Distribution of Stern-Brocot sequences generalized to Hecke triangle groups

Laura Breitkopf
(joint with Marc Keßeböhmer and Anke Pohl)

Thermodynamic Formalism: Non-additive Aspects and Related Topics

\author{

- $\begin{aligned} & \text { University } \\ & \text { of Bremen }\end{aligned}$
}

Classical Stern-Brocot sequence as tree

- Calculate: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$
- $S_{1}=\left\{\frac{1}{2}\right\}, S_{2}=\left\{\frac{1}{3}, \frac{2}{3}\right\}, \ldots$
- Slow continued fraction algorithm (Richards 1981)
- All rational numbers

Classical Stern-Brocot sequence as tree

- Calculate: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$
- $S_{1}=\left\{\frac{1}{2}\right\}, S_{2}=\left\{\frac{1}{3}, \frac{2}{3}\right\}, \ldots$
- Slow continued fraction algorithm (Richards 1981)
- All rational numbers

Classical Stern-Brocot sequence as tree

- Calculate: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a+c}{b+d}$
- $S_{1}=\left\{\frac{1}{2}\right\}, S_{2}=\left\{\frac{1}{3}, \frac{2}{3}\right\}, \ldots$
- Slow continued fraction algorithm (Richards 1981)
- All rational numbers

Distribution properties

Points The Stern-Brocot sequence is not uniformly distributed (Keßeböhmer and Stratmann 2008).

Sets The Lebesgue-measure m of the sequence of intervals vanishes as $\frac{\log (2)}{\log (n)}$
(Keßeböhmer and Stratmann 2012).

The map describing the dynamics

- Recall: $\operatorname{PSL}(2, \mathbb{R})$ acts on $\mathbb{R} \cup\{\infty\}$ via Möbius transformation.

The Farey map

$$
\begin{aligned}
& F(x):= \begin{cases}{\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right] \cdot x,} & x \in\left[0, \frac{1}{2}\right], \\
{\left[\begin{array}{rl}
-1 & 1 \\
1 & 0
\end{array}\right] \cdot x,} & x \in\left[\frac{1}{2}, 1\right],\end{cases} \\
& \text { satisfies } F^{-(n-1)}\left(\left\{\frac{1}{2}\right\}\right)=S_{n} .
\end{aligned}
$$

The map describing the dynamics

- Recall: $\operatorname{PSL}(2, \mathbb{R})$ acts on $\mathbb{R} \cup\{\infty\}$ via Möbius transformation.

$$
\begin{aligned}
& \text { The Farey map } \\
& \qquad F(x):=\left\{\begin{array}{cc}
{\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right] \cdot x,} & x \in\left[0, \frac{1}{2}\right], \\
{\left[\begin{array}{rl}
-1 & 1 \\
1 & 0
\end{array}\right] \cdot x,} & x \in\left[\frac{1}{2}, 1\right], \\
\text { satisfies } F^{-(n-1)}\left(\left\{\frac{1}{2}\right\}\right)=S_{n} .
\end{array}\right.
\end{aligned}
$$

- Keßeböhmer and Stratmann (2012): For $[\alpha, \beta] \subset(0,1]$,

$$
m\left(F^{-n}([\alpha, \beta])\right) \sim \frac{\log \left(\frac{\beta}{\alpha}\right)}{\log (n)}
$$

- Further dynamical results, including the distribution of the Stern-Brocot sequence

Motivation

- In Keßeböhmer and Stratmann (2012): PSL(2, Z $)$-action.
- Does arithmeticity of $\operatorname{PSL}(2, \mathbb{Z})$ determine the behavior of F ?

- Idea: Consider groups with similar geometric structure, but not arithmetic
- Based on these groups we define generalized Farey maps T_{q}.

Main result: Dynamics of generalized Farey maps

- m Lebesgue-measure on $[0,1$]
- T_{q} generalized Farey map

Theorem (B.-Keßeböhmer-Pohl)
Let $q \geq 3$ be odd. For every $[\alpha, \beta] \subset(0,1]$ we have

$$
\underset{n \rightarrow \infty}{*-\lim }\left(\left.\frac{\log (n)}{\log \left(\frac{\beta}{\alpha}\right)} \cdot m\right|_{T_{q}^{-n}([\alpha, \beta])}\right)=m .
$$

Particularly, $m\left(T_{q}^{-n}([\alpha, \beta])\right) \sim \frac{\log \left(\frac{\beta}{\alpha}\right)}{\log (n)}$ for $n \rightarrow \infty$.

