge 1 - 1/\varrho\} \ and \ \widehat{H}_{\varrho} = -\frac{\tau_{\mu}(q_{\varrho})}{q_{\varrho}}. \end{array}$

With probability 1, $M_{\rho,\eta}$ satisfies the multifractal formalism with

$$\sigma_{\mathsf{M}_{\varrho},\eta}(\mu)(H) = \begin{cases} \eta(1-\varrho+\varrho\sigma_{\mu}(H/\varrho\eta)) & \text{if } \varrho\eta \tilde{H}_{\varrho} \leq H < \varrho\eta H_{\varrho}, \\ q_{\varrho}H & \text{if } \varrho\eta H_{\varrho} \leq H < H_{\varrho} + \hat{H}_{\varrho}, \\ \sigma_{\mu}(H-\hat{H}_{\varrho}) & \text{if } H_{\varrho} + \hat{H}_{\varrho} \leq H \leq \tau'_{\mu}(\infty) + \hat{H}_{\varrho}, \\ -\infty & otherwise. \end{cases}$$

向 ト イヨ ト イヨト

3

Spectrum of $\overline{\mathsf{M}}_{1,\eta}$

Figure: Spectrum of $M_{1,\eta}$ for a given spectrum of μ , $\eta = 0.7$ here: 3 phases.

4 A I

< ∃ >

э

Formula for $\sigma_{\mathsf{M}_{\rho,n}}$ when $\rho \in (0,1)$

Here,
$$\sigma_{\mathsf{M}_{\varrho,\eta}} \neq \tau^*_{\mathsf{M}_{\varrho,\eta}}$$
.
For $H \ge 0$, set

$$D_{arrho,\eta}(H) = \max\Big\{\min\Big(rac{1-arrho+arrho\sigma_\mu(h)}{\delta},\sigma_\mu(h)\Big): \ 0\leq rac{arrho h}{\delta}\leq H, \ 1\leq\delta\leq 1/\eta\Big\}.$$

Theorem (Multifractal spectrum of $M_{\varrho,\eta}$; $\varrho \in (0,1)$)

Fix $\varrho \in (0,1)$. With probability 1,

$$\sigma_{\mathsf{M}_{\varrho,\eta}}(H) = \begin{cases} D_{\varrho,\eta}(H) & \text{if } \eta \varrho \tau'_{\mu}(\infty) \leq H \leq \varrho \tau'_{\mu}(0) \\ \sigma_{\mu}(H/\varrho) & \text{if } \varrho \tau'_{\mu}(0) \leq H \leq \varrho \tau'_{\mu}(-\infty) \\ -\infty & otherwise \end{cases}$$

・ロト ・同ト ・ヨト ・ヨト

э

Explicit formula for $D_{\varrho,\eta}$; case $\sigma_{\mu}(\tau'_{\mu}(\infty)) > \frac{1-\varrho}{1/\eta-\varrho}$

Let θ_{ρ} be the mapping defined as

$$\theta_{\varrho}: H \in [\tau'_{\mu}(\infty), \tau'_{\mu}(0)] \mapsto \frac{\varrho H \sigma_{\mu}(H)}{1 - \varrho + \varrho \sigma_{\mu}(H)}$$

Suppose that $\sigma_{\mu}(\tau'_{\mu}(\infty)) > \frac{1-\varrho}{1/\eta-\varrho}$. One has

$$D_{\mu,\varrho,\eta}(H) = \begin{cases} \eta(1-\varrho+\varrho\sigma_{\mu}(H/\varrho\eta)) & \text{if } \varrho\eta\tau'_{\mu}(\infty) \leq H < \varrho\eta H_{\varrho}, \\ \frac{\sigma_{\mu}(H_{\varrho})}{\theta_{\varrho}(H_{\varrho})}H & \text{if } \varrho\eta H_{\varrho} \leq H < \theta_{\varrho}(H_{\varrho}), \\ \sigma_{\mu}(\theta_{\varrho}^{-1}(H)) & \text{if } \theta_{\varrho}(H_{\varrho}) \leq H < \varrho\tau'_{\mu}(0), \\ \sigma_{\mu}(H/\varrho) & \text{if } \varrho\tau'_{\mu}(0) \leq H \leq \varrho\tau'_{\mu}(-\infty), \end{cases}$$
(1)

and $D_{\mu,\varrho,\eta}(H) = -\infty$ otherwise.

3

Explicit formula for $D_{\varrho,\eta}$; case $\sigma_{\mu}(\tau'_{\mu}(\infty)) > \frac{1-\varrho}{1/n-\varrho}$

Figure: Spectrum of $M_{\varrho,\eta}$ when $\varrho = 0.55$, $\eta = 0.5$, case $\sigma_{\mu}(\tau'_{\mu}(\infty)) > \frac{1-\varrho}{1/\eta-\varrho}$: 4 phases. Original spectrum in dashed blue, Legendre spectrum in dashed black.

