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Thermodynamic formalism

Applies notions from classical thermodynamics to dynamical systems:
Analogues of entropy, pressure, inverse temperatures, Gibbs measures,
variational principle, bounded distortion, ...

Map f : D → D, potential ψ : D → R. Let

ψn(x) = ψ(x) + ψ(fx) + · · ·+ ψ(f n−1x)

Note: ψn+m(x) = ψn(x) + ψm(f
nx).

Define the pressure

P(f , ψ) = lim
n→∞

1

n
log

∑
x∈fixf n

expψn(x).

Get Bowen’s formula for a repeller E of an expanding conformal f :

dimH E = s where P(−s log |f ′|) = 0.

• Bowen (1979) Hausdorff dimension of quasicircles
• Ruelle (1982) Repellers for real analytic maps
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Sub-additive thermodynamic formalism

Stems from an attempt to extend these ideas to affine and general
non-conformal differentiable maps.

Map f : D → D, a family of potential functions ψn : D → R such
that

ψn+m(x) ≤ ψn(x) + ψm(f
nx).

Define the sub-additive pressure as before:

P(f , {ψn}) = lim
n→∞

1

n
log

∑
x∈fixf n

expψn(x).

Many notions carry over to the sub-additive setting.
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Iterated function systems

A family S1, . . . ,Sm of contractions on D ⊆ RN , i.e.

|Si (x)− Si (y)| ≤ ci |x − y | x , y ∈ D, ci < 1

is called an iterated function system (IFS).

Given an IFS there exists a unique, non-empty compact set E satisfying

E =
m⋃
i=1

Si (E ),

called the attractor of the IFS.

If the Si are similarities E is called a self-similar set.

If the Si are conformal maps E is called a self-conformal set.

If the Si = Ti + ωi are affine contractions on RN , where the Ti are
non-singular contracting linear mappings on RN and ωi ∈ RN are
translation vectors, E is a self-affine set.
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self-similar self-affine

self-conformal nonlinear, nonconformal
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Taking a (large) initial domain B we get an iterated construction of E :

E =
∞⋂
k=0

⋃
i1,...,ik

Si1 ◦ · · · ◦ Sik (B).

We also get a coding of points of E : if i = (i1, i2, . . .) ∈ {1, 2, . . . ,m}N,
let x(i) ≡ x(i1, i2, . . .) = limk→∞ Si1 ◦ Si2 ◦ · · · ◦ Sik (0).
Then

E =
⋃

i1,i2,...

x(i1, i2, . . .).
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Dimensions of self-affine sets - Upper bounds

To find the Hausdorff dimension of E we need to consider sums
∑

|Ui |s
where {Ui} is a cover of E .
Suppose some covering set Ui is ‘long and thin’, e.g. an ellipse with
semi-axes α1 ≥ α2.
The contribution to

∑
|Ui |s from Ui is ≈ αs

1.

OR we can cut Ui into α1/α2 pieces {Vj}α1/α2

j=1 that are roughly square
with side α2, to replace |Ui |s by

α1/α2∑
j=1

|Vj |s ≈
α1

α2
αs
2 = α1α

s−1
2 which is ≪ αs

1 if s > 1.
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Thus we define the singular values α1 ≥ α2 ≥ 0 of a linear mapping
T : R2 → R2 to be the semi-axis lengths of T (unit ball):

Equivalently αi are the +ve square roots of the eigenvalues of TT ∗.

We define the singular value function of T by

ϕs(T ) =

{
αs
1 (0 ≤ s ≤ 1)
α1α

s−1
2 (1 ≤ s ≤ 2)

More generally for T on RN , ϕs(T ) = α1 . . . αp−1α
s−p+1
p where

p − 1 ≤ s ≤ p.

1. ϕs is submultiplicative:

ϕs(T1T2) ≤ ϕs(T1)ϕ
s(T2).

2. If T is contracting, ϕs(T ) is decreasing in s.
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Let Si (x) = Ti (x) + ωi be an
affine IFS with attractor E .
For each k :

E ⊆
⋃
i1...ik

Si1 ◦ · · · ◦ Sik (B).

Each Si1 ◦ · · · ◦ Sik (B) is an
ellipse, with semi-axes the
singular values of Ti1 ◦ · · · ◦ Tik

Thus, for k large enough,

Hs
δ(E ) ≤

{ ∑
i1...ik

α1(Ti1 ◦ · · · ◦ Tik )
s (0 ≤ s ≤ 1)∑

i1...ik
α1(Ti1 ◦ · · · ◦ Tik )α2(Ti1 ◦ · · · ◦ Tik )

s−1 (1 ≤ s ≤ 2)

=
∑
i1...ik

ϕs(Ti1 ◦ · · · ◦ Tik ).
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Hence, writing

Φs
k ≡

∑
i1...ik

ϕs(Ti1 ◦ · · · ◦ Tik )

we get Hs
δ(E ) ≤ Φs

k for large k .