How to generalize the Farey map?

Definition

Let $q \in \mathbb{N}, q \geq 3$ and $\lambda_{q}:=2 \cos \left(\frac{\pi}{q}\right)$. The Hecke triangle group Γ_{q} is generated by

$$
S:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad U:=\left[\begin{array}{cc}
1 & \lambda_{q} \\
0 & 1
\end{array}\right] .
$$

- Discrete subgroup of PSL(2, $\mathbb{R})$
- $\Gamma_{3}=\operatorname{PSL}(2, \mathbb{Z})$

A fundamental domain for Γ_{q}

Geometric motivation

- Discretization of geodesic flow on hyperbolic surface by Pohl (2016); yields

$$
g_{k}:=\left((U S)^{k} S\right)^{-1}
$$

where $S:=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], U:=\left[\begin{array}{cc}1 & \lambda_{q} \\ 0 & 1\end{array}\right]$.

Tessellation for $q=5$

Geometric motivation

- The generalized Farey map should be a transformation on $[0,1]$.
- Symmetry given by $Q . z=1 / \bar{z}$

Tessellation for $q=5$

Farey map generalized to Hecke triangle groups

With $Q=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,

$$
F(x)= \begin{cases}g_{2} \cdot x, & x \in\left[0, \frac{1}{2}\right] \\ Q g_{2} \cdot x, & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

For odd $q \geq 3$,

$$
T_{q}(x):= \begin{cases}g_{q-1} \cdot x & x \in g_{q-1}^{-1} \cdot[0,1], \\ Q g_{q-1} \cdot x & x \in g_{q-1}^{-1} Q \cdot[0,1], \\ & \vdots \\ g_{\frac{q+1}{2} \cdot x} & x \in g_{\frac{q+1}{2}}^{-1} \cdot[0,1], \\ Q g_{\frac{q+1}{2}} \cdot x & x \in g_{\frac{q+1}{2}}^{-1} Q \cdot[0,1] .\end{cases}
$$

We have $F=T_{3}$.

Generalized Stern-Brocot sequence

- Classical Stern-Brocot sequence:

$$
S_{n}=F^{-(n-1)}\left(\left\{\frac{1}{2}\right\}\right)
$$

- Note: $\left\{\frac{1}{2}\right\}=F^{-1}(\{0,1\}) \backslash\{0,1\}$
- Use the generalized Farey map T_{q}.

Definition

The generalized Stern-Brocot sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ for odd $q \geq 3: S_{-1}:=\varnothing$,

$$
S_{n}:=T_{q}^{-n}(\{0,1\}) \backslash S_{n-1}
$$

Examples

$q=3$

$\mathrm{q}=5$

A property of the Stern-Brocot elements

Proposition (B.)

The union of all Stern-Brocot elements is $\Gamma_{q} \cdot \infty \cap[0,1]$.

- Matrix coefficients of Γ_{q} are elements of $\mathbb{Z}\left[\lambda_{q}\right]$ and

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot \infty=\frac{a}{c}
$$

$$
\begin{aligned}
& \mathrm{q}=3: \text { We have } \Gamma_{3} \cdot \infty \backslash\{\infty\}=\mathbb{Q} . \\
& \mathrm{q}=5: \text { We have } \Gamma_{5} . \infty \backslash\{\infty\}=\mathbb{Q}(\sqrt{5}) \text { (Leutbecher 1967). } \\
& \quad>\lambda_{5}=\frac{1}{2}(1+\sqrt{5})
\end{aligned}
$$

Result: Distribution of Stern-Brocot sequences

- Let W_{n} be the words of length n to the alphabet of inverse branches of T_{q},

$$
\left\{g_{k}^{-1}, g_{k}^{-1} Q: k=\frac{q+1}{2}, \ldots, q-1\right\} .
$$

Theorem (B.-Keßeböhmer-Pohl)
Let $q \geq 3$ be odd. For each $x \in(0,1)$ we have

$$
\underset{n \rightarrow \infty}{*-\lim } x \log (n) \sum_{g \in W_{n}}\left|g^{\prime}(x)\right| \delta_{g . x}=m
$$

- A sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ in $[0,1]$ is uniformly distributed w.r.t. m if

$$
\underset{n \rightarrow \infty}{*-\lim } \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}=m
$$

Behavior of generalized Farey map

The generalized Farey map T_{q} has the properties:

- Piecewise monotonic

- Adler's condition: The map $\left(T_{q}\right)^{\prime \prime} /\left(T_{q}^{\prime}\right)^{2}$ is bounded
- Non-uniformly expanding:
- $T_{q}(0)=0$
- $T_{q}^{\prime}(0)=1$
- $\left|T_{q}^{\prime}\right| \geq \rho(\varepsilon)>1$ on $[\varepsilon, 1]$
- Topologically mixing

Result

The generalized Farey map T_{q} is ergodic and conservative with respect to the Lebesgue measure.