Explicit formula for $D_{\varrho,\eta}$; case $\sigma_{\mu}(\tau'_{\mu}(\infty)) \leq \frac{1-\varrho}{1/n-\varrho}$

Suppose that $\sigma_{\mu}(\tau'_{\mu}(\infty)) \leq \frac{1-\varrho}{1/\eta-\varrho}$. Let $H_{\varrho,\eta} \in [H_{\min}, \tau'_{\mu}(0)]$ be the unique solution to

$$\sigma_{\mu}(H_{\varrho,\eta}) = \frac{1-\varrho}{1/\eta - \varrho}$$

Let $H_{\varrho} = \tau'_{\mu}(q_{\varrho})$, where $\varrho - 1 + \varrho \tau_{\mu}(q_{\varrho}) = 0$. **()** If $H_{\varrho,\eta} < H_{\varrho}$, then set

$$D_{\mu,\varrho,\eta}(H) = \begin{cases} \sigma_{\mu}(H/\varrho\eta) & \text{if } \varrho\eta\tau'_{\mu}(\infty) \leq H < \varrho\eta H_{\varrho,\eta}, \\ \eta(1-\varrho+\varrho\sigma_{\mu}(H/\varrho\eta)) & \text{if } \varrho\eta H_{\varrho,\eta} \leq H < \varrho\eta H_{\varrho}, \\ \frac{\sigma_{\mu}(H_{\varrho})}{\theta_{\varrho}(H_{\varrho})}H & \text{if } \varrho\eta H_{\varrho} \leq H < \theta_{\varrho}(H_{\varrho}), \\ \sigma_{\mu}(\theta_{\varrho}^{-1}(H)) & \text{if } \theta_{\varrho}(H_{\varrho}) \leq H < \varrho\tau'_{\mu}(0), \\ \sigma_{\mu}(H/\varrho) & \text{if } \varrho\tau'_{\mu}(0) \leq H \leq \varrho\tau'_{\mu}(-\infty), \end{cases}$$
(2)

and $D_{\mu,\varrho,\eta}(H) = -\infty$ otherwise. **Q** If $H_{\varrho,\eta} \ge H_{\varrho}$, then set

$$D_{\mu,\varrho,\eta}(H) = \begin{cases} \sigma_{\mu}(H/\varrho\eta) & \text{if } \varrho\eta\tau'_{\mu}(\infty) \le H < \varrho\eta H_{\varrho,\eta}, \\ \sigma_{\mu}(\theta_{\varrho}^{-1}(H)) & \text{if } \varrho\eta H_{\varrho,\eta} \le H < \varrho\tau'_{\mu}(0), \\ \sigma_{\mu}(H/\varrho) & \text{if } \varrho\tau'_{\mu}(0) \le H \le \varrho\tau'_{\mu}(-\infty), \end{cases}$$
(3)

and $D_{\mu,\varrho,\eta}(H) = -\infty$ otherwise.

Figure: Top: Spectrum of $M_{\varrho,\eta}$ for a given spectrum of μ when $\varrho = 0.8$, $\eta = 0.8$, case $\sigma_{\mu}(\tau'_{\mu}(\infty)) \leq \frac{1-\varrho}{1/\eta-\varrho}$ and $H_{\varrho,\eta} < H_{\varrho}$: 5 phases. Bottom: Spectrum when $\varrho = 0.7$, $\eta = 0.4$, case $\sigma_{\mu}(\tau'_{\mu}(\infty)) \leq \frac{1-\varrho}{1/\eta-\varrho}$ and $H_{\varrho,\eta} \geq H_{\varrho}$: 3 phases. Original spectrum in dashed blue, Legendre spectrum in dashed black.

Some explanations for the decreasing part of the spectrum

Recall that

$$\mathcal{S}_j = \{I \in \mathcal{D}_j : p_I = 1\}.$$

and for $x \in [0, 1]$,

$$\delta_x = \limsup_{j \to \infty} \frac{\log d(x, \{x_I : I \in S_j\})}{\log 2^{-j\eta}}$$

Proposition

With probability 1, $\forall x \in [0,1]$, if $\delta_x = 1$, then $\underline{\dim}_{\mathrm{loc}}(\mathsf{M}_{\varrho,\eta}, x) = \varrho \underline{\dim}_{\mathrm{loc}}(\mu, x)$.

In particular, if $H = \rho \tau'_{\mu}(q)$ for some $q \in \mathbb{R}$, then $\sigma_{\mathsf{M}_{\varrho,\eta}}(H) \geq \sigma_{\mu}(H/\varrho)$, since the unique ergodic Gibbs measure ν_q of maximal dimension supported on $E_{\mu}(\tau'_{\mu}(q))$ is such that $\nu_q(\{x : \delta_x = 1\}) = 1$.

Proposition

With probability 1, for all $H \in \mathbb{R}$, $\underline{\dim}_{\mathrm{loc}}(\mathsf{M}_{\varrho,\eta}, x)) = H$ implies that $\overline{\dim}_{\mathrm{loc}}(\mu, x)) \geq H/\varrho$.

