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Powers of a matrix and their rate of growth

Suppose A € SL(d,R). What can be said about the rate of growth
of ||A"|| as n — oo?



Powers of a matrix and their rate of growth

Suppose A € SL(d,R). What can be said about the rate of growth
of ||A"|| as n — oo?

1
lim = log ||A"]| = A,
n—oo N

where X is a logarithm of a maximal eigenvalue of A (i.e. logarithm
of the spectral radius).



Furstenberg-Kesten Theorem

Let u be a probability distribution on SL(d,R). Choose matrices
A1, Az, ... randomly and independently with respect to the
distribution . Denote A" = A, ... A2A;. What can one say about
the rate of growth of ||A”|| as n — 07



Furstenberg-Kesten Theorem

Let u be a probability distribution on SL(d,R). Choose matrices
A1, Az, ... randomly and independently with respect to the
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the rate of growth of ||A”|| as n — 07

Theorem (Furstenberg-Kesten, 1960)
Suppose that

[ 1ogllAldu(A) < o.

Then almost surely there exists a limit
.1 n
lim =log ||A"|| = A,
n—oo n

where A = A\(u) is a non-random constant (Lyapunov exponent).



Example 1

cos o sina> cosB sinf3

Set A= ) B = ) . As A; let
—sina  cosa —sinf3 cosf

us choose A or B (with probablity 1/2), A" = A, ... AxA;.

Then )
1 — n =
nll_rg"noO p log ||A"]] = 0.



Example 2

o

2
choose A or B (with probability 1/2), A" = A, ... A2A;.

1
SetA:<g ?),B: 2 0)(i.e.B:A_I).ASA;Ietus
2

Then almost surely

1
lim = log||A"|| = 0.
n—oo N



Example 3

Set A= g (,1) ,Bz(_ol é).AsA;IetuschooserrB

2
(with probability 1/2), A" = A, ... AyA;.
Then almost surely

1
lim = log||A"|| = 0.
n—oo N
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Furstenberg Theorem

Let u be a probability distribution on SL(d,R). Choose matrices
A1, Az, ... randomly and independently with respect to the
distribution . Denote A" = A, ... A2A;. What can one say about
the rate of growth of ||A"|| as n — oo?

Theorem (Furstenberg Theorem, 1963)

Suppose that

o [log|lAldu(A) < oo;

e the smallest closed subgroup of SL(d,R) that contains supp i is
not compact, and

e there is no finite collection of proper subspaces on RY invariant
under action of each of the linear maps from supp .

Then almost surely the Lyapunov exponent
.1 n
lim —log [|A"]| = A
n—oo N

is strictly positive, X > 0.



Furstenberg Theorem

Remark 1:

If d = 2, then the conditions

e the smallest closed subgroup of SL(d,R) that contains supp i is
not compact, and

e there is no finite collection of proper subspaces on RY invariant
under action of each of the linear maps from supp

can be replaced by

e There exist no measure v on RPY invariant under all fa,
A € supp .



Furstenberg Theorem

Remark 2:

To see why the condition

/ log 1Al dp(A) < oc

is relevant, consider the case d = 1. If {a,}, a, € R, a, > 0, are iid
random variable, then to study a; - a> - ... - a,, consider
loga; + logas + ...+ log a,. We have

loga; +logax+ ...+ loga,
n

— Elog a1,

if Eloga; < oo.



Example 4: Schrodinger operators.

Cosider discrete Schrédinger operator on 12(Z):
(Hu)(n) = u(n+1) + u(n — 1) + V(n)u(n),

where {V/(n)} are iid random variables.



Example 4: Schrodinger operators.

Cosider discrete Schrédinger operator on 12(Z):

(Hu)(n) = u(n + 1) + u(n = 1) + V(n)u(n),
where {V/(n)} are iid random variables.
If E € R is an eigenvalue, then Hu = Eu, that is,

u(n+ 1)+ u(n— 1)+ V(n)u(n) = Eu(n)



then

Example 4: Schrodinger operators.

u(n+1) + u(n—1)+ V(n)u(n) = Eu(n),

(47)- (20 ) (i)



Example 4: Schrodinger operators.