By submultiplicativity, Φs
k+l ≤ Φs

kΦ
s
l so

lim
k→∞

(Φs
k)

1/k ≡ Φs exists.

[Note that (assuming strong separation) defining f (x) = T−1
i (x) if

x ∈ Si (B), ψ
s
k(x) := log ϕs(Ti1 ◦ · · · ◦ Tik ) ≡ log ϕs((Dx f

k)−1),
is a sub-additive potential.]

Thus if Φs < 1 then Hs(E ) = limδ→0 Hs
δ(E ) ≤ limk→∞

(
Φs

k) = 0, so

dimH E ≤
(
dimBE

)
≤ s where s satisfies Φs = 1.

The value of s satisfying Φs(T1, · · · ,Tm) ≡ Φs = 1 is the affinity
dimension dimaff E of the self-affine set E . Thus dimaff E is always an
upper bound for dimH E and and also for dimB E .

Q: When does dimH E = dimB = E dimaff E?
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Self-affine sets - Generic results

Let Si (x) = Ti (x) + ωi be affine maps on RN where the Ti are linear and
ωi are translations. Let Eω be the self-affine attractor where
ω ≡ (ω1, . . . , ωm). Recall dimaff E = s where Φs = Φs(T1, . . . ,Tm) = 1.

Theorem (F 1988, Solomyak 1998) If ∥Ti∥ < 1
2 for all i then

dimH Eω = dimB Eω = min{dimaff E ,N} (1)

for almost all (ω1, . . . , ωm) ∈ RNm w.r.t. Nm-dimensional Lebesgue
measure.
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Conditions that ensure dimE = dimaff E

One seeks conditions that guarantee that the dimension of E
equals the affinity dimension. Here is an early result.

Theorem (F 1992)

Let Si (x) = Ti (x) + ωi be an IFS of affine contractions on R2 with
attractor E . Suppose that

(a) the open set condition holds,

(b) there is a c > 0 such that the Lebesgue measure of the projection of
E onto every line is ≥ c .

Then
dimB E = dimaff E .

Similar conclusions hold for affine IFSs on RN .
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Examples: Generalised Sierṕınski triangles where
dimB E = dimaff E :
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Self-affine sets where the dimension is not given by dimaff E

Bedford-McMullen carpet (1984)

Gatzouras-Lalley carpet (1992)

Barański carpet (2007)
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Conditions that ensure dimE = dimaff E

These examples suggest that it is the alignment of the components in the
self-affine construction that lead to the dimensions of the sets being less
than the affinity dimension.

Over the last 10 years ergodic theory methods have been employed to
obtain increasingly general conditions that ensure dimH E = dimaff E for
identifiable self-affine E . (Käenmäki, Bárány, Kempton, F, Hochman,
Rapaport, Shmerkin, Morris,...)

Theorem (Bárány, Hochman & Rapaport 2019) Let E ⊂ R2 be self-affine
satisfying strong separation such that no finite union of lines through 0 is
preserved by all of T1, . . . ,Tm. Then

dimH E = dimB E = dimaff E .

Theorem (Morris + Rapaport, Recent) The analogous result for
self-affine E ⊂ R3 holds.

Q: Obtain analogues for self-affine E ⊂ RN for N ≥ 4.

Q: Show these are valid with a weaker separation condition.

Q: Show that the box dimension dimB E exists for all self-affine E .
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Moment sums and Lq-dimensions

Let Mr be the mesh of side r .
Define the q-th power moment sum of
a measure µ on Rn by

Mr (q) =
∑

C∈Mr

µ(C )q. (1)

Then the Lq-dimension or generalised q dimension of µ is given by

Dq(µ) =
1

q − 1
lim
r→0

logMr (q)

log r
(q > 0, q ̸= 1).

(or lim inf, lim sup). Equivalently we may replace (1) by a moment
integral

Mr (q) =

∫
µ(B(x , r))q−1dµ(x) (q > 0, q ̸= 1).
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Measures on self-affine sets

Let Eω be the self affine set defined
by the IFS {T1 + ω1, . . . ,Tm + ωm}.

Let p1, . . . , pm be probabilities (so
0 < pi < 1 and

∑
pi = 1). Let µ be

the Bernoulli probability measure on
{1, . . . ,m}N defined by

µ(Ci) = pi1pi2 . . . pik

where i = (i1, . . . , ik) and Ci is the
corresponding cylinder.

Let µω be the image measure of µ under Xω, which is supported by Eω.
Thus µω

(
(Ti1 + ωi1) · · · (Tik + ωik )(B)

)
= pi1pi2 . . . pik .

