Distribution of Stern–Brocot sequences generalized to Hecke triangle groups

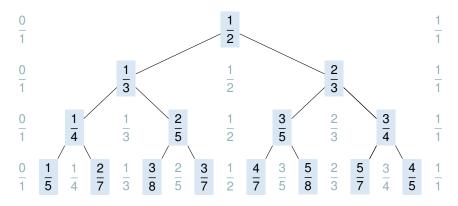
Laura Breitkopf

(joint with Marc Keßeböhmer and Anke Pohl)

Thermodynamic Formalism: Non-additive Aspects and Related Topics

University of Bremen

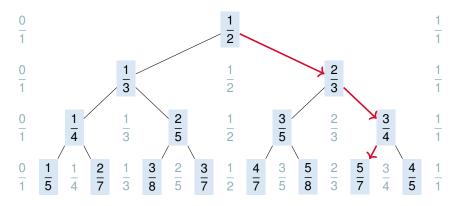
Classical Stern–Brocot sequence as tree



• Calculate: $\frac{a}{b} \oplus \frac{c}{d} = \frac{a+c}{b+d}$ • $S_1 = \left\{\frac{1}{2}\right\}, S_2 = \left\{\frac{1}{3}, \frac{2}{3}\right\}, \dots$

- Slow continued fraction algorithm (Richards 1981)
- All rational numbers

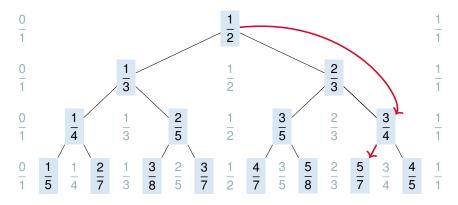
Classical Stern–Brocot sequence as tree



• Calculate: $\frac{a}{b} \oplus \frac{c}{d} = \frac{a+c}{b+d}$ • $S_1 = \left\{\frac{1}{2}\right\}, S_2 = \left\{\frac{1}{3}, \frac{2}{3}\right\}, \dots$

- Slow continued fraction algorithm (Richards 1981)
- All rational numbers

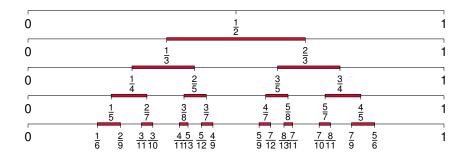
Classical Stern–Brocot sequence as tree



• Calculate: $\frac{a}{b} \oplus \frac{c}{d} = \frac{a+c}{b+d}$ • $S_1 = \left\{\frac{1}{2}\right\}, S_2 = \left\{\frac{1}{3}, \frac{2}{3}\right\}, \dots$

- Slow continued fraction algorithm (Richards 1981)
- All rational numbers

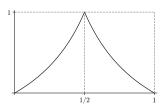
Distribution properties



- Points The Stern–Brocot sequence is not uniformly distributed (Keßeböhmer and Stratmann 2008).
 - Sets The Lebesgue-measure *m* of the sequence of intervals vanishes as $\frac{\log(2)}{\log(n)}$ (Keßeböhmer and Stratmann 2012).

The map describing the dynamics

▶ Recall: $PSL(2, \mathbb{R})$ acts on $\mathbb{R} \cup \{\infty\}$ via Möbius transformation.



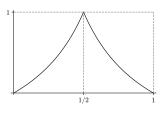
The Farey map

$$F(x) := \begin{cases} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} . x, & x \in \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, \\ \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} . x, & x \in \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}, \end{cases}$$

satisfies
$$F^{-(n-1)}\left(\left\{\frac{1}{2}\right\}\right) = S_n$$
.

The map describing the dynamics

▶ Recall: $PSL(2, \mathbb{R})$ acts on $\mathbb{R} \cup \{\infty\}$ via Möbius transformation.



