Fractals, Multifractals and Subadditive Thermodynamic Formalism

Kenneth Falconer

University of St Andrews, Scotland

Thermodynamic Formalism: Non-additive Aspects and Related Topics

$$
\text { Będlewo 14-18 May } 2023
$$

Thermodynamic formalism

Applies notions from classical thermodynamics to dynamical systems: Analogues of entropy, pressure, inverse temperatures, Gibbs measures, variational principle, bounded distortion, ...

Thermodynamic formalism

Applies notions from classical thermodynamics to dynamical systems: Analogues of entropy, pressure, inverse temperatures, Gibbs measures, variational principle, bounded distortion, ...

Map $f: D \rightarrow D$, potential $\psi: D \rightarrow \mathbb{R}$. Let

$$
\psi_{n}(x)=\psi(x)+\psi(f x)+\cdots+\psi\left(f^{n-1} x\right)
$$

Note: $\psi_{n+m}(x)=\psi_{n}(x)+\psi_{m}\left(f^{n} x\right)$.
Define the pressure

$$
P(f, \psi)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{x \in \operatorname{fix} f^{n}} \exp \psi_{n}(x) .
$$

Thermodynamic formalism

Applies notions from classical thermodynamics to dynamical systems: Analogues of entropy, pressure, inverse temperatures, Gibbs measures, variational principle, bounded distortion, ...

Map $f: D \rightarrow D$, potential $\psi: D \rightarrow \mathbb{R}$. Let

$$
\psi_{n}(x)=\psi(x)+\psi(f x)+\cdots+\psi\left(f^{n-1} x\right)
$$

Note: $\psi_{n+m}(x)=\psi_{n}(x)+\psi_{m}\left(f^{n} x\right)$.
Define the pressure

$$
P(f, \psi)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{x \in \operatorname{fix} f^{n}} \exp \psi_{n}(x)
$$

Get Bowen's formula for a repeller E of an expanding conformal f :

$$
\operatorname{dim}_{H} E=s \quad \text { where } P\left(-s \log \left|f^{\prime}\right|\right)=0
$$

- Bowen (1979) Hausdorff dimension of quasicircles
- Ruelle (1982) Repellers for real analytic maps

Sub-additive thermodynamic formalism

Stems from an attempt to extend these ideas to affine and general non-conformal differentiable maps.
Map $f: D \rightarrow D$, a family of potential functions $\psi_{n}: D \rightarrow \mathbb{R}$ such that

$$
\psi_{n+m}(x) \leq \psi_{n}(x)+\psi_{m}\left(f^{n} x\right)
$$

Define the sub-additive pressure as before:

$$
P\left(f,\left\{\psi_{n}\right\}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{x \in \mathrm{fix} f^{n}} \exp \psi_{n}(x)
$$

Sub-additive thermodynamic formalism

Stems from an attempt to extend these ideas to affine and general non-conformal differentiable maps.

Map $f: D \rightarrow D$, a family of potential functions $\psi_{n}: D \rightarrow \mathbb{R}$ such that

$$
\psi_{n+m}(x) \leq \psi_{n}(x)+\psi_{m}\left(f^{n} x\right)
$$

Define the sub-additive pressure as before:

$$
P\left(f,\left\{\psi_{n}\right\}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{x \in \text { fix } f^{n}} \exp \psi_{n}(x)
$$

Many notions carry over to the sub-additive setting.
J. Phys. A: Math. Gen. 21 (1988) L737-L742. Printed in the UK

A subadditive thermodynamic formalism for mixing repellers

K J Falconer
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK

Iterated function systems

A family S_{1}, \ldots, S_{m} of contractions on $D \subseteq \mathbb{R}^{N}$, i.e.

$$
\left|S_{i}(x)-S_{i}(y)\right| \leq c_{i}|x-y| \quad x, y \in D, \quad c_{i}<1
$$

is called an iterated function system (IFS).
Given an IFS there exists a unique, non-empty compact set E satisfying

$$
E=\bigcup_{i=1}^{m} S_{i}(E)
$$

called the attractor of the IFS.

Iterated function systems

A family S_{1}, \ldots, S_{m} of contractions on $D \subseteq \mathbb{R}^{N}$, i.e.

$$
\left|S_{i}(x)-S_{i}(y)\right| \leq c_{i}|x-y| \quad x, y \in D, \quad c_{i}<1
$$

is called an iterated function system (IFS).
Given an IFS there exists a unique, non-empty compact set E satisfying

$$
E=\bigcup_{i=1}^{m} S_{i}(E)
$$

called the attractor of the IFS.
If the S_{i} are similarities E is called a self-similar set.
If the S_{i} are conformal maps E is called a self-conformal set.
If the $S_{i}=T_{i}+\omega_{i}$ are affine contractions on \mathbb{R}^{N}, where the T_{i} are non-singular contracting linear mappings on \mathbb{R}^{N} and $\omega_{i} \in \mathbb{R}^{N}$ are translation vectors, E is a self-affine set.

self-conformal

self-similar
nonlinear, nonconformal

Taking a (large) initial domain B we get an iterated construction of E :

$$
E=\bigcap_{k=0}^{\infty} \bigcup_{i_{1}, \ldots, i_{k}} S_{i_{1}} \circ \cdots \circ S_{i_{k}}(B) .
$$