If
u(n+1) + u(n—1)+ V(n)u(n) = Eu(n),
then
uln+1)\ ([ E-V(n) -1 u(n)
()= ) G )
Denote lNg , = £ _1\/(”) _01

So if {V(n)} are iid random variables, by Furstenberg Theorem,
with probability 1 for a fixed value of energy E

o1
lim — log HI_IE,anE,nfl e I_IE,1H =A>0

n—oo N
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V(n) = Vbackground(n) + Vrandom(n) ?



Example 4: Schrodinger operators.

If {V(n)} are iid random variables, by Furstenberg Theorem, with
probability 1 for a fixed value of energy E

. 1
lim —log ||Mg Mgp-1...Me1l|=A>0
n—oo N

What if
V(n) = Vbackground(n) + Vrandom(n) ?
Question: Suppose A; € SL(d,R) is distributed w.r.t. 1;

(independent, but not identically distributed)? What one can say
about the growth rate of || T,||, where T, = A, ... - A;?



Non-stationary Furstenberg Theorem

Theorem (G, Kleptsyn, 2022)

Assume K is a compact set in the space of probability distributions
on SL(2,R) such that

e For some v, C > 0 and any p € K we have [ ||A|" < C;

e ("measures condition") For any u € K, there are no probability
measures v1, > on RP! such that (fa)«v1 = v for all A € supp .

Choose any sequence {u;} C KN, and let A; be chosen w.r.t. y;,
independently. Then

1) For some A > 0 we have Elog || Tp|| = L, > An for all n € N;
2) Almost surely, lim,_ oo %(Iog | Thll = L) = 0.
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Choose any sequence {u;} C KV, and let A; be chosen w.r.t. u;,
independently. Then

1) For some A > 0 we have Elog || T,|| = L, > An for all n € N;
2) Almost surely, lim,_ o l(Iog | Tall — Ln) = 0.
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Non-stationary Furstenberg Theorem

Choose any sequence {u;} C KV, and let A; be chosen w.r.t. u;,
independently. Then

1) For some A > 0 we have Elog || T,|| = L, > An for all n € N;
2) Almost surely, lim,_ o l(Iog | Tall — Ln) = 0.

n

Addendum:

Almost surely, there exists a unit vector ¥ € R? such that
T,v — 0, and

1
lim =(log|T,v|+ L,) =0.

n—oco N



Non-stationary Anderson Model

Consider a discrete Schrddiger operator H on ¢2(Z)
[Hul(n) = u(n+ 1) + u(n — 1) + V(n)u(n).

Suppose that {V/(n)} are independent (but not necessarily
identically distributed) random variables, distributed with respect
non-degenerate probability measures {y,} with compact support.
In particular, non-stationary Anderson-Bernoulli Model (measure i,
is supported on two points, and depends on n) satisfies our
conditions. Denote
o0
P= H Hn

n=—0o0



Non-stationary Anderson Model

[Hul(n) = u(n+ 1) + u(n — 1) + V(n)u(n).

Theorem (Spectral Anderson Localization) Suppose that a
random potential {V/(n)} of operator H is defined by independent
probability distributions {v,}, such that

1) supppn C [-K, K];

2) Var(un) > ¢,

where € > 0, K < co are some uniform constant. Then P-almost

surely operator H has p.p. spectrum, with exponentially decaying
eigenfunctions.



Non-stationary Furstenberg Theorem

Theorem (the case d > 2)

Assume additionally that

e for any i € K, there are no union of proper subspaces U, U’ in
RY such that A(U) = U’ for all A € supp .

Then the same conclusion holds. That is, if we choose any sequence
{ui} € KN, and set A; to be chosen w.r.t. u;, independently, then
1) For some A > 0 we have Elog|| T,|| = L, > An for all n € N;

2) Almost surely, lim,_, L(log || || — Ln) = 0.

Remark:
The statement that liminf,_ %Ln > 0, was proven by |.Goldsheid
(independently and by different methods).



Non-stationary Furstenberg Theorem

Theorem (Large Deviation Estimates)

Under the assumptions above, for any € there exists § > 0 such
that for all large enough n € N we have

P{|log || Tyl — Ln| > en} < e™"



Exponential growth of the norms

Consider any closed Riemannian manifold M and the set of its
C*-diffeomorphisms Diff!(M). Set

dLebpy

Jac(f)|x = |detdf|x| = m

X
We will measure the maximum volume contraction rate of a
diffeomorphism by the following quantity:

df*LebM
= f -1 = —_—
N( f) )r;neal\ﬁ Jac( )|X )r;neal\)/l( dLebM

X



Exponential growth of the norms

Let Ky be a compact subset of the space of probability measures
on Diff!(M) (equipped with the weak-* convergence topology). Let
M, K, satisfy the following assumptions:

¢ (log-moment condition) For any 1 € Ky one has
/ log N'(F)du(f) < oo
Diff1(M)

¢ (measures condition) For any ;1 € Ky there are no Borel
probability measures 11, 5 on M such that f,v; = v, for
p-almost every f € Diff*(M).