The Farey map

$$F(x) := \begin{cases} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} . x, & x \in \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, \\ \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} . x, & x \in \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}, \end{cases}$$

satisfies
$$F^{-(n-1)}\left(\left\{\frac{1}{2}\right\}\right) = S_n$$
.

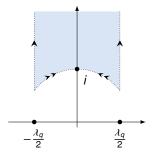
► Keßeböhmer and Stratmann (2012): For $[\alpha, \beta] \subset (0, 1]$,

$$m(F^{-n}([\alpha,\beta])) \sim \frac{\log\left(\frac{\beta}{\alpha}\right)}{\log(n)}.$$

 Further dynamical results, including the distribution of the Stern–Brocot sequence

Motivation

- ▶ In Keßeböhmer and Stratmann (2012): PSL(2, ℤ)-action.
- ▶ Does arithmeticity of PSL(2, ℤ) determine the behavior of *F*?



- Idea: Consider groups with similar geometric structure, but not arithmetic
- Based on these groups we define generalized Farey maps T_q.

Main result: Dynamics of generalized Farey maps

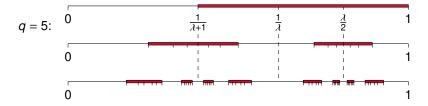
- *m* Lebesgue-measure on [0, 1]
- *T_q* generalized Farey map

Theorem (B.-Keßeböhmer-Pohl)

Let $q \ge 3$ be odd. For every $[\alpha, \beta] \subset (0, 1]$ we have

$$*-\lim_{n\to\infty}\left(\frac{\log(n)}{\log\left(\frac{\beta}{\alpha}\right)}\cdot m|_{T_q^{-n}([\alpha,\beta])}\right)=m.$$

Particularly,
$$m(T_q^{-n}([\alpha,\beta])) \sim \frac{\log(\frac{\beta}{\alpha})}{\log(n)}$$
 for $n \to \infty$.

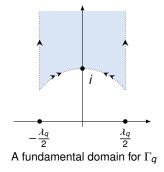


How to generalize the Farey map?

Definition

Let $q \in \mathbb{N}$, $q \ge 3$ and $\lambda_q := 2 \cos\left(\frac{\pi}{q}\right)$. The Hecke triangle group Γ_q is generated by

$$S := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 and $U := \begin{bmatrix} 1 & \lambda_q \\ 0 & 1 \end{bmatrix}$.



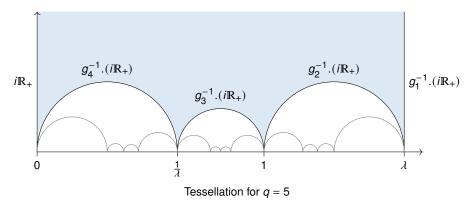
► Discrete subgroup of PSL(2, ℝ)

$$\Gamma_3 = \mathsf{PSL}(2,\mathbb{Z})$$

Geometric motivation

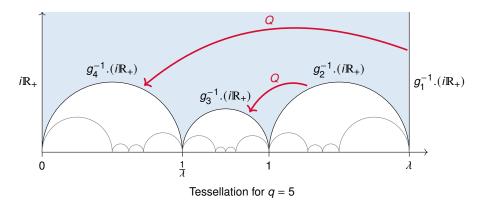
Discretization of geodesic flow on hyperbolic surface by Pohl (2016); yields

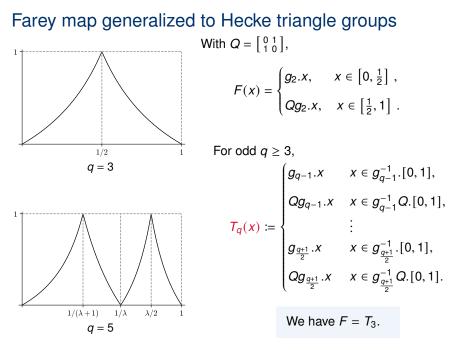
$$g_k \coloneqq ((US)^k S)^{-1}$$
where $S \coloneqq \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, U \coloneqq \begin{bmatrix} 1 & \lambda_q \\ 0 & 1 \end{bmatrix}.$



Geometric motivation

- The generalized Farey map should be a transformation on [0, 1].
- Symmetry given by $Q.z = 1/\overline{z}$





Generalized Stern–Brocot sequence

Classical Stern–Brocot sequence:

$$\mathbf{S}_n = \mathbf{F}^{-(n-1)}\left(\left\{\frac{1}{2}\right\}\right)$$

• Note:
$$\left\{\frac{1}{2}\right\} = F^{-1}(\{0,1\}) \setminus \{0,1\}$$

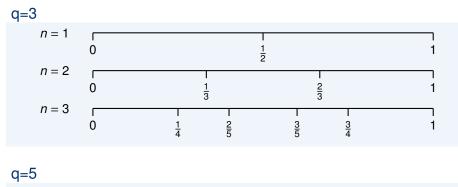
• Use the generalized Farey map T_q .

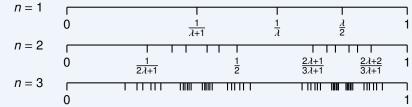
Definition

The generalized Stern–Brocot sequence $(S_n)_{n \in \mathbb{N}}$ for odd $q \ge 3$: $S_{-1} := \emptyset$,

$$S_n \coloneqq T_q^{-n}(\{0,1\}) \setminus S_{n-1}$$

Examples





A property of the Stern–Brocot elements

Proposition (B.)

The union of all Stern–Brocot elements is $\Gamma_q . \infty \cap [0, 1]$.

• Matrix coefficients of Γ_q are elements of $\mathbb{Z}[\lambda_q]$ and

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \infty = \frac{a}{c} \cdot$$

q=3: We have
$$\Gamma_3.\infty \setminus \{\infty\} = \mathbb{Q}$$
.
q=5: We have $\Gamma_5.\infty \setminus \{\infty\} = \mathbb{Q}(\sqrt{5})$ (Leutbecher 1967).
 $\lambda_5 = \frac{1}{2}(1 + \sqrt{5})$

Result: Distribution of Stern–Brocot sequences

Let W_n be the words of length *n* to the alphabet of inverse branches of T_q ,

$$\left\{g_k^{-1}, g_k^{-1}Q: k=\frac{q+1}{2}, \ldots, q-1\right\}$$
.

Theorem (B.–Keßeböhmer–Pohl)

Let $q \ge 3$ be odd. For each $x \in (0, 1)$ we have

$$\lim_{n\to\infty} x\log(n)\sum_{g\in W_n} |g'(x)|\,\delta_{g.x} = m\,.$$

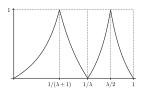
A sequence $(x_i)_{i \in \mathbb{N}}$ in [0, 1] is uniformly distributed w.r.t. *m* if

$$*-\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\delta_{x_i}=m.$$

Behavior of generalized Farey map

The generalized Farey map T_a has the properties:

Piecewise monotonic



- Adler's condition: The map $(T_q)''/(T'_q)^2$ is bounded
- Non-uniformly expanding:
 - $T_q(0) = 0$

 - $T'_q(0) = 1$ $|T'_q| \ge \rho(\varepsilon) > 1 \text{ on } [\varepsilon, 1]$
- Topologically mixing

Result

The generalized Farey map T_q is ergodic and conservative with respect to the Lebesgue measure.

Central: Transfer operator

Definition

Let $(X, \mathcal{B}, \eta, T)$ be a dynamical system. The transfer operator $\widehat{T}_{\eta} : L^{1}(\eta) \to L^{1}(\eta)$ is the operator that satisfies for all $B \in \mathcal{B}$, $f \in L^{1}(\eta)$

$$\int_{B}\widehat{\mathsf{T}}_{\eta}(f)\,d\eta=\int_{T^{-1}(B)}f\,d\eta\,.$$

Strategy: Find a measure $d\mu = h \, dm$ such that uniformly on all $[\alpha, \beta] \subset (0, 1]$, for g = f/h with f Riemann integrable,

$$\lim_{n\to\infty}\log(n)\big(\widehat{T}_q\big)_{\mu}^n(g)=\int_{[0,1]}g\,d\mu\,.$$

 With some prerequisites, this is a consequence of a result from Melbourne and Terhesiu (2012).