We also get a coding of points of E : if $\mathbf{i}=\left(i_{1}, i_{2}, \ldots\right) \in\{1,2, \ldots, m\}^{\mathbb{N}}$, let $x(\mathbf{i}) \equiv x\left(i_{1}, i_{2}, \ldots\right)=\lim _{k \rightarrow \infty} S_{i_{1}} \circ S_{i_{2}} \circ \cdots \circ S_{i_{k}}(0)$.
Then

$$
E=\bigcup_{i_{1}, i_{2}, \ldots} x\left(i_{1}, i_{2}, \ldots\right) .
$$

Dimensions of self-affine sets - Upper bounds

To find the Hausdorff dimension of E we need to consider sums $\sum\left|U_{i}\right|^{s}$ where $\left\{U_{i}\right\}$ is a cover of E.
Suppose some covering set U_{i} is 'long and thin', e.g. an ellipse with semi-axes $\alpha_{1} \geq \alpha_{2}$.
The contribution to $\sum\left|U_{i}\right|^{s}$ from U_{i} is $\approx \alpha_{1}^{s}$.
OR we can cut U_{i} into α_{1} / α_{2} pieces $\left\{V_{j}\right\}_{j=1}^{\alpha_{1} / \alpha_{2}}$ that are roughly square with side α_{2}, to replace $\left|U_{i}\right|^{s}$ by

$$
\sum_{j=1}^{\alpha_{1} / \alpha_{2}}\left|V_{j}\right|^{s} \approx \frac{\alpha_{1}}{\alpha_{2}} \alpha_{2}^{s}=\alpha_{1} \alpha_{2}^{s-1} \quad \text { which is } \ll \alpha_{1}^{s} \text { if } s>1
$$

Thus we define the singular values $\alpha_{1} \geq \alpha_{2} \geq 0$ of a linear mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be the semi-axis lengths of T (unit ball):

Equivalently α_{i} are the + ve square roots of the eigenvalues of $T T^{*}$.

Thus we define the singular values $\alpha_{1} \geq \alpha_{2} \geq 0$ of a linear mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be the semi-axis lengths of T (unit ball):

Equivalently α_{i} are the + ve square roots of the eigenvalues of $T T^{*}$. We define the singular value function of T by

$$
\phi^{s}(T)= \begin{cases}\alpha_{1}^{s} & (0 \leq s \leq 1) \\ \alpha_{1} \alpha_{2}^{s-1} & (1 \leq s \leq 2)\end{cases}
$$

More generally for T on $\mathbb{R}^{N}, \phi^{s}(T)=\alpha_{1} \ldots \alpha_{p-1} \alpha_{p}^{s-p+1}$ where $p-1 \leq s \leq p$.

Thus we define the singular values $\alpha_{1} \geq \alpha_{2} \geq 0$ of a linear mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be the semi-axis lengths of T (unit ball):

Equivalently α_{i} are the + ve square roots of the eigenvalues of $T T^{*}$. We define the singular value function of T by

$$
\phi^{s}(T)= \begin{cases}\alpha_{1}^{s} & (0 \leq s \leq 1) \\ \alpha_{1} \alpha_{2}^{s-1} & (1 \leq s \leq 2)\end{cases}
$$

More generally for T on $\mathbb{R}^{N}, \phi^{s}(T)=\alpha_{1} \ldots \alpha_{p-1} \alpha_{p}^{s-p+1}$ where $p-1 \leq s \leq p$.

1. ϕ^{5} is submultiplicative:

$$
\phi^{s}\left(T_{1} T_{2}\right) \leq \phi^{s}\left(T_{1}\right) \phi^{s}\left(T_{2}\right)
$$

2. If T is contracting, $\phi^{s}(T)$ is decreasing in s.

Let $S_{i}(x)=T_{i}(x)+\omega_{i}$ be an affine IFS with attractor E.
For each k :

$$
E \subseteq \bigcup_{i_{1} \ldots i_{k}} S_{i_{1}} \circ \cdots \circ S_{i_{k}}(B)
$$

Each $S_{i_{1}} \circ \cdots \circ S_{i_{k}}(B)$ is an ellipse, with semi-axes the singular values of $T_{i_{1}} \circ \cdots \circ T_{i_{k}}$

Let $S_{i}(x)=T_{i}(x)+\omega_{i}$ be an affine IFS with attractor E.
For each k :

$$
E \subseteq \bigcup_{i_{1} \ldots i_{k}} S_{i_{1}} \circ \cdots \circ S_{i_{k}}(B)
$$

Each $S_{i_{1}} \circ \cdots \circ S_{i_{k}}(B)$ is an ellipse, with semi-axes the singular values of $T_{i_{1}} \circ \cdots \circ T_{i_{k}}$

Thus, for k large enough,

$$
\begin{array}{rlr}
\mathcal{H}_{\delta}^{s}(E) & \leq \begin{cases}\sum_{i_{1} \ldots i_{k}} \alpha_{1}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right)^{s} & (0 \leq s \leq 1) \\
\sum_{i_{1} \ldots i_{k}} \alpha_{1}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right) \alpha_{2}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right)^{s-1} & (1 \leq s \leq 2)\end{cases} \\
& =\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right) .
\end{array}
$$

Hence, writing

$$
\Phi_{k}^{s} \equiv \sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right)
$$

we get $\mathcal{H}_{\delta}^{s}(E) \leq \Phi_{k}^{s}$ for large k.
By submultiplicativity, $\Phi_{k+1}^{s} \leq \Phi_{k}^{s} \Phi_{l}^{s}$ so

$$
\lim _{k \rightarrow \infty}\left(\Phi_{k}^{s}\right)^{1 / k} \equiv \Phi^{s} \quad \text { exists. }
$$

[Note that (assuming strong separation) defining $f(x)=T_{i}^{-1}(x)$ if $x \in S_{i}(B), \psi_{k}^{s}(x):=\log \phi^{s}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right) \equiv \log \phi^{s}\left(\left(D_{x} f^{k}\right)^{-1}\right)$, is a sub-additive potential.]