Exponential growth of the norms

Theorem
If M, Ky satisfy the assumptions above, then there exists h > 0
such that for any n and any u1,...,u, € Ky we have

E log N (Fp) > nh,

where F, = f,o0--- 0o fi, and every f; is chosen independently with
respect to the corresponding measure i, so that the expectation is
taken over the distribution 11 X pp X ... X fip.



Exponential growth of the norms

Theorem
If M, Ky satisfy the assumptions above, then for any given
sequence (p1;)ien, pi € Kpy of measures on Diff'(M) we have

lim inf 1 log A'(Fy) > h > 0,

n—oo n

where F, = f,o0--- 0 fi, and the expectation is taken with respect
to the infinite product measure [[; y1;.

Remark:
If A€ SL(d,R), then N(fa) = ||All9.



Probability of cancellations

For a given (large but fixed) k we decompose the product of
matrices of length n = km,

T)=An... Ay
into m groups of products of length k:
To=(An.. Axm-1)+1) - - - (Ak ... A1) = Bm ... By,

where
Bj = (Akj e Ak(.j_l)""l)'
One has

log || Tul| = log [|Bm-.. Bi| < log | Byl|-
j=1



Probability of cancellations

To=(An- Akm-1)11) - - (A ... A1) = Bpm... By,

Bj = (Akj - - - Ak(—1)+1)-

By

T




Stationary case and stationary measures

In the stationary case:
Definition:

Let v be a probability distribution on SL(d,R9). A probability
measure v on RP?~1 is stationary if

pxv=E,((fa)v) = /(fA)*l/d,u(A) =v

Claim: Under natural conditions on y (that hold generically), a
stationary measure is unique and has no atoms.



Atom Dissolving

Let X be a metric compact. For a measure u on the space of
homeomorphisms Homeo(X), we say that there is

® no finite set with a deterministic image, if there are no two
finite sets F, F" C X such that f(F) = F' for u-a.e.
f € Homeo(X);

® no measure with a deterministic image, if there are no two
probability measures v,/ on X such that v =/ for p-a.e.
f € Homeo(X).



Atom Dissolving

Let X be a metric compact. For a measure u on the space of
homeomorphisms Homeo(X), we say that there is

® no finite set with a deterministic image, if there are no two
finite sets F, F" C X such that f(F) = F' for u-a.e.
f € Homeo(X);

® no measure with a deterministic image, if there are no two
probability measures v,/ on X such that v =/ for p-a.e.
f € Homeo(X).

Denote by Max(v) the weight of a maximal atom of a probability
measure v. In particular, if v has no atoms, then Max(v) = 0.



Atom Dissolving

Theorem (Atoms Dissolving)
Let Kx be a compact set of probability measures on Homeo(X).

® Assume that for any u € Kx there is no finite set with a
deterministic image. Then for any € > O there exists n such
that for any probability measure v on X and any sequence
Ui, ..., o € Kx we have

Mag (pn * -+ * py xv) < €.

In particular, for any probability measure v on X and any
sequence L1, [, - .. € Kx we have

nIi_)mooima;(u,,*-n*ul*u):O.



Atom Dissolving

Theorem (Atoms Dissolving)
Let Kx be a compact set of probability measures on Homeo(X).

o |f for any i € Kx there is no measure with a deterministic
image, then the convergence is exponential and uniform over
all sequences 1, jiz, . .. from KN and all probability measures
v. That is, there exists A\ < 1 such that for any n, any v and

any pu, g2, -+ € Kx

Mag (pn * -+ * py xv) < A"



Non-stationary Ergodic Theorem

Let X be a compact metric space, and p be a probability measure
on the space of continuous maps C(X, X). The iterations of the
corresponding random dynamical system are the sequences of
compositions

f17 fZOflu FE) fno"'ofl) sy

where f; : X — X are chosen randomly and independently w.r.t. the
measure [i.



