Typical self-affine sets with non-empty interior

De-Jun Feng

The Chinese University of Hong Kong

Thermodynamic Formalism: Non-additive Aspects and Related Topics May 15-19, 2023, Bedlewo, Poland

(Based on joint work with Zhou Feng)

Supported in part by the HKRGC GRF grant

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• To provide suitable sufficient conditions under which a "typical" self-affine set has non-empty interior.

Preliminaries: self-similar and self-affine sets

- A finite family of contractive mappings f₁,..., f_m on ℝ^d is called an iterated function system (IFS).
- Given an IFS, there exists a unique, nonempty compact $K \subset \mathbb{R}^d$ so that

$$K=\bigcup_{i=1}^m f_i(K).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The set K is called the **attractor** of the IFS.

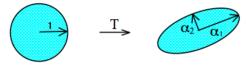
• *K* is called **self-similar** if *f_i* are similarity maps, and **self-affine** if *f_i* are **affine maps**.

Pictures of some self-affine sets

In 1988, Falconer introduced the concept of affinity dimension, and showed that it is a natural upper bound for the Hausdorff and box-counting dimensions of every self-affine set. Moreover, under a mild assumption, it is equal to the Hausdorff and box-counting dimensions of a typical self-affine set.

Notation: singular value function and affinity dimension

For a linear map T : ℝ² → ℝ², let α₁ ≥ α₂ be the singular values of T, i.e. the semi-axis lengths of T(unit ball).



The singular value function of T is defined by

$$\phi^{s}(T) = \begin{cases} \alpha_{1}^{s} & \text{if } 0 \le s \le 1\\ \alpha_{1}\alpha_{2}^{s-1} & \text{if } 1 < s \le 2\\ (\alpha_{1}\alpha_{2})^{s/2} & \text{if } s > 2. \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - 少久?

Notation: singular value function and affinity dimension

• More generally, for $\mathcal{T}:\mathbb{R}^d
ightarrow\mathbb{R}^d$, define

$$\phi^{s}(T) = \begin{cases} \alpha_{1} \dots \alpha_{j-1} \alpha_{j}^{s-j+1} & \text{if } j-1 < s \leq j, \ j = 1, \dots, d, \\\\ (\alpha_{1} \dots \alpha_{d})^{s/d} & \text{if } s > d. \end{cases}$$

- (Sub-multiplicativity): $\phi^{s}(AB) \leq \phi^{s}(A)\phi^{s}(B)$.
- $\mathcal{H}^{s}_{\infty}(\mathcal{T}(\text{unit ball})) \approx_{s,d} \phi^{s}(\mathcal{T})$ for non-integer $s \in (0, d)$, where \mathcal{H}^{s}_{∞} stands for s-dimensional Hausdorff content.

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ < つ < ○ 7/25</p>

Notation: singular value function and affinity dimension

- Let K be the self-affine set generated by an affine IFS $\{T_i x + a_i\}_{i=1}^m$ on \mathbb{R}^d .
- For $\mathbf{i} = i_1 \dots i_n$, set $|\mathbf{i}| = n$ and set $T_{\mathbf{i}} = T_{i_1} \dots T_{i_n}$.
- Define the affinity dimension of K (with respect to T_1, \ldots, T_m) by

$$\dim_{\mathrm{AFF}} \mathcal{K} = \inf \left\{ s \geq 0 : \lim_{n \to \infty} \sum_{|\mathbf{i}|=n} \phi^{s}(\mathcal{T}_{\mathbf{i}}) \leq 1 \right\}.$$

- Clearly, $\dim_{AFF} K$ only depends on T_1, \ldots, T_m .
- dim_{AFF} K is the unique s so that the topological pressure of the sub-additive potential {f_n(x) = log φ^s(T_{x|n})}[∞]_{n=1} is zero.