Hence, writing

$$
\Phi_{k}^{s} \equiv \sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right)
$$

we get $\mathcal{H}_{\delta}^{s}(E) \leq \Phi_{k}^{s}$ for large k.
By submultiplicativity, $\Phi_{k+l}^{s} \leq \Phi_{k}^{s} \Phi_{l}^{s}$ so

$$
\lim _{k \rightarrow \infty}\left(\Phi_{k}^{s}\right)^{1 / k} \equiv \Phi^{s} \quad \text { exists. }
$$

[Note that (assuming strong separation) defining $f(x)=T_{i}^{-1}(x)$ if $x \in S_{i}(B), \psi_{k}^{s}(x):=\log \phi^{s}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right) \equiv \log \phi^{s}\left(\left(D_{x} f^{k}\right)^{-1}\right)$, is a sub-additive potential.]
Thus if $\Phi^{s}<1$ then $\mathcal{H}^{s}(E)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(E) \leq \lim _{k \rightarrow \infty}\left(\Phi_{k}^{s}\right)=0$, so

$$
\operatorname{dim}_{H} E \leq\left(\overline{\operatorname{dim}}_{B} E\right) \leq s \text { where } s \text { satisfies } \Phi^{s}=1
$$

The value of s satisfying $\Phi^{s}\left(T_{1}, \cdots, T_{m}\right) \equiv \Phi^{s}=1$ is the affinity dimension $\operatorname{dim}_{\text {aff }} E$ of the self-affine set E. Thus $\operatorname{dim}_{\text {aff }} E$ is always an upper bound for $\operatorname{dim}_{H} E$ and and also for $\operatorname{dim}_{B} E$.

Q: When does $\operatorname{dim}_{H} E=\operatorname{dim}_{B}=E \operatorname{dim}_{\text {aff }} E$?

Self-affine sets - Generic results

Let $S_{i}(x)=T_{i}(x)+\omega_{i}$ be affine maps on \mathbb{R}^{N} where the T_{i} are linear and ω_{i} are translations. Let E_{ω} be the self-affine attractor where $\omega \equiv\left(\omega_{1}, \ldots, \omega_{m}\right)$. Recall $\operatorname{dim}_{\text {aff }} E=s$ where $\Phi^{s}=\Phi^{s}\left(T_{1}, \ldots, T_{m}\right)=1$.

Theorem (F 1988, Solomyak 1998) If $\left\|T_{i}\right\|<\frac{1}{2}$ for all i then

$$
\begin{equation*}
\operatorname{dim}_{H} E_{\omega}=\operatorname{dim}_{B} E_{\omega}=\min \left\{\operatorname{dim}_{\mathrm{aff}} E, N\right\} \tag{1}
\end{equation*}
$$

for almost all $\left(\omega_{1}, \ldots, \omega_{m}\right) \in \mathbb{R}^{N m}$ w.r.t. Nm-dimensional Lebesgue measure.

Conditions that ensure $\operatorname{dim} E=\operatorname{dim}_{\mathrm{aff}} E$

One seeks conditions that guarantee that the dimension of E equals the affinity dimension. Here is an early result.

Theorem (F 1992)
Let $S_{i}(x)=T_{i}(x)+\omega_{i}$ be an IFS of affine contractions on \mathbb{R}^{2} with attractor E. Suppose that
(a) the open set condition holds,
(b) there is a $c>0$ such that the Lebesgue measure of the projection of E onto every line is $\geq c$.

Then

$$
\operatorname{dim}_{B} E=\operatorname{dim}_{\mathrm{aff}} E
$$

Similar conclusions hold for affine IFSs on \mathbb{R}^{N}.

Examples: Generalised Sierpínski triangles where $\operatorname{dim}_{B} E=\operatorname{dim}_{\mathrm{aff}} E$:

1. $\alpha=0.75, b=0.5$ (case (i))

2. $a=0.5, b=0.25$

3. $a=0.25, b=0.5$ (case (ii))

4. $a=0.5, b=0.75$

Self-affine sets where the dimension is not given by $\operatorname{dim}_{\mathrm{aff}} E$

Bedford-McMullen carpet (1984)

Gatzouras-Lalley carpet (1992)

Barański carpet (2007)

Conditions that ensure $\operatorname{dim} E=\operatorname{dim}_{\mathrm{aff}} E$

These examples suggest that it is the alignment of the components in the self-affine construction that lead to the dimensions of the sets being less than the affinity dimension.

Over the last 10 years ergodic theory methods have been employed to obtain increasingly general conditions that ensure $\operatorname{dim}_{H} E=\operatorname{dim}_{\mathrm{aff}} E$ for identifiable self-affine E. (Käenmäki, Bárány, Kempton, F, Hochman, Rapaport, Shmerkin, Morris,...)

Conditions that ensure $\operatorname{dim} E=\operatorname{dim}_{\mathrm{aff}} E$

These examples suggest that it is the alignment of the components in the self-affine construction that lead to the dimensions of the sets being less than the affinity dimension.