Why? The proof then goes like this...

• $d\mu = h dm$

► For all $[\alpha, \beta] \subset (0, 1], f \in C([0, 1]),$

$$\lim_{n \to \infty} \int_{T_q^{-n}([\alpha,\beta])} \frac{\log(n)}{\log(\beta/\alpha)} f \, dm$$

=
$$\lim_{n \to \infty} \int_{T_q^{-n}([\alpha,\beta])} \frac{\log(n)}{\log(\beta/\alpha)} f/h \, d\mu$$

=
$$\lim_{n \to \infty} \int_{[\alpha,\beta]} \frac{\log(n)}{\log(\beta/\alpha)} (\widehat{T}_q)_{\mu}^n (f/h) \, d\mu$$

=
$$\left(\int_{[0,1]} f/h \, d\mu\right) \cdot \underbrace{\int_{[\alpha,\beta]} \frac{1}{\log(\beta/\alpha)} \, d\mu}_{=1 \text{ (by choice of } h)}$$

How to obtain a suitable density h?

Proposition (B.–Keßeböhmer–Pohl)

Let

$$h(x) \coloneqq \frac{1}{x}$$

For all $q \ge 3$ we have $(\widehat{T}_q)_m h = h$.

• Let $d\mu = h \, dm$, then the transfer operators are conjugate to each other,

$$(\widehat{T}_q)_{\mu}(f) = \frac{1}{h} (\widehat{T}_q)_m (f \cdot h)$$

• μ is T_q -invariant if

$$\mathbb{1}=\big(\widehat{T}_q\big)_\mu(\mathbb{1})$$

How to obtain a suitable density h?

Proposition (B.–Keßeböhmer–Pohl)

Let

$$h(x) \coloneqq \frac{1}{x}$$

For all $q \ge 3$ we have $(\widehat{T}_q)_m h = h$.

• Let $d\mu = h \, dm$, then the transfer operators are conjugate to each other,

$$(\widehat{T}_q)_{\mu}(f) = \frac{1}{h} (\widehat{T}_q)_m (f \cdot h)$$

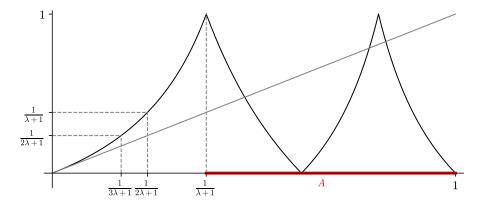
• μ is T_q -invariant if

$$\mathbb{1} = \left(\widehat{T}_q\right)_{\mu}(\mathbb{1}) = \frac{1}{h} \left(\widehat{T}_q\right)_m(h) \,.$$

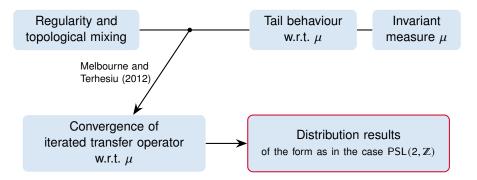
Tail behavior of the measure μ

► Return time:
$$\varphi(x) = \min\{n \ge 1 : T_q^n(x) \in A\}$$

$$\mu\left(\{\varphi > n\} \cap A\right) = \mu\left(\{\varphi = n\} \cap A^C\right) = \mu\left(\left[\frac{1}{(n+1)\lambda + 1}, \frac{1}{n\lambda + 1}\right]\right) \sim \frac{1}{n}$$



Wrapping up



Takeaway: Not the arithmeticity decides the distribution behavior, but the dynamics and geometry of the underlying group.