Theorem

Let K be the self-affine set generated by an affine IFS $\{T_i x + a_i\}_{i=1}^m$ on \mathbb{R}^d . Assume that $||T_i|| < 1/2$ for all i. Then • (Falconer 1988, Solomyak 1998): For \mathcal{L}^{md} -a.e. (a_1, \ldots, a_m) ,

$$\dim_H K = \dim_B K = \min\{d, \dim_{AFF} K\}.$$

• (Jordan-Pollicott-Simon 2007): If dim_{AFF} K > d, then for \mathcal{L}^{md} -a.e. (a_1, \ldots, a_m) , $\mathcal{L}^d(K) > 0$.

Remark: By definition, $\dim_{AFF} K > d \iff \sum_{i=1}^{m} |\det(T_i)| > 1$.

Let *K* be the self-affine set generated by an affine IFS $\{T_i x + a_i\}_{i=1}^m$ on \mathbb{R}^d .

Q: Under which assumptions on (T_1, \ldots, T_m) , K has non-empty interior for almost all (a_1, \ldots, a_m) ?

Although this seems a rather fundamental question, it has hardly been studied.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Define

$$\gamma(T_1,\ldots,T_m) = \inf\left\{\gamma \ge 0 \colon \sup_{n\ge 1} \sum_{|I|=n} \alpha_d(T_I)^{\gamma} \cdot |\det(T_I)| \le 1\right\}$$

The quantity γ(T₁,..., T_m) is the unique γ so that the topological pressure of the super-additive potential

$$\left\{f_n(x) = \log\left(\alpha_d(T_{x|n})^{\gamma} \cdot |\det(T_{x|n})|\right)\right\}_{n=1}^{\infty}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

11/25

is zero.

Theorem A (F.-Feng, 2022). Assume that $||T_i|| < 1/2$ for $1 \le i \le m$, and $\gamma(T_1, \ldots, T_m) > d$. Then K has non-empty interior for \mathcal{L}^{md} -a.e. (a_1, \ldots, a_m) .

Remark: By definition,

 $\gamma(T_1,\ldots,T_m) > d \iff \exists n \text{ such that } \sum_{|I|=n} \alpha_d(T_I)^d |\det(T_I)| > 1.$

Corollary (F.-Feng, 2022). Assume that $||T_i|| < 1/2$ for $1 \le i \le m$. Then K has non-empty interior for \mathcal{L}^{md} -a.e. (a_1, \ldots, a_m) , provided that one of the following two conditions fulfills:

(i) $\sum_{i=1}^{m} \alpha_d(T_i)^d |\det(T_i)| > 1.$

(ii) All T_i are scalar multiples of orthogonal matrices, and $\sum_{i=1}^{m} |\det(T_i)|^2 > 1$.

Remark. Item (ii) corresponds to the self-similar case.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つくぐ

Next we provide an improvement of Theorem A in the special case when the matrices T_1, \ldots, T_m commute.

Theorem B (F.-Feng, 2022). Assume that $||T_i|| < 1/2$ for $1 \le i \le m$. Moreover, suppose that

- $T_i T_j = T_j T_i$ for all $1 \le i, j \le m$, and
- $\sum_{i=1}^{m} |\det(T_i)|^2 > 1.$

Then K has non-empty interior for \mathcal{L}^{md} -a.e. (a_1, \ldots, a_m) .

14/25

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Related work in the literature

• Shmerkin 2006 investigated the affine IFS

 $\Phi_{\alpha,\beta} = \{(\alpha x, \beta y), (\alpha x + 1, \beta y + 1)\}$ on \mathbb{R}^2 . He constructed an open $V \subset \{(\alpha, \beta): 0 < \alpha < \beta < 1, 2\alpha\beta > 1\}$ and showed that for almost all $(\alpha, \beta) \in V$, the attractor $K_{\alpha,\beta}$ of $\Phi_{\alpha,\beta}$ has non-empty interior.