Over the last 10 years ergodic theory methods have been employed to obtain increasingly general conditions that ensure $\operatorname{dim}_{H} E=\operatorname{dim}_{\text {aff }} E$ for identifiable self-affine E. (Käenmäki, Bárány, Kempton, F, Hochman, Rapaport, Shmerkin, Morris,...)
Theorem (Bárány, Hochman \& Rapaport 2019) Let $E \subset \mathbb{R}^{2}$ be self-affine satisfying strong separation such that no finite union of lines through 0 is preserved by all of T_{1}, \ldots, T_{m}. Then

$$
\operatorname{dim}_{H} E=\operatorname{dim}_{B} E=\operatorname{dim}_{\mathrm{aff}} E
$$

Conditions that ensure $\operatorname{dim} E=\operatorname{dim}_{\mathrm{aff}} E$

These examples suggest that it is the alignment of the components in the self-affine construction that lead to the dimensions of the sets being less than the affinity dimension.

Over the last 10 years ergodic theory methods have been employed to obtain increasingly general conditions that ensure $\operatorname{dim}_{H} E=\operatorname{dim}_{\mathrm{aff}} E$ for identifiable self-affine E. (Käenmäki, Bárány, Kempton, F, Hochman, Rapaport, Shmerkin, Morris,...)
Theorem (Bárány, Hochman \& Rapaport 2019) Let $E \subset \mathbb{R}^{2}$ be self-affine satisfying strong separation such that no finite union of lines through 0 is preserved by all of T_{1}, \ldots, T_{m}. Then

$$
\operatorname{dim}_{H} E=\operatorname{dim}_{B} E=\operatorname{dim}_{\mathrm{aff}} E
$$

Theorem (Morris + Rapaport, Recent) The analogous result for self-affine $E \subset \mathbb{R}^{3}$ holds.

Conditions that ensure $\operatorname{dim} E=\operatorname{dim}_{\text {aff }} E$

These examples suggest that it is the alignment of the components in the self-affine construction that lead to the dimensions of the sets being less than the affinity dimension.

Over the last 10 years ergodic theory methods have been employed to obtain increasingly general conditions that ensure $\operatorname{dim}_{H} E=\operatorname{dim}_{\mathrm{aff}} E$ for identifiable self-affine E. (Käenmäki, Bárány, Kempton, F, Hochman, Rapaport, Shmerkin, Morris,...)
Theorem (Bárány, Hochman \& Rapaport 2019) Let $E \subset \mathbb{R}^{2}$ be self-affine satisfying strong separation such that no finite union of lines through 0 is preserved by all of T_{1}, \ldots, T_{m}. Then

$$
\operatorname{dim}_{H} E=\operatorname{dim}_{B} E=\operatorname{dim}_{\mathrm{aff}} E
$$

Theorem (Morris + Rapaport, Recent) The analogous result for self-affine $E \subset \mathbb{R}^{3}$ holds.
Q: Obtain analogues for self-affine $E \subset \mathbb{R}^{N}$ for $N \geq 4$.
Q: Show these are valid with a weaker separation condition.
Q: Show that the box dimension $\operatorname{dim}_{B} E$ exists for all self-affine E.

Moment sums and L^{\square}-dimensions

Let \mathcal{M}_{r} be the mesh of side r.
Define the q-th power moment sum of a measure μ on \mathbb{R}^{n} by

$$
\begin{equation*}
M_{r}(q)=\sum_{C \in \mathcal{M}_{r}} \mu(C)^{q} . \tag{1}
\end{equation*}
$$

Then the L^{q}-dimension or generalised q dimension of μ is given by

$$
D_{q}(\mu)=\frac{1}{q-1} \lim _{r \rightarrow 0} \frac{\log M_{r}(q)}{\log r} \quad(q>0, q \neq 1) .
$$

(or lim inf, lim sup). Equivalently we may replace (1) by a moment integral

$$
M_{r}(q)=\int \mu(B(x, r))^{q-1} d \mu(x) \quad(q>0, q \neq 1)
$$

Measures on self-affine sets

Let E_{ω} be the self affine set defined by the IFS $\left\{T_{1}+\omega_{1}, \ldots, T_{m}+\omega_{m}\right\}$.

Let p_{1}, \ldots, p_{m} be probabilities (so $0<p_{i}<1$ and $\sum p_{i}=1$). Let μ be the Bernoulli probability measure on $\{1, \ldots, m\}^{\mathbb{N}}$ defined by

$$
\mu\left(C_{\mathbf{i}}\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}
$$

where $\mathbf{i}=\left(i_{1}, \ldots, i_{k}\right)$ and $C_{\mathbf{i}}$ is the corresponding cylinder.

Let μ_{ω} be the image measure of μ under X_{ω}, which is supported by E_{ω}. Thus $\mu_{\omega}\left(\left(T_{i_{1}}+\omega_{i_{1}}\right) \cdots\left(T_{i_{k}}+\omega_{i_{k}}\right)(B)\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$.
We would like to find $D_{q}\left(\mu_{\omega}\right)$.

WIth a 'cutting up ellipses' argument, it is natural to introduce for $q>0$

$$
\Phi_{q}^{s}:=\lim _{k \rightarrow \infty}\left(\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}\right)^{1-q} \mu\left(C_{i_{1}, i_{2}, \ldots, i_{k}}\right)^{q}\right)^{1 / k} .
$$

This exists by sub/supermultiplicativity, and $\log \Phi_{q}^{s}$ is a sub/superadditive pressure. We define s_{q} by $\Phi_{q}^{s_{q}}=1$.

WIth a 'cutting up ellipses' argument, it is natural to introduce for $q>0$

$$
\Phi_{q}^{s}:=\lim _{k \rightarrow \infty}\left(\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}\right)^{1-q} \mu\left(C_{i_{1}, i_{2}, \ldots, i_{k}}\right)^{q}\right)^{1 / k} .
$$

This exists by sub/supermultiplicativity, and $\log \Phi_{q}^{s}$ is a sub/superadditive pressure. We define s_{q} by $\Phi_{q}^{s_{q}}=1$.