This implies that $\sigma_{\mathsf{M}_{\varrho,\eta}}(H) \leq \sigma_{\mu}(H/\varrho)$ if $H \geq \varrho \tau'_{\mu}(0)$. Consequently, $\sigma_{\mathsf{M}_{\varrho,\eta}}(H) = \sigma_{\mu}(H/\varrho)$ for all $H = \varrho \tau'_{\mu}(q), q \leq 0$.

Some explanations for the increasing part of the spectrum

Definition (Conditioned ubiquity)

Let $h \ge 0, \ \delta \ge 1, \ \epsilon > 0$, and $\widetilde{\xi} := (\xi_j)_{j \ge 1}$ a non-decreasing positive sequence. Set

$$\mathcal{A}_{\varrho,h,\widetilde{\xi},\delta} = \bigcap_{J \geq 1} \bigcup_{j \geq J} \bigcup_{I \in \mathcal{S}_j : \, |I \varrho \eta|^{h + \xi_j} \leq \mu(I \varrho \eta) \leq |I \varrho \eta|^{h - \xi_j}} B\Big(x_I, (2^{-j(\eta - \varepsilon_j)})^\delta\Big).$$

Some explanations for the increasing part of the spectrum

Definition (Conditioned ubiquity)

Let $h \ge 0, \ \delta \ge 1, \ \epsilon > 0$, and $\widetilde{\xi} := (\xi_j)_{j \ge 1}$ a non-decreasing positive sequence. Set

$$\mathcal{A}_{\varrho,h,\widetilde{\xi},\delta} = \bigcap_{J \ge 1} \bigcup_{j \ge J} \bigcup_{I \in \mathcal{S}_j: \, |I^{\varrho\eta}|^{h+\xi_j} \le \mu(I^{\varrho\eta}) \le |I^{\varrho\eta}|^{h-\xi_j}} B\Big(x_I, (2^{-j(\eta-\varepsilon_j)})^\delta\Big).$$

Theorem

There exists a sequence $\tilde{\xi}$ decreasing to zero such that for all h > 0 such that $\tau^*_{\mu}(h) > 0$ and all $\delta \ge 1$, there exists a Borel probability measure $\nu_{\varrho,h,\delta}$ such that $\nu_{\varrho,h,\delta}(\mathcal{A}_{\varrho,h,\tilde{\xi},\delta}) = 1$ and

$$\underline{\dim}(\nu_{\varrho,h,\delta}) \ge \min\left(\frac{1-\varrho+\varrho\sigma_{\mu}(h)}{\delta}, \sigma_{\mu}(h)\right).$$

Also, dim $\mathcal{A}_{\varrho,h,\tilde{\xi},\delta} = \min\left(\frac{1-\varrho+\varrho\sigma_{\mu}(h)}{\delta}, \sigma_{\mu}(h)\right).$

Some explanations for the increasing part of the spectrum

Recall that

$$D_{\varrho,\eta}(H) = \max\Big\{\min\Big(\frac{1-\varrho+\varrho\sigma_{\mu}(h)}{\delta}, \sigma_{\mu}(h)\Big): \ 0 \leq \frac{\varrho h}{\delta} \leq H, \ 1 \leq \delta \leq 1/\eta\Big\}.$$

For each $H \in [0, \varrho \tau'_{\mu}(0))$ such that $D_{\varrho,\eta}(H) > 0$, in fact $D_{\varrho,\eta}(H)$ is uniquely attained at some (h, δ) such that $\delta \in [1, 1/\eta], \varrho h/\delta = H$. Also,

$$\begin{aligned} (1) \ \mathcal{A}_{\varrho,h,\tilde{\xi},\delta} &\subset \underline{E}_{\mathsf{M}_{\varrho,\eta}}^{\leq}(H) := \{ x : \underline{\dim}_{\mathrm{loc}}(\mathsf{M}_{\varrho,\eta}, x) \leq H \}. \\ (2) \\ & \underline{E}_{\mathsf{M}_{\varrho,\eta}}^{\leq}(H) \subset \bigcap_{\varepsilon > 0} \ \bigcup_{h \geq 0, \ \delta \in [1,1/\eta], \ \frac{\varrho h}{\delta} \leq H + \varepsilon} \mathcal{A}_{\varrho,h,(\varepsilon)_{j \geq 1},\delta}, \end{aligned}$$

which implies that

$$\sigma_{\mathsf{M}_{\varrho,\eta}}(H) \leq \dim \underline{E}^{\leq}_{\mathsf{M}_{\varrho,\eta}}(H) \leq D_{\varrho,\eta}(H).$$

Since for all $k \ge 1$ one has $\dim \underline{E}_{M_{\varrho,\eta}}^{\le}(H-1/k) \le D_{\varrho,\eta}(H-1/k) < D_{\varrho,\eta}(H)$, we get

$$\nu_{\varrho,h,\delta}(\mathcal{A}_{\varrho,h,\widetilde{\xi},\delta} \cap \underline{E}_{\mathsf{M}_{\varrho,\eta}}(H)) = 1.$$

A B > A B >