- Dajani-Jiang-Kempton 2014: ∃C ≈ 1.05⁻¹ such that K_{α,β} has non-empty interior for all C < α < β < 1.
- Hare-Sidorov 2016, Hare-Sidorov 2017, Baker 2020: Further improvements of *C*.
- He-Lau-Rao 2003: provided an algorithm to check whether the attractor of an integral affine IFS $\{A^{-1}x + a_i\}_{i=1}^m$ on \mathbb{R}^d has non-empty interior, here A is an integral expanding matrix, $a_i \in \mathbb{Z}^d$.
- Csörnyei-Jordan-Pollicott-Preiss-Solomyak 2006: constructed a rotation-free self-similar set in ℝ² which has positive Lebesgue measure, but has empty interior.

For simplicity, here we only consider the homogeneous case $\{Tx + a_i\}_{i=1}^m$ on \mathbb{R}^d , where

$$||T|| < 1/2, \quad m \cdot \det(T)^2 > 1.$$

It is easily checked that

K = E + TE,

where *E* is the attractor of $\{T^2x + a_i\}_{i=1}^m$. By JPS07, $\mathcal{L}^d(E) > 0$ for a.e. (a_1, \ldots, a_m) . Hence by the Steinhaus theorem, *K* has non-empty interior for a.e. (a_1, \ldots, a_m) .

 Here we use the method of Fourier transform. For a finite Borel measure η on \mathbb{R}^d with compact support, the Fourier transform of η is defined by

$$\widehat{\eta}(\xi) = \int e^{-i\langle \xi,x
angle} \, d\eta(x), \qquad \xi\in \mathbb{R}^d.$$

The following is a classical result (see e.g. Peres-Schlag 2000, Mattila 2015).

Lemma

Suppose that $\int_{\mathbb{R}^d} |\hat{\eta}(\xi)|^2 |\xi|^{\gamma} d\xi < \infty$ for some $\gamma > d$. Then η is absolutely continuous with a continuous density, so its support has non-empty interior.

For a = (a₁,..., a_m), let π^a : Σ = {1,..., m}^N → ℝ^d denote the coding map associated with the IFS {f_i(x) = T_ix + a_i}^m_{i=1}. That is,

$$\pi^{\mathbf{a}}(x) = \lim_{n \to \infty} f_{x_1} \circ f_{x_2} \circ \cdots \circ f_{x_n}(0), \quad x = (x_i)_{i=1}^{\infty}.$$

 For a Borel probability measure μ on Σ, let μ^a := μ ∘ (π^a)⁻¹ denote the projection of μ under π^a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Suppose γ(T₁,..., T_m) > d and ||T_i|| < 1/2. Our purpose is to show that ∃ μ on Σ and γ > d such that

$$\int_{B(0,\rho)} \int_{\mathbb{R}^d} |\widehat{\mu^{\mathbf{a}}}(\xi)|^2 |\xi|^{\gamma} \, d\xi d\mathbf{a} < \infty, \qquad \forall \rho > 0, \qquad (1)$$

which implies $\operatorname{supp}(\mu^{\mathbf{a}})$ has non-empty interior a.e. **a**.

• To prove (??), it suffices to show for every nonnegative $\psi \in C_0^{\infty}(\mathbb{R}^{md})$,

$$\int_{\mathbb{R}^{md}} \int_{\mathbb{R}^d} \psi(\mathbf{a}) |\widehat{\mu^{\mathbf{a}}}(\xi)|^2 |\xi|^{\gamma} d\xi d\mathbf{a} < \infty.$$
 (2)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Notice that

$$\int_{\mathbb{R}^{md}}\int_{\mathbb{R}^d}\psi(\mathbf{a})|\widehat{\mu^{\mathbf{a}}}(\xi)|^2|\xi|^{\gamma}\,d\xi d\mathbf{a}$$

$$= \int_{\mathbb{R}^{md}} \int_{\mathbb{R}^d} \int_{\Sigma} \int_{\Sigma} \psi(\mathbf{a}) e^{-i\langle \xi, \pi^{\mathbf{a}}(x) - \pi^{\mathbf{a}}(y) \rangle} |\xi|^{\gamma} d\mu(x) d\mu(y) d\xi d\mathbf{a}$$

$$=\int_{\Sigma}\int_{\Sigma}\int_{\mathbb{R}^d}\int_{\mathbb{R}^{md}}\psi(\mathbf{a})e^{-i\langle\xi,\pi^{\mathbf{a}}(x)-\pi^{\mathbf{a}}(y)\rangle}|\xi|^{\gamma}d\mathbf{a}d\xi d\mu(x)d\mu(y)$$