Central: Transfer operator

Definition

Let $(X, \mathcal{B}, \eta, T)$ be a dynamical system. The transfer operator $\widehat{T}_{\eta}: L^{1}(\eta) \rightarrow L^{1}(\eta)$ is the operator that satisfies for all $B \in \mathcal{B}, f \in L^{1}(\eta)$

$$
\int_{B} \widehat{T}_{\eta}(f) d \eta=\int_{T^{-1}(B)} f d \eta
$$

- Strategy: Find a measure $d \mu=h d m$ such that uniformly on all $[\alpha, \beta] \subset(0,1]$, for $g=f / h$ with f Riemann integrable,

$$
\lim _{n \rightarrow \infty} \log (n)\left(\widehat{T}_{q}\right)_{\mu}^{n}(g)=\int_{[0,1]} g d \mu
$$

- With some prerequisites, this is a consequence of a result from Melbourne and Terhesiu (2012).

Why? The proof then goes like this...

- $d \mu=h d m$
- For all $[\alpha, \beta] \subset(0,1], f \in C([0,1])$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{T_{q}^{-n}([\alpha, \beta])} \frac{\log (n)}{\log (\beta / \alpha)} f d m \\
= & \lim _{n \rightarrow \infty} \int_{T_{q}^{-n}([\alpha, \beta])} \frac{\log (n)}{\log (\beta / \alpha)} f / h d \mu \\
= & \lim _{n \rightarrow \infty} \int_{[\alpha, \beta]} \frac{\log (n)}{\log (\beta / \alpha)}\left(\widehat{T}_{q}\right)_{\mu}^{n}(f / h) d \mu \\
= & \left.\int_{[0,1]} f / h d \mu\right) \cdot \underbrace{\int_{[\alpha, \beta]} \frac{1}{\log (\beta / \alpha)} d \mu .}_{=1 \text { (by choice of } h)}
\end{aligned}
$$

How to obtain a suitable density h ?

Proposition (B.-Keßeböhmer-Pohl)

Let

$$
h(x):=\frac{1}{x} .
$$

For all $q \geq 3$ we have $\left(\widehat{T}_{q}\right)_{m} h=h$.

- Let $d \mu=h d m$, then the transfer operators are conjugate to each other,

$$
\left(\widehat{T}_{q}\right)_{\mu}(f)=\frac{1}{h}\left(\widehat{T}_{q}\right)_{m}(f \cdot h) .
$$

- μ is T_{q}-invariant if

$$
\mathbb{1}=\left(\widehat{T}_{q}\right)_{\mu}(\mathbb{1})
$$

How to obtain a suitable density h ?

Proposition (B.-Keßeböhmer-Pohl)

Let

$$
h(x):=\frac{1}{x} .
$$

For all $q \geq 3$ we have $\left(\widehat{T}_{q}\right)_{m} h=h$.

- Let $d \mu=h d m$, then the transfer operators are conjugate to each other,

$$
\left(\widehat{T}_{q}\right)_{\mu}(f)=\frac{1}{h}\left(\widehat{T}_{q}\right)_{m}(f \cdot h) .
$$

- μ is T_{q}-invariant if

$$
\mathbb{1}=\left(\widehat{T}_{q}\right)_{\mu}(\mathbb{1})=\frac{1}{h}\left(\widehat{T}_{q}\right)_{m}(h) .
$$

Tail behavior of the measure μ

- Return time: $\varphi(x)=\min \left\{n \geq 1: T_{q}^{\eta}(x) \in A\right\}$

$$
\mu(\{\varphi>n\} \cap A)=\mu\left(\{\varphi=n\} \cap A^{C}\right)=\mu\left(\left[\frac{1}{(n+1) \lambda+1}, \frac{1}{n \lambda+1}\right]\right) \sim \frac{1}{n}
$$

Wrapping up

Takeaway: Not the arithmeticity decides the distribution behavior, but the dynamics and geometry of the underlying group.

