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Classical Stern–Brocot sequence as tree
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▶ Calculate: a
b ⊕ c

d = a+c
b+d

▶ S1 =
{ 1

2

}
, S2 =

{ 1
3 ,

2
3

}
, . . .

▶ Slow continued fraction algorithm
(Richards 1981)

▶ All rational numbers
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Distribution properties
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Points The Stern–Brocot sequence is not uniformly distributed
(Keßeböhmer and Stratmann 2008) .

Sets The Lebesgue-measure m of the sequence of intervals
vanishes as log(2)

log(n)
(Keßeböhmer and Stratmann 2012) .
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The map describing the dynamics
▶ Recall: PSL(2,ℝ) acts on ℝ∪ {∞} via Möbius transformation.

1/2 1

1 The Farey map

F (x) ≔

[

1 0
−1 1

]
.x , x ∈

[
0, 1

2

]
,[ −1 1

1 0

]
.x , x ∈

[ 1
2 , 1

]
,

satisfies F −(n−1)
({ 1

2

})
= Sn .

▶ Keßeböhmer and Stratmann (2012): For [𝛼, 𝛽] ⊂ (0, 1],

m(F −n ( [𝛼, 𝛽])) ∼
log

(
𝛽

𝛼

)
log(n) .

▶ Further dynamical results, including the distribution of the Stern–Brocot
sequence
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Motivation

▶ In Keßeböhmer and Stratmann (2012): PSL(2,ℤ)-action.

▶ Does arithmeticity of PSL(2,ℤ) determine the behavior of F?

i

_q
2−_q

2

▶ Idea: Consider groups with similar
geometric structure, but not arithmetic

▶ Based on these groups we define
generalized Farey maps Tq .

Laura Breitkopf Distribution of Stern–Brocot sequences 15.05.2023 5 / 19



Main result: Dynamics of generalized Farey maps
▶ m Lebesgue-measure on [0, 1]
▶ Tq generalized Farey map

Theorem (B.–Keßeböhmer–Pohl)
Let q ≥ 3 be odd. For every [𝛼, 𝛽] ⊂ (0, 1] we have

∗- lim
n→∞

(
log(n)

log
(
𝛽

𝛼

) · m|T −n
q ( [𝛼,𝛽 ] )

)
= m .

Particularly, m(T −n
q ( [𝛼, 𝛽])) ∼

log
(
𝛽

𝛼

)
log(n) for n → ∞.

q = 5: 0 1
_+1

1
_

_
2

1

0 1

0 1
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How to generalize the Farey map?
Definition
Let q ∈ ℕ, q ≥ 3 and _q ≔ 2 cos

(
𝜋
q

)
. The Hecke triangle group Γq is generated

by

S ≔

[
0 1
−1 0

]
and U ≔

[
1 _q
0 1

]
.

i

_q
2−_q

2
A fundamental domain for Γq

▶ Discrete subgroup of PSL(2,ℝ)

▶ Γ3 = PSL(2,ℤ)
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Geometric motivation
▶ Discretization of geodesic flow on hyperbolic surface by Pohl (2016); yields

gk ≔ ((US)k S)−1

where S ≔
[

0 1
−1 0

]
, U ≔

[
1 _q
0 1

]
.

iℝ+ g−1
1 .(iℝ+)

g−1
4 .(iℝ+)

g−1
3 .(iℝ+)

g−1
2 .(iℝ+)

0 1
_

1 _

Tessellation for q = 5
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Geometric motivation
▶ The generalized Farey map should be a transformation on [0, 1] .

▶ Symmetry given by Q.z = 1/z

iℝ+ g−1
1 .(iℝ+)

g−1
4 .(iℝ+)

g−1
3 .(iℝ+)

g−1
2 .(iℝ+)

0 1
_

1 _

Q

Q

Tessellation for q = 5
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Farey map generalized to Hecke triangle groups

1/2 1

1

q = 3

1/(λ+ 1) 1/λ λ/2 1

1

q = 5

With Q =
[

0 1
1 0

]
,

F (x) =


g2.x , x ∈
[
0, 1

2

]
,

Qg2.x , x ∈
[ 1

2 , 1
]
.

For odd q ≥ 3,

Tq (x) ≔



gq−1.x x ∈ g−1
q−1.[0, 1],

Qgq−1.x x ∈ g−1
q−1Q.[0, 1],

...

g q+1
2
.x x ∈ g−1

q+1
2

.[0, 1],

Qg q+1
2
.x x ∈ g−1

q+1
2

Q.[0, 1] .

We have F = T3.
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Generalized Stern–Brocot sequence

▶ Classical Stern–Brocot sequence:

Sn = F −(n−1)
({ 1

2

})
▶ Note:

{ 1
2

}
= F −1 ({0, 1}) \ {0, 1}

▶ Use the generalized Farey map Tq .