Theorem (F 1999)
(a) For $q>0$ the L^{q}-dimensions of μ_{ω} on the self-affine set E_{ω} satisfy

$$
\begin{equation*}
D_{q}\left(\mu_{\omega}\right) \leq \min \left\{s_{q}, n\right\} . \tag{1}
\end{equation*}
$$

(b) If $\left\|T_{i}\right\|<\frac{1}{2}$ for all i and $1<q \leq 2$ then there is equality in (1) for almost all $\omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$.

Theorem (F 1999)

(a) For $q>0$ the L^{q}-dimensions of μ_{ω} on the self-affine set E_{ω} satisfy

$$
\begin{equation*}
D_{q}\left(\mu_{\omega}\right) \leq \min \left\{s_{q}, n\right\} . \tag{1}
\end{equation*}
$$

(b) If $\left\|T_{i}\right\|<\frac{1}{2}$ for all i and $1<q \leq 2$ then there is equality in (1) for almost all $\omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$.

Theorem (F 1999)

(a) For $q>0$ the L^{q}-dimensions of μ_{ω} on the self-affine set E_{ω} satisfy

$$
\begin{equation*}
D_{q}\left(\mu_{\omega}\right) \leq \min \left\{s_{q}, n\right\} . \tag{1}
\end{equation*}
$$

(b) If $\left\|T_{i}\right\|<\frac{1}{2}$ for all i and $1<q \leq 2$ then there is equality in (1) for almost all $\omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$.

Note there are phase transitions in s_{q} at integer values.
Various partial extensions outside the range $1<q \leq 2$ by Barral \& Feng (2013), including the multifractal formalism.

Theorem (F 1999)
(a) For $q>0$ the L^{q}-dimensions of μ_{ω} on the self-affine set E_{ω} satisfy

$$
\begin{equation*}
D_{q}\left(\mu_{\omega}\right) \leq \min \left\{s_{q}, n\right\} . \tag{1}
\end{equation*}
$$

(b) If $\left\|T_{i}\right\|<\frac{1}{2}$ for all i and $1<q \leq 2$ then there is equality in (1) for almost all $\omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$.

Note there are phase transitions in s_{q} at integer values.
Various partial extensions outside the range $1<q \leq 2$ by Barral \& Feng (2013), including the multifractal formalism.

Q: What almost sure conclusions (if any) are there if $q>2$?
Q: Find specific classes of sets with equality in (1). For $1<q \leq 2$ one might hope this is the 'usually' the case for Benoulli measures on self-affine sets with equal Hausdorff and affinity dimension.
Q: What happens for $0<q<1$? The upper bound in (1) does not in general give the generic value (example by Barral \& Feng 2013).

Almost self-affine sets

Can we remove the restrictions $\left\|T_{i}\right\|<\frac{1}{2}$ and $1<q<2$ in (b) above? Recall for self-affine sets $E_{\omega}=\bigcup_{\mathbf{i} \in\{1, \ldots, m\}^{\mathbb{N}}} X_{\omega}(\mathbf{i})$ where

$$
\begin{aligned}
x_{\omega}(\mathbf{i}) & =\lim _{k \rightarrow \infty}\left(T_{i_{1}}+\omega_{i_{1}}\right)\left(T_{i_{2}}+\omega_{i_{2}}\right) \cdots\left(T_{i_{k}}+\omega_{i_{k}}\right)(0) \\
& =\omega_{i_{1}}+T_{i_{1}} \omega_{i_{2}}+T_{i_{1}} T_{i_{2}} \omega_{i_{3}}+\cdots
\end{aligned}
$$

Almost self-affine sets

Can we remove the restrictions $\left\|T_{i}\right\|<\frac{1}{2}$ and $1<q<2$ in (b) above? Recall for self-affine sets $E_{\omega}=\bigcup_{\mathbf{i} \in\{1, \ldots, m\}^{\mathbb{N}}} x_{\omega}(\mathbf{i})$ where

$$
\begin{aligned}
x_{\omega}(\mathbf{i}) & =\lim _{k \rightarrow \infty}\left(T_{i_{1}}+\omega_{i_{1}}\right)\left(T_{i_{2}}+\omega_{i_{2}}\right) \cdots\left(T_{i_{k}}+\omega_{i_{k}}\right)(0) \\
& =\omega_{i_{1}}+T_{i_{1}} \omega_{i_{2}}+T_{i_{1}} T_{i_{2}} \omega_{i_{3}}+\cdots
\end{aligned}
$$

Introduce a random perturbation at each stage of the construction:

$$
\begin{aligned}
x_{\omega}(\mathbf{i}) & =\lim _{k \rightarrow \infty}\left(T_{i_{1}}+\omega_{i_{1}}\right)\left(T_{i_{2}}+\omega_{i_{1}, i_{2}}\right)\left(T_{i_{3}}+\omega_{i_{1}, i_{2}, i_{3}}\right) \cdots\left(T_{i_{k}}+\omega_{i_{1}, i_{2}, \ldots i_{k}}\right)(0) \\
& =\omega_{i_{1}}+T_{i_{1}} \omega_{i_{1}, i_{2}}+T_{i_{1}} T_{i_{2}} \omega_{i_{1}, i_{2}, i_{3}}+\cdots
\end{aligned}
$$

where $\omega_{i_{1}, i_{2}, \ldots, i_{k}}$ are i.i.d random 'perturbations'.