We would like to find Dq(µω).
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WIth a ‘cutting up ellipses’ argument, it is natural to introduce for q > 0

Φs
q := lim

k→∞

( ∑
i1...ik

ϕs(Ti1 ◦ Ti2 ◦ · · · ◦ Tik )
1−qµ(Ci1,i2,...,ik )

q
)1/k

.

This exists by sub/supermultiplicativity, and log Φs
q is a sub/superadditive

pressure. We define sq by Φ
sq
q = 1.

Theorem (F 1999)
(a) For q > 0 the Lq-dimensions of µω on the self-affine set Eω satisfy

Dq(µω) ≤ min{sq, n}. (1)

(b) If ∥Ti∥ < 1
2 for all i and 1 < q ≤ 2 then there is equality in (1) for

almost all ω = {ω1, ω2, . . . , ωm}.
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Theorem (F 1999)
(a) For q > 0 the Lq-dimensions of µω on the self-affine set Eω satisfy

Dq(µω) ≤ min{sq, n}. (1)

(b) If ∥Ti∥ < 1
2 for all i and 1 < q ≤ 2 then there is equality in (1) for

almost all ω = {ω1, ω2, . . . , ωm}.

Note there are phase transitions in sq at integer values.

Various partial extensions outside the range 1 < q ≤ 2 by Barral & Feng
(2013), including the multifractal formalism.

Q: What almost sure conclusions (if any) are there if q > 2?

Q: Find specific classes of sets with equality in (1). For 1 < q ≤ 2 one
might hope this is the ‘usually’ the case for Benoulli measures on
self-affine sets with equal Hausdorff and affinity dimension.

Q: What happens for 0 < q < 1? The upper bound in (1) does not in
general give the generic value (example by Barral & Feng 2013).
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Almost self-affine sets

Can we remove the restrictions ∥Ti∥ < 1
2 and 1 < q < 2 in (b) above?

Recall for self-affine sets Eω =
⋃

i∈{1,...,m}N xω(i) where

xω(i) = lim
k→∞

(Ti1 + ωi1)(Ti2 + ωi2) · · · (Tik + ωik )(0)

= ωi1 + Ti1ωi2 + Ti1Ti2ωi3 + · · ·

Introduce a random perturbation at each stage of the construction:

xω(i) = lim
k→∞

(Ti1 + ωi1)(Ti2 + ωi1,i2)(Ti3 + ωi1,i2,i3) · · · (Tik + ωi1,i2,...ik )(0)

= ωi1 + Ti1ωi1,i2 + Ti1Ti2ωi1,i2,i3 + · · ·

where ωi1,i2,...,ik are i.i.d
random ‘perturbations’.

We call Eω =
⋃

i xω(i)
almost self-affine
(Jordan, Pollicott &
Simon 2007).
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For µω as above, so µω(Ci) = pi1pi2 . . . pik for the cylinder Ci, let

Φs
q = lim

k→∞

( ∑
i1...ik

ϕs(Ti1 ◦ Ti2 ◦ · · · ◦ Tik )
1−qµ(Ci1,i2,...,ik )

q
)1/k

,

Again the natural candidate for the Lq-dimensions of µ is the number sq
satisfying Φ

sq
q = 1.

Theorem (F 2010)

Let ∥Ti∥ < 1 for all i . Let µω be the measure on the almost self-affine
set Eω such that µω(Ci) = pi1pi2 . . . pik for cylinder Ci.

(a) If q > 0, the Lq-dimensions of µω on the almost self-affine set Eω

satisfy
Dq(µω) ≤ min{sq, n} where Φ

sq
q = 1. (1)

(b) If q > 1, then for almost all ω = {ωi1,i2,...,ik} there is equality in (1).

Q: How much randomness do we really need for these conclusions to
remain valid?
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Nonlinear analogue

The attractor of an IFS {S1, . . . ,Sm} may be thought of as a repeller of
an expanding dynamical system f on defined by f |Si (D) = S−1

i for a
suitable domain D. If the Si = Ti + ωi are affine, the pressure expression

Φs ≡ Φs(T1, . . . ,Tm) = lim
k→∞

( ∑
i1...ik

ϕs(Ti1 ◦ · · · ◦ Tik )
)1/k

can be written

Φs = lim
k→∞

( ∑
x ∈ fixf k

ϕs
(
Dx f

k
)−1

)1/k

(1)

where the sum is over the fixed points of f k (there will be one such fixed
point in each set Si1 ◦ · · · ◦ Sik (D)). As above the dimension of such a
repeller is given by Φs = 1 in various cases.

What if f : D → D is a C 1 expanding hyperbolic map? (1) might lead to
a dimension formula for the repeller of f . If f is conformal, then this is
Bowen’s formula.
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Theorem (F 1994)

Let D be a suitable domain in R2 and f : D → D as above be a C 1+ϵ

strictly expanding and topologically mixing with repeller E . Define s by

Φs := lim
k→∞

( ∑
x ∈ fixf k

ϕs
(
Dx f

k
)−1

)1/k

= 1. (1)

(a) Given one-bunched’ condition ||(Dx f )
−1||2||Dx f || < 1 all x ∈ D, then

dimH E ≤ dimB E ≤ s.

(b) If also E has a connected component not contained in a line segment
then dimB E = s.

Recently Feng & Simon showed that the upper bound still holds without
the one-bunched condition and with f just C 1. They also showed that for
some prarmeterised families of IFSs, e.g. with lower triangular
determinant matrix, dimH E = dimB E = s for almost all parameters.

Q: Does dimH E = dimB E = s where s is given by (1) hold in a ‘generic’
sense?
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Nonlinear IFSs preserving vertical lines

Let {Si}mi=1 be an iterated function system on [0, 1]2 of the form

Si (x , y) = (fi (x), gi (x , y)), fi , gi ∈ C 1+ϵ,

so the Si preserve vertical lines. The derivatives of the Si have
lower-triangular form:

DaSi =

(
fi ,x(a) 0
gi ,x(a) gi ,y (a)

)
, (a ∈ [0, 1]2).

We assume:
• Rectangular open set condition: {intSi ([0, 1]2)}mi=1 are disjoint;

• Domination condition:
There is more contraction in y -direction then the x-direction.
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Example

S1(x, y) =

(
3x

5
+

3x2

40
,

x2

12
+

y

6

)
,

S2(x, y) =

(
4x

5
−

4x3

30
+

1

3
,

x2

10
+

y

4
+

17

50

)
,

S3(x, y) =

(
3x

5
,

x2

10
+

y

5
+

y3

9
+

26

45

)
.
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Triangular iterated form

Recall our IFS {Si}mi=1 on [0, 1]2:

Si (x , y) = (fi (x), gi (x , y)) and DaSi =

(
fi ,x(a) 0
gi ,x(a) gi ,y (a)

)
.

Iterate the IFS mappings and write Si = Sii ◦ · · · ◦ Sik where
i = ii , . . . , ik ∈ Ik := {1, 2, . . . ,m}k . Write

DaSi ≡ Da(Sii ◦ · · · ◦ Sik ) =
(
fi,x(a) 0
gi,x(a) gi,y (a)

)
, (a ∈ [0, 1]2).

for the derivatives of the iterates. Estimates using the domination
condition give, uniformly in i ∈ I∗ ≡ ∪∞

k=1Ik and a,b ∈ [0, 1]2,

α1(DaSi) ≍ |fi,x(a)| ≍ |fi,x(b)|

α2(DaSi) ≍ |gi,y (a)| ≍ |gi,y (b)|

|gi,x(a)| ≤ C |fi,x(b)|.
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Modified singular value function

Let µ be a Bernoulli measure on F defined by probabilities {pi}mi=1. The
projection π(µ) of µ onto the x-axis is a Bernoulli measure on the
self-conformal set π(F ), so the Lq-spectrum of π(µ)

β(q) := (q − 1)Dq(π(µ)),

exists for q ≥ 0 (Peres & Solomyak). For s ∈ R, q ≥ 0 and a ∈ [0, 1]2,
define the q-modified singular value function, ψs,q

a , by

ψs,q
a (i) = p(i)qα1(DaSi)

β(q)α2(DaSi)
s−β(q) (i ∈ I∗ ≡ ∪∞

k=1Ik)

≍ p(i)q|fi,x(a)|β(q)|gi,y (a)|s−β(q).

Then for s ∈ R, q ≥ 0,
ψs,q
a (ij) ≍ ψs,q

a (i)ψs,q
a (j).

uniformly in i, j ∈ I∗ and a. For each k let

Ψs,q
a,k =

∑
i∈Ik

ψs,q
a (i),

then for s ∈ R, q ≥ 0,
Ψs,q

a,k+ℓ ≍ Ψs,q
a,kΨ

s,q
a,ℓ

uniformly in a, k and ℓ.
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Lq-dimensions of µ

We can define a pressure function P : R× [0,∞) → [0,∞) by

P(s, q) = lim
k→∞

(Ψs,q
a,k)

1/k (independent of a ∈ [0, 1]2).

Define γ : [0,∞) → R by P(γ(q), q) = 1. Then γ is strictly
decreasing, continuous and convex on [0,∞).

Theorem (Fraser, Lee, F, 2021) For a nonlinear IFS as above
(domination condition, ROSC), and a Bernoulli measure µ on the
attractor F , for q ≥ 0,

Dq(µ) =
γ(q)

q − 1
.
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Thank you

Dziȩkujȩ
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