Definition
The generalized Stern–Brocot sequence (Sn)n∈ℕ for odd q ≥ 3: S−1 ≔ ∅,

Sn ≔ T −n
q ({0, 1}) \ Sn−1
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A property of the Stern–Brocot elements

Proposition (B.)
The union of all Stern–Brocot elements is Γq .∞∩ [0, 1].

▶ Matrix coefficients of Γq are elements of ℤ[_q] and[
a b
c d

]
.∞ =

a
c
.

q=3: We have Γ3.∞ \ {∞} = ℚ.

q=5: We have Γ5.∞ \ {∞} = ℚ(
√

5) (Leutbecher 1967).

▶ _5 = 1
2

(
1 +

√
5
)
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Result: Distribution of Stern–Brocot sequences

▶ Let Wn be the words of length n to the alphabet of inverse branches of Tq ,{
g−1

k , g−1
k Q : k =

q+1
2 , . . . , q − 1

}
.

Theorem (B.–Keßeböhmer–Pohl)
Let q ≥ 3 be odd. For each x ∈ (0, 1) we have

∗- lim
n→∞

x log(n)
∑︁

g∈Wn

|g′ (x) | 𝛿g.x = m .

▶ A sequence (xi )i∈ℕ in [0, 1] is uniformly distributed w.r.t. m if

∗- lim
n→∞

1
n

n∑︁
i=1

𝛿xi = m .
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Behavior of generalized Farey map

The generalized Farey map Tq has the properties:

1/(λ+ 1) 1/λ λ/2 1

1

▶ Piecewise monotonic

▶ Adler’s condition: The map (Tq)′′/(T ′
q)2 is bounded

▶ Non-uniformly expanding:
▶ Tq (0) = 0
▶ T ′

q (0) = 1
▶ |T ′

q | ≥ 𝜌(Y) > 1 on [Y, 1]

▶ Topologically mixing

Result
The generalized Farey map Tq is ergodic and conservative with respect to the
Lebesgue measure.
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Central: Transfer operator

Definition
Let (X ,B, [, T ) be a dynamical system. The transfer operator T̂[ : L1 ([) → L1 ([)
is the operator that satisfies for all B ∈ B, f ∈ L1 ([)∫

B
T̂[ (f ) d[ =

∫
T −1 (B)

f d[ .

▶ Strategy: Find a measure d` = h dm such that uniformly on all
[𝛼, 𝛽] ⊂ (0, 1], for g = f/h with f Riemann integrable,

lim
n→∞

log(n)
(
T̂q

)n
`
(g) =

∫
[0,1]

g d` .

▶ With some prerequisites, this is a consequence of a result from Melbourne
and Terhesiu (2012) .
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Why? The proof then goes like this...

▶ d` = h dm
▶ For all [𝛼, 𝛽] ⊂ (0, 1], f ∈ C ( [0, 1]),

lim
n→∞

∫
T −n

q ( [𝛼,𝛽 ] )

log(n)
log (𝛽/𝛼) f dm

= lim
n→∞

∫
T −n

q ( [𝛼,𝛽 ] )

log(n)
log (𝛽/𝛼) f/h d`

= lim
n→∞

∫
[𝛼,𝛽 ]

log(n)
log (𝛽/𝛼)

(
T̂q

)n
`
(f/h) d`

=
©«
∫

[0,1]

f/h d`
ª®®¬ ·

∫
[𝛼,𝛽 ]

1
log(𝛽/𝛼) d` .︸                     ︷︷                     ︸

=1 (by choice of h)
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How to obtain a suitable density h?

Proposition (B.–Keßeböhmer–Pohl)
Let

h(x) B 1
x
.

For all q ≥ 3 we have
(
T̂q

)
mh = h.

▶ Let d` = h dm, then the transfer operators are conjugate to each other,(
T̂q

)
`
(f ) = 1

h
(
T̂q

)
m (f · h) .

▶ ` is Tq-invariant if

1 =
(
T̂q

)
`
(1)

=
1
h
(
T̂q

)
m (h) .
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Tail behavior of the measure `

▶ Return time: 𝜑(x) = min{n ≥ 1 : T n
q (x) ∈ A}

` ({𝜑 > n} ∩ A) = `

(
{𝜑 = n} ∩ AC

)
= `

( [
1

(n + 1)_ + 1
,

1
n_ + 1

] )
∼ 1

n

1
3λ+ 1

1
2λ+ 1

1
λ+ 1

1

1
2λ+ 1

1
λ+ 1

1

A

Laura Breitkopf Distribution of Stern–Brocot sequences 15.05.2023 18 / 19



Wrapping up

Regularity and
topological mixing

Tail behaviour
w.r.t. `

Invariant
measure `

Convergence of
iterated transfer operator

w.r.t. `

Distribution results
of the form as in the case PSL(2,ℤ)

Melbourne and
Terhesiu (2012)

Takeaway: Not the arithmeticity decides the distribution behavior, but the
dynamics and geometry of the underlying group.
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