We call $E_{\omega}=\bigcup_{i} x_{\omega}(\mathbf{i})$ almost self-affine (Jordan, Pollicott \& Simon 2007).

For μ_{ω} as above, so $\mu_{\omega}\left(C_{\mathbf{i}}\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$ for the cylinder C_{i}, let

$$
\Phi_{q}^{s}=\lim _{k \rightarrow \infty}\left(\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}\right)^{1-q} \mu\left(C_{i_{1}, i_{2}, \ldots, i_{k}}\right)^{q}\right)^{1 / k}
$$

Again the natural candidate for the L^{q}-dimensions of μ is the number s_{q} satisfying $\Phi_{q}^{S_{q}}=1$.

For μ_{ω} as above, so $\mu_{\omega}\left(C_{\mathbf{i}}\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$ for the cylinder $C_{\mathbf{i}}$, let

$$
\Phi_{q}^{s}=\lim _{k \rightarrow \infty}\left(\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}\right)^{1-q} \mu\left(C_{i_{1}, i_{2}, \ldots, i_{k}}\right)^{q}\right)^{1 / k},
$$

Again the natural candidate for the L^{q}-dimensions of μ is the number s_{q} satisfying $\Phi_{q}^{5_{q}}=1$.

Theorem (F 2010)

Let $\left\|T_{i}\right\|<1$ for all i. Let μ_{ω} be the measure on the almost self-affine set E_{ω} such that $\mu_{\omega}\left(C_{i}\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$ for cylinder C_{i}.
(a) If $q>0$, the L^{q}-dimensions of μ_{ω} on the almost self-affine set E_{ω} satisfy

$$
\begin{equation*}
D_{q}\left(\mu_{\omega}\right) \leq \min \left\{s_{q}, n\right\} \quad \text { where } \quad \Phi_{q}^{s_{q}}=1 . \tag{1}
\end{equation*}
$$

(b) If $q>1$, then for almost all $\omega=\left\{\omega_{i_{1}, i_{2}, \ldots, i_{k}}\right\}$ there is equality in (1).

For μ_{ω} as above, so $\mu_{\omega}\left(C_{\mathbf{i}}\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$ for the cylinder C_{i}, let

$$
\Phi_{q}^{s}=\lim _{k \rightarrow \infty}\left(\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k}}\right)^{1-q} \mu\left(C_{i_{1}, i_{2}, \ldots, i_{k}}\right)^{q}\right)^{1 / k},
$$

Again the natural candidate for the L^{q}-dimensions of μ is the number s_{q} satisfying $\Phi_{q}^{5_{q}}=1$.

Theorem (F 2010)

Let $\left\|T_{i}\right\|<1$ for all i. Let μ_{ω} be the measure on the almost self-affine set E_{ω} such that $\mu_{\omega}\left(C_{i}\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$ for cylinder C_{i}.
(a) If $q>0$, the L^{q}-dimensions of μ_{ω} on the almost self-affine set E_{ω} satisfy

$$
\begin{equation*}
D_{q}\left(\mu_{\omega}\right) \leq \min \left\{s_{q}, n\right\} \quad \text { where } \quad \Phi_{q}^{s_{q}}=1 . \tag{1}
\end{equation*}
$$

(b) If $q>1$, then for almost all $\omega=\left\{\omega_{i_{1}, i_{2}, \ldots, i_{k}}\right\}$ there is equality in (1).

Q: How much randomness do we really need for these conclusions to remain valid?

Nonlinear analogue

The attractor of an IFS $\left\{S_{1}, \ldots, S_{m}\right\}$ may be thought of as a repeller of an expanding dynamical system f on defined by $\left.f\right|_{S_{i}(D)}=S_{i}^{-1}$ for a suitable domain D. If the $S_{i}=T_{i}+\omega_{i}$ are affine, the pressure expression

$$
\Phi^{s} \equiv \Phi^{s}\left(T_{1}, \ldots, T_{m}\right)=\lim _{k \rightarrow \infty}\left(\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ \cdots \circ T_{i_{k}}\right)\right)^{1 / k}
$$

can be written

$$
\begin{equation*}
\Phi^{s}=\lim _{k \rightarrow \infty}\left(\sum_{x \in \mathrm{fix} f^{k}} \phi^{s}\left(D_{x} f^{k}\right)^{-1}\right)^{1 / k} \tag{1}
\end{equation*}
$$

where the sum is over the fixed points of f^{k} (there will be one such fixed point in each set $S_{i_{1}} \circ \cdots \circ S_{i_{k}}(D)$). As above the dimension of such a repeller is given by $\Phi^{s}=1$ in various cases.
What if $f: D \rightarrow D$ is a C^{1} expanding hyperbolic map? (1) might lead to a dimension formula for the repeller of f. If f is conformal, then this is Bowen's formula.

Theorem (F 1994)

Let D be a suitable domain in \mathbb{R}^{2} and $f: D \rightarrow D$ as above be a $C^{1+\epsilon}$ strictly expanding and topologically mixing with repeller E. Define s by

$$
\begin{equation*}
\Phi^{s}:=\lim _{k \rightarrow \infty}\left(\sum_{x \in \mathrm{fixf}^{k}} \phi^{s}\left(D_{x} f^{k}\right)^{-1}\right)^{1 / k}=1 . \tag{1}
\end{equation*}
$$

(a) Given one-bunched' condition $\left\|\left(D_{x} f\right)^{-1}\right\|^{2}\left\|D_{x} f\right\|<1$ all $x \in D$, then $\operatorname{dim}_{H} E \leq \operatorname{dim}_{B} E \leq s$.
(b) If also E has a connected component not contained in a line segment then $\operatorname{dim}_{B} E=s$.

Theorem (F 1994)

Let D be a suitable domain in \mathbb{R}^{2} and $f: D \rightarrow D$ as above be a $C^{1+\epsilon}$ strictly expanding and topologically mixing with repeller E. Define s by

$$
\begin{equation*}
\Phi^{s}:=\lim _{k \rightarrow \infty}\left(\sum_{x \in \mathrm{fix}^{k}} \phi^{s}\left(D_{x} f^{k}\right)^{-1}\right)^{1 / k}=1 \tag{1}
\end{equation*}
$$

(a) Given one-bunched' condition $\left\|\left(D_{x} f\right)^{-1}\right\|^{2}\left\|D_{x} f\right\|<1$ all $x \in D$, then $\operatorname{dim}_{H} E \leq \operatorname{dim}_{B} E \leq s$.
(b) If also E has a connected component not contained in a line segment then $\operatorname{dim}_{B} E=s$.

Recently Feng \& Simon showed that the upper bound still holds without the one-bunched condition and with f just C^{1}. They also showed that for some prarmeterised families of IFSs, e.g. with lower triangular determinant matrix, $\operatorname{dim}_{H} E=\operatorname{dim}_{B} E=s$ for almost all parameters.
Q: Does $\operatorname{dim}_{H} E=\operatorname{dim}_{B} E=s$ where s is given by (1) hold in a 'generic' sense?

Nonlinear IFSs preserving vertical lines

Let $\left\{S_{i}\right\}_{i=1}^{m}$ be an iterated function system on $[0,1]^{2}$ of the form

$$
S_{i}(x, y)=\left(f_{i}(x), g_{i}(x, y)\right), \quad f_{i}, g_{i} \in C^{1+\epsilon}
$$

so the S_{i} preserve vertical lines. The derivatives of the S_{i} have lower-triangular form:

$$
D_{\mathbf{a}} S_{i}=\left(\begin{array}{cc}
f_{i, x}(\mathbf{a}) & 0 \\
g_{i, x}(\mathbf{a}) & g_{i, y}(\mathbf{a})
\end{array}\right), \quad\left(\mathbf{a} \in[0,1]^{2}\right)
$$

We assume:

- Rectangular open set condition: $\left\{\operatorname{int} S_{i}\left([0,1]^{2}\right)\right\}_{i=1}^{m}$ are disjoint;
- Domination condition:

There is more contraction in y-direction then the x-direction.

Example

$$
\begin{aligned}
& S_{1}(x, y)=\left(\frac{3 x}{5}+\frac{3 x^{2}}{40}, \frac{x^{2}}{12}+\frac{y}{6}\right), \\
& S_{2}(x, y)=\left(\frac{4 x}{5}-\frac{4 x^{3}}{30}+\frac{1}{3}, \frac{x^{2}}{10}+\frac{y}{4}+\frac{17}{50}\right), \\
& S_{3}(x, y)=\left(\frac{3 x}{5}, \frac{x^{2}}{10}+\frac{y}{5}+\frac{y^{3}}{9}+\frac{26}{45}\right) .
\end{aligned}
$$

Triangular iterated form

Recall our IFS $\left\{S_{i}\right\}_{i=1}^{m}$ on $[0,1]^{2}$:

$$
S_{i}(x, y)=\left(f_{i}(x), g_{i}(x, y)\right) \text { and } D_{\mathbf{a}} S_{i}=\left(\begin{array}{cc}
f_{i, x}(\mathbf{a}) & 0 \\
g_{i, x}(\mathbf{a}) & g_{i, y}(\mathbf{a})
\end{array}\right) .
$$

Iterate the IFS mappings and write $S_{i}=S_{i_{i}} \circ \cdots \circ S_{i_{k}}$ where $\mathbf{i}=i_{i}, \ldots, i_{k} \in \mathcal{I}^{k}:=\{1,2, \ldots, m\}^{k}$. Write

$$
D_{\mathbf{a}} S_{\mathbf{i}} \equiv D_{\mathbf{a}}\left(S_{i_{i}} \circ \cdots \circ S_{i_{k}}\right)=\left(\begin{array}{cc}
f_{\mathbf{i}, x}(\mathbf{a}) & 0 \\
g_{\mathbf{i}, x}(\mathbf{a}) & g_{\mathbf{i}, y}(\mathbf{a})
\end{array}\right), \quad\left(\mathbf{a} \in[0,1]^{2}\right) .
$$

for the derivatives of the iterates. Estimates using the domination condition give, uniformly in $\mathbf{i} \in \mathcal{I}^{*} \equiv \cup_{k=1}^{\infty} \mathcal{I}^{k}$ and $\mathbf{a}, \mathbf{b} \in[0,1]^{2}$,

$$
\begin{gathered}
\alpha_{1}\left(D_{\mathbf{a}} S_{\mathbf{i}}\right) \asymp\left|f_{\mathbf{i}, x}(\mathbf{a})\right| \asymp\left|f_{\mathbf{i}, x}(\mathbf{b})\right| \\
\alpha_{2}\left(D_{\mathbf{a}} S_{\mathbf{i}}\right) \asymp\left|g_{\mathbf{i}, y}(\mathbf{a})\right| \asymp\left|g_{\mathbf{i}, y}(\mathbf{b})\right| \\
\left|g_{\mathbf{i}, x}(\mathbf{a})\right| \leq C\left|f_{\mathbf{i}, x}(\mathbf{b})\right| .
\end{gathered}
$$