Key inequality (I)

For $x, y \in \Sigma$, let $x \wedge y$ denote the common initial segment of x and y.

Proposition

Assume that $\delta := \max_{1 \le i \le m} ||T_i|| < 1/2$. Let $\psi \in C_0^{\infty}(\mathbb{R}^{md})$ and $N \in \mathbb{N}$. Then there exists $C = C(\psi, N, \delta) > 0$ such that

$$\left|\int_{\mathbb{R}^{md}}\psi(\mathbf{a})e^{-i\langle\xi,\pi^{\mathbf{a}}(x)-\pi^{\mathbf{a}}(y)\rangle}\,d\mathbf{a}\right|\leq C\left(1+|T^*_{x\wedge y}\xi|\right)^{-N}$$

for all $\xi \in \mathbb{R}^d$ and $x, y \in \Sigma$ with $x \neq y$, where $T^*_{x \wedge y}$ stands for the transpose of $T_{x \wedge y}$.

The idea is to show that

 $|\nabla_{\mathbf{a}}\langle \xi/|\xi|, \pi^{\mathbf{a}}(x) - \pi^{\mathbf{a}}(y)\rangle| > \text{Constant}, \text{ if } x_1 \neq y_1, \xi \neq 0,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

in which we apply an argument of Solomyak (1998).

Proposition

Let $d \in \mathbb{N}$, $\gamma \ge 0$ and $N > \gamma + d$. Then $\int_{\mathbb{R}^d} (1 + |T_X|)^{-N} |x|^{\gamma} dx \approx_{N,d,\gamma} \frac{1}{\alpha_d(T)^{\gamma} |\det(T)|}$ for $T \in \mathrm{GL}(d, \mathbb{R})$.

22/25

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Sketched proof of Theorem A

Since γ(T₁,..., T_m) > d, there exist a Borel probability measure μ on Σ, γ > d and r ∈ (0, 1) such that

 $\mu([I]) \lesssim r^n \alpha_d(T_I)^{\gamma} |\det(T_I)|$

for all $n \in \mathbb{N}$ and $l \in \Sigma_n$.

• By Inequalities (I) and (II), for N > t + d,

$$\begin{split} \int_{\mathbb{R}^{nd}} \int_{\mathbb{R}^{d}} \psi(\mathbf{a}) |\widehat{\mu^{\mathbf{a}}}(\xi)|^{2} |\xi|^{\gamma} d\xi d\mathbf{a} \\ &\lesssim \int_{\Sigma} \int_{\Sigma} \int_{\mathbb{R}^{d}} (1 + |T^{*}_{x \wedge y}\xi|)^{-N} |\xi|^{\gamma} d\xi d\mu(x) d\mu(y) \\ &\lesssim \int_{\Sigma} \int_{\Sigma} \frac{1}{\alpha_{d}(T_{x \wedge y})^{\gamma} |\det(T_{x \wedge y})|} d\mu(x) d\mu(y) < \infty. \end{split}$$

Our results might not be sharp. Recall that JPS07 proved that $\mathcal{L}^{d}(\mathcal{K}) > 0$ for a.e. (a_{1}, \ldots, a_{m}) under the conditions that $||T_{i}|| < 1/2$ and $\sum_{i=1}^{m} |\det(T_{i})| > 1$.

Open Question: Does K have non-empty interior a.e. under the above condition?

Thank you for listening !!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで