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Foreword: A model of multifractal lacunary wavelet series

Denote by D the set of dyadic subintervals of [0, 1], and for all j ≥ 0, D the set of
dyadic subintervals of [0, 1] of generation j

Consider a Meyer wavelet ψ so that the family (ψI)ID is orthogonal, with

ψI(x) = ψ(2jx− k) if I = [k2−j , (k + 1)2−j ].

Consider γ > 0 and a simple model of γ-Hölder monofractal function over [0, 1] :

∑
I∈D

|I|γψI =
∑
j≥0

2j−1∑
k=0

2−jγψ(2j · −k).

Then, S. Jaffard (2000) essentially considers the following model of sparse wavelet
series: introduce a lacunarity parameter η ∈ (0, 1), (pI)I∈D a sequence of
independent Bernoulli variables, such that pI ∼ B(2−(1−η)j) if I ∈ Dj , and
consider ∑

I∈D
pI |I|γψI , where #{I ∈ Dj : pI = 1} ≈ 2jη .

This new series is multifractal.
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Foreword: A model of multifractal lacunary wavelet series

Recall that if f : [0, 1] 7→ R is bounded, for all x0 ∈ [0, 1], the pointwise Hölder
exponent of f is defined as

hf (x0) = sup{h ≥ 0 : ∃P ∈ R[X], deg(P ) ≤ ⌊h⌋, f(x)−P (x−x0) = O(|x−x0|h)}

Then, the multifractal spectrum of f is defined as

σf : H ∈ R ∪ {∞} 7→ dim{x ∈ [0, 1] : hf (x) = H}.

For fγ =
∑

I∈D |I|γψI and f̃γ =
∑

I∈D pI |I|γψI , one has

σfγ
(H)

H
γ0

1

σ
f̃γ

(H)

H
γ γ/η0

1

η
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Explanation. Properties of the intervals which survive.

For j ≥ 0 and I = [k2−j , (k + 1)2−j ] ∈ Dj , let xI = k2−j .

Let
Sj = {I ∈ Dj : pI = 1}.

Proposition

There exists a decreasing sequence (εj)j≥0 converging to 0 such that, with
probability 1, for j large enough,

∀ J ∈ D⌊j(η−εj)⌋, #1 ≤ {I ∈ Sj : I ⊂ J} ≤ 2jεj .

Definition

For x ∈ [0, 1], the rate of approximation of x by {(xI , rI = 2−j(η−εj))}j≥0, I∈Sj

δx = lim sup
j→∞

log d(x, {xI : I ∈ Sj})
log 2−jη

.

Note that δx ≥ 1 for all x ∈ [0, 1].
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Explanation. Wavelet characterization of the pointwise exponent, and
ubiquity properties.

(1) Due to Jaffard, if f =
∑

I∈D cIψI is Hölder continuous, then

hf (x) = lim inf
j→∞

log sup{|cI | : I ⊂ 3Ij(x)}
log 2−j

.

One can then check that

∀x ∈ [0, 1], h
f̃γ

(x) = lim inf
j→∞

log sup{pI |I|γ : I ⊂ 3Ij(x)}
log 2−j

=
γ

min(η−1, δx)
.

(2) One deduces from the proposition that

Leb
( ⋂

k≥0

⋃
j≥k

⋃
I∈Sj

B
(
xI , 2

−j(η−εj)
))

= 1,

and
∀ δ ≥ 1, dim{x ∈ [0, 1] : δx ≥ δ} ≤ 1/δ.

Then, by the mass transference principle (Jaffard (’00), Beresnevich-Velani (’08))

∀ δ ≥ 1, dim{x ∈ [0, 1] : δx = δ} = dim{x ∈ [0, 1] : δx ≥ δ} =
1

δ
,

hence σ
f̃γ

(H) =

{
η
γ
H if H ∈ [γ, γ/η]

−∞ otherwise
.
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Capacities

Now, one can more generally consider any Hölder continuous wavelet series

f =
∑
I∈D

cIψI and make it lacunary f̃ =
∑
I∈D

pI cIψI .

Recall that the multifractal analysis of these functions consists respectively in the
multifractal analysis of the level sets of the exponents

hf (x) = lim inf
j→∞

log sup{|cI | : I ⊂ 3Ij(x)}
log 2−j

h
f̃
(x) = lim inf

j→∞

log sup{pIcI : I ⊂ 3Ij(x)}
log 2−j

.