Modified singular value function

Let μ be a Bernoulli measure on F defined by probabilities $\left\{p_{i}\right\}_{i=1}^{m}$. The projection $\pi(\mu)$ of μ onto the x-axis is a Bernoulli measure on the self-conformal set $\pi(F)$, so the L^{q}-spectrum of $\pi(\mu)$

$$
\beta(q):=(q-1) D_{q}(\pi(\mu)),
$$

exists for $q \geq 0$ (Peres \& Solomyak). For $s \in \mathbb{R}, q \geq 0$ and $\mathbf{a} \in[0,1]^{2}$, define the q-modified singular value function, $\psi_{\mathbf{a}}^{s, q}$, by

$$
\begin{aligned}
\psi_{\mathbf{a}}^{\mathbf{s}, q}(\mathbf{i}) & =p(\mathbf{i})^{q} \alpha_{1}\left(D_{\mathbf{a}} S_{\mathbf{i}}\right)^{\beta(q)} \alpha_{2}\left(D_{\mathbf{a}} S_{\mathbf{i}}\right)^{s-\beta(q)} \quad\left(\mathbf{i} \in \mathcal{I}^{*} \equiv \cup_{k=1}^{\infty} \mathcal{I}^{k}\right) \\
& \asymp p(\mathbf{i})^{q}\left|\mathrm{f}_{\mathbf{i}, x}(\mathbf{a})\right|^{\beta(q)}\left|g_{\mathbf{i}, y}(\mathbf{a})\right|^{s-\beta(q)} .
\end{aligned}
$$

Modified singular value function

Let μ be a Bernoulli measure on F defined by probabilities $\left\{p_{i}\right\}_{i=1}^{m}$. The projection $\pi(\mu)$ of μ onto the x-axis is a Bernoulli measure on the self-conformal set $\pi(F)$, so the L^{q}-spectrum of $\pi(\mu)$

$$
\beta(q):=(q-1) D_{q}(\pi(\mu)),
$$

exists for $q \geq 0$ (Peres \& Solomyak). For $s \in \mathbb{R}, q \geq 0$ and $\mathbf{a} \in[0,1]^{2}$, define the q-modified singular value function, $\psi_{\mathbf{a}}^{s, q}$, by

$$
\begin{aligned}
\psi_{\mathbf{a}}^{\mathbf{s , q}}(\mathbf{i}) & =p(\mathbf{i})^{q} \alpha_{1}\left(D_{\mathbf{a}} S_{\mathbf{i}}\right)^{\beta(q)} \alpha_{2}\left(D_{\mathbf{a}} S_{\mathbf{i}}\right)^{s-\beta(q)} \quad\left(\mathbf{i} \in \mathcal{I}^{*} \equiv \cup_{k=1}^{\infty} \mathcal{I}^{k}\right) \\
& \asymp p(\mathbf{i})^{q}\left|\mathbf{f}_{\mathbf{i}, x}(\mathbf{a})\right|^{\beta(q)}\left|g_{\mathbf{i}, y}(\mathbf{a})\right|^{s-\beta(q)} .
\end{aligned}
$$

Then for $s \in \mathbb{R}, q \geq 0$,

$$
\psi_{\mathbf{a}}^{\mathbf{s}, q}(\mathbf{i}) \asymp \psi_{\mathbf{a}}^{\mathbf{s}, q}(\mathbf{i}) \psi_{\mathbf{a}}^{\mathbf{s}, q}(\mathbf{j}) .
$$

uniformly in $\mathbf{i}, \mathbf{j} \in \mathcal{I}^{*}$ and \mathbf{a}. For each k let

$$
\Psi_{\mathbf{a}, k}^{s, q}=\sum_{\mathbf{i} \in \mathcal{I}^{k}} \psi_{\mathbf{a}}^{s, q}(\mathbf{i})
$$

then for $s \in \mathbb{R}, q \geq 0$,

$$
\Psi_{\mathbf{a}, k+\ell}^{s, q} \asymp \Psi_{\mathbf{a}, k}^{s, q} \Psi_{\mathbf{a}, \ell}^{s, q}
$$

uniformly in \mathbf{a}, k and ℓ.

L^{q}-dimensions of μ

We can define a pressure function $P: \mathbb{R} \times[0, \infty) \rightarrow[0, \infty)$ by

$$
\left.P(s, q)=\lim _{k \rightarrow \infty}\left(\Psi_{\mathbf{a}, k}^{s, q}\right)^{1 / k} \quad \text { (independent of } \mathbf{a} \in[0,1]^{2}\right)
$$

Define $\gamma:[0, \infty) \rightarrow \mathbb{R}$ by $P(\gamma(q), q)=1$. Then γ is strictly decreasing, continuous and convex on $[0, \infty)$.

Lq-dimensions of μ

We can define a pressure function $P: \mathbb{R} \times[0, \infty) \rightarrow[0, \infty)$ by

$$
\left.P(s, q)=\lim _{k \rightarrow \infty}\left(\Psi_{\mathbf{a}, k}^{s, q}\right)^{1 / k} \quad \text { (independent of } \mathbf{a} \in[0,1]^{2}\right)
$$

Define $\gamma:[0, \infty) \rightarrow \mathbb{R}$ by $P(\gamma(q), q)=1$. Then γ is strictly decreasing, continuous and convex on $[0, \infty)$.

Theorem (Fraser, Lee, F, 2021) For a nonlinear IFS as above (domination condition, ROSC), and a Bernoulli measure μ on the attractor F, for $q \geq 0$,

$$
D_{q}(\mu)=\frac{\gamma(q)}{q-1}
$$

Thank you