Non-stationary Ergodic Theorem

The following theorem corresponds to the Birkhoff Ergodic
Theorem for the stationary random dynamics:

Theorem (Random Birkhoff Ergodic Theorem)

For any ergodic stationary measure v on X, for any ¢ € C(X,R),
for v-a.e. x € X, uN-almost surely one has

n—1
1
- Z o(fgo...0of(x)) — / o(x)dv(x),
n X
k=0
where fi, fr, ... are chosen randomly and independently, with

respect to the distribution .



Non-stationary Ergodic Theorem

Assume that a “test function” ¢ € C(X) is given. Also, for every n
we assume that a measure p, on C(X, X) is given (if the dynamics
is assumed to be invertible, one can ask instead for the measure on
the set of homeomorphisms of X). Denote

P:.= H fn, (1)
n=1

and our goal is to describe time averages along P-almost every
sequence of iterations.

Let us denote by M = M(X) the space of Borel probability
measures on the compact metric space X. We consider it to be
equipped with the Wasserstein distance (that is one of the ways to
metrize the weak-* topology in the space of probability measures).



Non-stationary Ergodic Theorem

Standing Assumption: We will say that a sequence of
distributions p1, pia, 3, . .. on C(X, X) satisfies the Standing
Assumption if for any § > 0 there exists m € N such that the
images of any two initial measures after averaging over m random
steps after any initial moment n become §-close to each other:

Vv, € M, VneN,

distaq(fnem * - - % fina1 * Uy fptm % « - % fipe1 * V') < 6.



Non-stationary Ergodic Theorem

Theorem (G, Kleptsyn, 2023)

Suppose the sequence of distributions yi1, pi2, i13, - . . satisfies the
Standing Assumption above. Given any Borel probability measure
vg on X, define

Up = lUp*Vp_1, nN=12....

Then for any ¢ € C(X,R) and any x € X, almost surely

1 n n
- ZSO(ka---Ofl(X))—Z/XSOde
k=1 k=1

where v, = pip *vn_1, n=12 ..., and vy is arbitrary.

—0 as n— oo,




Non-stationary Ergodic Theorem

Moreover, an analogue of the Large Deviations Theorem holds.
Namely, for any € > 0 there exist C,d > 0 such that for any x € X

>5><

< Cexp(—dn).

VneN,

p(l
n

n n

ng(fko...ofl(x))— /Xgpdl/k

k=1 k=1




Random Iterated Function Systems

Proposition:

Let X be a compact metric space, and A € (0, 1) be a constant.
Suppose {u}icn be a sequence of probability distributions in the
space of contractions X — X with Lipschitz constant at most .
Then Standing Assumption holds, i.e. for any Borel probability
measures v, on X we have

: /
dist pf(entm* -« K fnt1 %V, fhnsm*. . K ppr1%V' ) — 0 as m — oo,

uniformly in (v,2') and n € N.



Random Matrix Products

Suppose K is a compact set in the space of probability distributions
on SL(2,R) such that for any p € K the measures condition is
satisfied, i.e. there are no probability measures v1, > on RP! such
that (fa)«(v1) = v2 for all A € supp p. Slightly abusing the
notation, we will treat 1 also as a measure on the space of
projective maps f4 : RP! — RP*.

Proposition:

Suppose the measure condition holds for each i € K. Then for any
sequence {;;} € KN and any probability measures v,/ € M we
have:

. /
dist pf(fentm* -« F fnt1 ¥V, fhnm*. . K ppr1%V' ) — 0 as m — oo,

uniformly in (v,7') and n € N.



Central Limit Theorem

Theorem (CLT, La Page, 1982)

Suppose {A;} are random iid SL(d,R) matrices, distributed w.r.t.
1, which is strongly irreducible and contracting, and

1Ay < oc
for some v > 0. Then there exists a > 0 such that

| Tall = nX i
CalTl _ohe 52 0.5y



Central Limit Theorem

Conjecture:

Under suitable (non-stationary) assumptions, if {A;} are random
independent (but not neccessarily identically distributed) SL(d,R)
matrices, distributed w.r.t. p;, Var(log|| T,||) growth linearly, and

Var (log || Tl|)

Work in progress, joint with Victor Kleptsyn and Grigorii Monakov.
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