This reduces back to the multifractal analysis of some non-decreasing functions of
intervals, namely capacities.

Precisely, given a real sequence (c = cI)I∈D, define, for any interval J ⊂ [0, 1]

M(c)(J) = sup{|cI | : I ∈ D, I ⊂ J}.

Clearly, J ⊂ K =⇒ M(c)(J) ≤ M(c)(K) and hf (x) = lim inf
r→0+

log
(
M(c)(B(x, r))

)
log(r)

.
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Multifractal analysis of capacities on [0, 1]. Multifractal spectrum

If µ is a capacity over [0, 1], its topological support is defined as

supp(µ) = {x ∈ [0, 1] : µ(B(x, r)) > 0, ∀ r > 0}.

We will assume that supp(µ) = [0, 1] and define the Lq-spectrum of µ as

τµ : q ∈ R 7→ lim inf
j→∞

−
1

j
log2

∑
I∈Dj

µ(I)q

︸ ︷︷ ︸
τµ,j(q)

The multifractal spectrum of µ is then defined as

σµ : H 7→ dimEµ(H), H ∈ R,

where

Eµ(H) =

{
x ∈ supp(µ) : lim inf

j→∞

log
(
µ(3Ij(x))

)
log(|3Ij(x)|)

= H

}
.

One has

σµ(H) ≤ τ∗µ(H) = inf{Hq − τµ(q) : q ∈ R} ∈ R+ ∪ {−∞}.
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σµ : H 7→ dimEµ(H), H ∈ R,

where

Eµ(H) =

x ∈ supp(µ) : lim inf
r→0+

log
(
µ(B(x, r))

)
log(r)︸ ︷︷ ︸

dimloc(µ,x)

= H

 .
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Multifractal analysis of capacities on [0, 1]. Large deviations spectra

One is also interested also in the asymptotic statistical distribution of µ via large
deviations:

(1) Do we have

τµ(q) = lim
j→∞

τµ,j ?

(2) For H ∈ R, j ∈ N and ε > 0, let

Eµ(j,H ± ε) =

{
I ∈ Dj :

log µ(I)

log(|I|)
∈ [H − ε,H + ε]

}
.

Then, the lower and upper large deviations spectra of µ are respectively defined
as

f
µ
(H) = lim

ε→0
lim inf
j→+∞

log2 #Eµ(j,H ± ε)

j

and fµ(H) = lim
ε→0

lim sup
j→+∞

log2 #Eµ(j,H ± ε)

j
.

Does the following large deviations principle hold:

f
µ
(H) = fµ(H) = τ∗µ ?
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The fundamental example of Gibbs measures and capacities

Let φ : R → R be Z-invariant Hölder continuous potential. It is standard that

νn(dx) =
exp (Snφ(x))∫

[0,1] exp (Snφ(t)) Leb(dt)
Leb(dx), where Snφ(x) =

n−1∑
k=0

φ(2nx),

converges vaguely to a measure fully supported on R (Ruelle). Denote by ν the
restriction of this Gibbs measure to [0, 1].

Definition

A Gibbs capacity µ is a capacity such that µ ≈ νγ , where γ > 0 and ν is a Gibbs
measure on [0, 1] as above.

Classical results on Gibbs measures (Ruelle,Collet-Lebowitz-Porzio) give :

τν = limj→∞ τν,j . Moreover, τν is analytic, concave increasing and
limq→+∞ τν(q) = +∞.

σν = τ∗ν ; also dom(σµ) = [τ ′µ(∞, τ ′µ(−∞)] ⊂ (0,∞).

The large deviations principle f
µ
(H) = fµ(H) = τ∗µ holds.

The same properties are true for any Gibbs capacity µ.
Moreover, µ is multifractal, i.e. dom(σµ) is not a singleton, iff φ is not
cohomologous to a constant on R/Z endowed with the dynamics ×2, i.e. µ ̸≈ Lebγ .
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Dilation operation on capacities

Let µ be a fully supported capacity on [0, 1]. For any ϱ ∈ (0, 1), we define the
dilation operation on µ restricted to D:

cϱ(µ)(I) = µ(Iϱ) (should be thought of as wavelet coefficients)

where, if I ∈ Dj , I
ϱ is the dyadic interval of generation ⌊ϱj⌋ that contains I.

Then we consider the capacity

Mϱ(µ) = M(cϱ(µ)) : J 7→ sup{µ(Iϱ) : I ∈ D, I ⊂ J}.

Observe that if M is doubling, then

Mϱ(B(x, r)) ≈ µ(B(x, rϱ));

also

σMϱ(µ)(H) = σµ(H/ϱ) for all H ∈ R

τMϱ(µ)(q) = ϱ− 1 + ϱτµ(q) for all q ∈ R.

In particular, τ∗
Mϱ(µ)

(H) = ϱτ∗µ(H/ϱ) + 1− ϱ, so if µ is multifractal and ϱ ∈ (0, 1),

then the multifractal formalism fails everywhere for Mϱ, except at H = ϱτµ(0).
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Combining dilation with sparse sampling (or lacunarisation) operation

Remark: In the very beginning, we considered the situation µ = Lebγ . In this
case, µ(Iϱ) ≈ Lebγϱ, so we stay in the class of monofractal Gibbs capacities.

Finally, we consider, for ϱ ∈ (0, 1/η],

c̃ϱη(µ)(I) = pIµ(I
ϱη)

(should be thought of as wavelet coefficients of a lacunary series), and

Mϱ,η = M(c̃ϱη(µ)) : J 7→ sup{pIµ(Iϱη) : I ∈ D, I ⊂ J}.

Goals: (1) Discuss the validity of the multifractal formalism and the large
deviations principle for Mϱ,η ;
(2) Express σMϱ,η and τMϱ,η in terms of σµ and τµ respectively, and discuss the
real analyticity properties of these spectra.

Expectation: That it be feasible, and the model be versatile.

From now we take µ in the set of multifractal Gibbs capacities.
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Validity of the LDP and MF for Mϱ,η

Fix µ a multifractal Gibbs capacity. For ϱ ∈ (0, 1/η], let

Mϱ,η = M(c̃ϱη(µ)) : J 7→ sup{pIµ(Iϱη) : I ∈ D, I ⊂ J}.

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for Mϱ,η)

Fix ϱ ∈ (0, 1/η]. With probability 1,

1 (LDP) τMϱ,η = limj→∞ τMϱ,η,j , and the LDP holds.

2 (MF) σMϱ,η is concave and dom(σMϱ,η ) = dom(τ∗Mϱ,η
).

If ϱ ∈ [1, 1/η], then the MF holds for Mϱ,η over dom(σMϱ,η ).

If ϱ ∈ [0, 1), then dom(σMϱ,η ) = [ϱητ ′
µ(∞), ϱτ ′

µ(−∞)], and there exists a

strict compact subinterval Jϱ,η of [ϱητ ′
µ(∞), ϱτ ′

µ(0)) such that the MF holds

only at points of Jϱ,η ∪ {ϱτ ′
µ(0)}.

Moreover, the three possible situations can occur, i.e. Jϱ,η can be either
non trivial, a singleton or empty.
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Mϱ,η = M(c̃ϱη(µ)) : J 7→ sup{pIµ(Iϱη) : I ∈ D, I ⊂ J}.

Let us start with a qualitative rather than very explicit result.

Theorem (LDP and MF for Mϱ,η)

Fix ϱ ∈ (0, 1/η]. With probability 1,

1 (LDP) τMϱ,η = limj→∞ τMϱ,η,j , and the LDP holds.

2 (MF) σMϱ,η is concave and dom(σMϱ,η ) = dom(τ∗Mϱ,η
).

If ϱ ∈ [1, 1/η], then the MF holds for Mϱ,η over dom(σMϱ,η ).

If ϱ ∈ [0, 1), then dom(σMϱ,η ) = [ϱητ ′
µ(∞), ϱτ ′

µ(−∞)], and there exists a

strict compact subinterval Jϱ,η of [ϱητ ′
µ(∞), ϱτ ′

µ(0)) such that the MF holds

only at points of Jϱ,η ∪ {ϱτ ′
µ(0)}.

Moreover, the three possible situations can occur, i.e. Jϱ,η can be either
non trivial, a singleton or empty.
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Formula for τMϱ,η when ϱ ∈ (0, 1).

Theorem (Lq-spectrum of Mϱ,η ; ϱ ∈ (0, 1])

Fix ϱ ∈ (0, 1]. Let qϱ be the unique solution of ϱ− 1 + ϱτµ(q) = 0. With
probability 1,

τMϱ,η(µ)(q) =

{
ϱ− 1 + ϱτµ(q) if q < qϱ,

η(ϱ− 1 + ϱτµ(q)) if q ≥ qϱ.

In particular there is a first order phase transition at qϱ, and τµ is real analytic
over R \ {qϱ}.
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Formulas for τMϱ,η when ϱ ∈ [1, 1/η]

Theorem (Lq-spectrum of Mϱ,η ; ϱ ∈ [1, 1/η))

Fix ϱ ∈ [1, 1/η]. Let qϱ be the unique solution of ϱ− 1 + ϱτµ(q) = 0.

Let H̃ϱ = min{H ≥ 0 : σµ(H) ≥ 1− 1/ϱ} and q̃ϱ = σ′
µ(H̃ϱ).

With probability 1,

τMϱ,η(µ)(q) =



τµ(q)−
τµ(qϱ)

qϱ
· q if q ≤ qϱ,

η(ϱ− 1 + ϱτµ(q)) if qϱ < q < q̃ϱ,

ηϱτ ′µ(q̃ϱ) · q if q̃ϱ < +∞ and q ≥ q̃ϱ.

In particular there is a first order phase transition at qϱ, and possibly a second
order phase transition at q̃ϱ if this number is finite, i.e. if σµ(τ ′µ(∞)) < 1− 1/ϱ.

Also, τµ is real analytic over R \ {qϱ, q̃ϱ}.
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τµ(q)

q

qϱ q̃ϱ

0

−1

τMϱ,η (q)

q

qϱ q̃ϱ

Phase
transitions

0

−1
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Formula for σMϱ,η when ϱ ∈ [1, 1/η]

Here σMϱ,η = τ∗Mϱ,η
.

Theorem (Multifractal spectrum of Mϱ,η for ϱ ∈ [1, 1/η])

Fix ϱ ∈ [1, 1/η]. Let qϱ be the unique solution of ϱ− 1 + ϱτµ(q) = 0.

Let Hϱ = τ ′µ(qϱ), H̃ϱ = min{H ≥ 0 : σµ(H) ≥ 1− 1/ϱ} and Ĥϱ = − τµ(qϱ)

qϱ
.

With probability 1, Mϱ,η satisfies the multifractal formalism with

σMϱ,η(µ)(H) =


η(1− ϱ+ ϱσµ(H/ϱη)) if ϱηH̃ϱ ≤ H < ϱηHϱ,

qϱH if ϱηHϱ ≤ H < Hϱ + Ĥϱ,

σµ
(
H − Ĥϱ

)
if Hϱ + Ĥϱ ≤ H ≤ τ ′µ(∞) + Ĥϱ,

−∞ otherwise.
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Spectrum of M1,η

Figure: Spectrum of M1,η for a given spectrum of µ, η = 0.7 here: 3 phases.
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Formula for σMϱ,η when ϱ ∈ (0, 1)

Here, σMϱ,η ̸= τ∗Mϱ,η
.

For H ≥ 0, set

Dϱ,η(H) = max
{
min

(1− ϱ+ ϱσµ(h)

δ
, σµ(h)

)
: 0 ≤

ϱh

δ
≤ H, 1 ≤ δ ≤ 1/η

}
.

Theorem (Multifractal spectrum of Mϱ,η ; ϱ ∈ (0, 1))

Fix ϱ ∈ (0, 1). With probability 1,

σMϱ,η (H) =


Dϱ,η(H) if ηϱτ ′µ(∞) ≤ H ≤ ϱτ ′µ(0)

σµ(H/ϱ) if ϱτ ′µ(0) ≤ H ≤ ϱτ ′µ(−∞)

−∞ otherwise
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Explicit formula for Dϱ,η; case σµ(τ
′
µ(∞)) > 1−ϱ

1/η−ϱ

Let θϱ be the mapping defined as

θϱ : H ∈ [τ ′µ(∞), τ ′µ(0)] 7→
ϱHσµ(H)

1− ϱ+ ϱσµ(H)
.

Suppose that σµ(τ ′µ(∞)) > 1−ϱ
1/η−ϱ

. One has

Dµ,ϱ,η(H) =



η(1− ϱ+ ϱσµ(H/ϱη)) if ϱητ ′µ(∞) ≤ H < ϱηHϱ,
σµ(Hϱ)

θϱ(Hϱ)
H if ϱηHϱ ≤ H < θϱ(Hϱ),

σµ(θ
−1
ϱ (H)) if θϱ(Hϱ) ≤ H < ϱτ ′µ(0),

σµ(H/ϱ) if ϱτ ′µ(0) ≤ H ≤ ϱτ ′µ(−∞),

(1)

and Dµ,ϱ,η(H) = −∞ otherwise.
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Explicit formula for Dϱ,η; case σµ(τ
′
µ(∞)) > 1−ϱ

1/η−ϱ

Figure: Spectrum of Mϱ,η when ϱ = 0.55, η = 0.5, case σµ(τ
′
µ(∞)) > 1−ϱ

1/η−ϱ
: 4 phases.

Original spectrum in dashed blue, Legendre spectrum in dashed black.
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Explicit formula for Dϱ,η; case σµ(τ
′
µ(∞)) ≤ 1−ϱ

1/η−ϱ

Suppose that σµ(τ ′µ(∞)) ≤ 1−ϱ
1/η−ϱ

. Let Hϱ,η ∈ [Hmin, τ
′
µ(0)] be the unique

solution to

σµ(Hϱ,η) =
1− ϱ

1/η − ϱ
.

Let Hϱ = τ ′µ(qϱ), where ϱ− 1 + ϱτµ(qϱ) = 0.
1 If Hϱ,η < Hϱ, then set

Dµ,ϱ,η(H) =



σµ(H/ϱη) if ϱητ ′µ(∞) ≤ H < ϱηHϱ,η ,

η(1− ϱ+ ϱσµ(H/ϱη)) if ϱηHϱ,η ≤ H < ϱηHϱ,
σµ(Hϱ)

θϱ(Hϱ)
H if ϱηHϱ ≤ H < θϱ(Hϱ),

σµ(θ
−1
ϱ (H)) if θϱ(Hϱ) ≤ H < ϱτ ′µ(0),

σµ(H/ϱ) if ϱτ ′µ(0) ≤ H ≤ ϱτ ′µ(−∞),

(2)

and Dµ,ϱ,η(H) = −∞ otherwise.
2 If Hϱ,η ≥ Hϱ, then set

Dµ,ϱ,η(H) =


σµ(H/ϱη) if ϱητ ′µ(∞) ≤ H < ϱηHϱ,η ,

σµ(θ
−1
ϱ (H)) if ϱηHϱ,η ≤ H < ϱτ ′µ(0),

σµ(H/ϱ) if ϱτ ′µ(0) ≤ H ≤ ϱτ ′µ(−∞),

(3)

and Dµ,ϱ,η(H) = −∞ otherwise.
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Figure: Top: Spectrum of Mϱ,η for a given spectrum of µ when ϱ = 0.8, η = 0.8, case

σµ(τ
′
µ(∞)) ≤ 1−ϱ

1/η−ϱ
and Hϱ,η < Hϱ: 5 phases. Bottom: Spectrum when ϱ = 0.7,

η = 0.4, case σµ(τ
′
µ(∞)) ≤ 1−ϱ

1/η−ϱ
and Hϱ,η ≥ Hϱ: 3 phases. Original spectrum in

dashed blue, Legendre spectrum in dashed black.

J. Barral Sparse sampling, dilation, Gibbs capacities, multifractal formalism



Foreword Multifractal formalism for capacities Sparse sampling and dilation operations Results

Some explanations for the decreasing part of the spectrum

Recall that
Sj = {I ∈ Dj : pI = 1}.

and for x ∈ [0, 1],

δx = lim sup
j→∞

log d(x, {xI : I ∈ Sj})
log 2−jη

.

Proposition

With probability 1, ∀x ∈ [0, 1], if δx = 1, then dimloc(Mϱ,η , x) = ϱ dimloc(µ, x).

In particular, if H = ϱτ ′µ(q) for some q ∈ R, then σMϱ,η (H) ≥ σµ(H/ϱ), since the

unique ergodic Gibbs measure νq of maximal dimension supported on Eµ(τ ′µ(q)) is
such that νq({x : δx = 1}) = 1.

Proposition

With probability 1, for all H ∈ R, dimloc(Mϱ,η , x)) = H implies that

dimloc(µ, x)) ≥ H/ϱ.

This implies that σMϱ,η (H) ≤ σµ(H/ϱ) if H ≥ ϱτ ′µ(0).

Consequently, σMϱ,η (H) = σµ(H/ϱ) for all H = ϱτ ′µ(q), q ≤ 0.
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Some explanations for the increasing part of the spectrum

Definition (Conditioned ubiquity)

Let h ≥ 0, δ ≥ 1, ϵ > 0, and ξ̃ := (ξj)j≥1 a non-decreasing positive sequence.
Set

A
ϱ,h,ξ̃,δ

=
⋂
J≥1

⋃
j≥J

⋃
I∈Sj : |Iϱη|h+ξj≤µ(Iϱη)≤|Iϱη|h−ξj

B
(
xI , (2

−j(η−εj))δ
)
.

Theorem

There exists a sequence ξ̃ decreasing to zero such that for all h > 0 such that
τ∗µ(h) > 0 and all δ ≥ 1, there exists a Borel probability measure νϱ,h,δ such that
νϱ,h,δ(Aϱ,h,ξ̃,δ

) = 1 and

dim(νϱ,h,δ) ≥ min
(1− ϱ+ ϱσµ(h)

δ
, σµ(h)

)
.

Also, dimA
ϱ,h,ξ̃,δ

= min
(

1−ϱ+ϱσµ(h)

δ
, σµ(h)

)
.
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Some explanations for the increasing part of the spectrum

Definition (Conditioned ubiquity)

Let h ≥ 0, δ ≥ 1, ϵ > 0, and ξ̃ := (ξj)j≥1 a non-decreasing positive sequence.
Set

A
ϱ,h,ξ̃,δ

=
⋂
J≥1

⋃
j≥J

⋃
I∈Sj : |Iϱη|h+ξj≤µ(Iϱη)≤|Iϱη|h−ξj

B
(
xI , (2

−j(η−εj))δ
)
.

Theorem

There exists a sequence ξ̃ decreasing to zero such that for all h > 0 such that
τ∗µ(h) > 0 and all δ ≥ 1, there exists a Borel probability measure νϱ,h,δ such that
νϱ,h,δ(Aϱ,h,ξ̃,δ

) = 1 and

dim(νϱ,h,δ) ≥ min
(1− ϱ+ ϱσµ(h)

δ
, σµ(h)

)
.

Also, dimA
ϱ,h,ξ̃,δ

= min
(

1−ϱ+ϱσµ(h)

δ
, σµ(h)

)
.
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Some explanations for the increasing part of the spectrum

Recall that

Dϱ,η(H) = max
{
min

(1− ϱ+ ϱσµ(h)

δ
, σµ(h)

)
: 0 ≤

ϱh

δ
≤ H, 1 ≤ δ ≤ 1/η

}
.

For each H ∈ [0, ϱτ ′µ(0)) such that Dϱ,η(H) > 0, in fact Dϱ,η(H) is uniquely
attained at some (h, δ) such that δ ∈ [1, 1/η], ϱh/δ = H. Also,

(1) A
ϱ,h,ξ̃,δ

⊂ E≤
Mϱ,η

(H) := {x : dimloc(Mϱ,η , x) ≤ H}.
(2)

E≤
Mϱ,η

(H) ⊂
⋂
ε>0

⋃
h≥0, δ∈[1,1/η], ϱh

δ
≤H+ε

Aϱ,h,(ε)j≥1,δ
,

which implies that

σMϱ,η (H) ≤ dimE≤
Mϱ,η

(H) ≤ Dϱ,η(H).

Since for all k ≥ 1 one has dimE≤
Mϱ,η

(H − 1/k) ≤ Dϱ,η(H − 1/k) < Dϱ,η(H), we

get
νϱ,h,δ(Aϱ,h,ξ̃,δ

∩ EMϱ,η
(H)) = 1.
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