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Powers of a matrix and their rate of growth

Suppose A ∈ SL(d ,R). What can be said about the rate of growth
of ‖An‖ as n→∞?

lim
n→∞

1
n

log ‖An‖ = λ,

where λ is a logarithm of a maximal eigenvalue of A (i.e. logarithm
of the spectral radius).
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Furstenberg-Kesten Theorem

Let µ be a probability distribution on SL(d ,R). Choose matrices
A1,A2, . . . randomly and independently with respect to the
distribution µ. Denote An = An . . .A2A1. What can one say about
the rate of growth of ‖An‖ as n→∞?

Theorem (Furstenberg-Kesten, 1960)
Suppose that ∫

log ‖A‖dµ(A) <∞.

Then almost surely there exists a limit

lim
n→∞

1
n

log ‖An‖ = λ,

where λ = λ(µ) is a non-random constant (Lyapunov exponent).
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Example 1

Set A =

(
cosα sinα
− sinα cosα

)
, B =

(
cosβ sinβ
− sinβ cosβ

)
. As Ai let

us choose A or B (with probablity 1/2), An = An . . .A2A1.

Then
lim
n→∞

1
n

log ‖An‖ = 0.



Example 2

Set A =

(
2 0
0 1

2

)
, B =

( 1
2 0
0 2

)
(i.e. B = A−1). As Ai let us

choose A or B (with probability 1/2), An = An . . .A2A1.

Then almost surely

lim
n→∞

1
n

log ‖An‖ = 0.



Example 3

Set A =

(
2 0
0 1

2

)
, B =

(
0 1
−1 0

)
. As Ai let us choose A or B

(with probability 1/2), An = An . . .A2A1.

Then almost surely

lim
n→∞

1
n

log ‖An‖ = 0.



Furstenberg Theorem
Let µ be a probability distribution on SL(d ,R). Choose matrices
A1,A2, . . . randomly and independently with respect to the
distribution µ. Denote An = An . . .A2A1. What can one say about
the rate of growth of ‖An‖ as n→∞?

Theorem (Furstenberg Theorem, 1963)
Suppose that
•
∫

log ‖A‖dµ(A) <∞;
• the smallest closed subgroup of SL(d ,R) that contains suppµ is
not compact, and
• there is no finite collection of proper subspaces on Rd invariant
under action of each of the linear maps from suppµ.
Then almost surely the Lyapunov exponent

lim
n→∞

1
n

log ‖An‖ = λ

is strictly positive, λ > 0.
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Furstenberg Theorem

Remark 1:
If d = 2, then the conditions

• the smallest closed subgroup of SL(d ,R) that contains suppµ is
not compact, and
• there is no finite collection of proper subspaces on Rd invariant
under action of each of the linear maps from suppµ

can be replaced by

• There exist no measure ν on RP1 invariant under all fA,
A ∈ suppµ.



Furstenberg Theorem

Remark 2:
To see why the condition∫

log ‖A‖dµ(A) <∞

is relevant, consider the case d = 1. If {an}, an ∈ R, an > 0, are iid
random variable, then to study a1 · a2 · . . . · an, consider
log a1 + log a2 + . . .+ log an. We have

log a1 + log a2 + . . .+ log an
n

→ E log a1,

if E log a1 <∞.



Example 4: Schrödinger operators.

Cosider discrete Schrödinger operator on l2(Z):

(Hu)(n) = u(n + 1) + u(n − 1) + V (n)u(n),

where {V (n)} are iid random variables.

If E ∈ R is an eigenvalue, then Hu = Eu, that is,

u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n)
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Example 4: Schrödinger operators.

If
u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n),

then (
u(n + 1)
u(n)

)
=

(
E − V (n) −1

1 0

)(
u(n)

u(n − 1)

)
.

Denote ΠE ,n =

(
E − V (n) −1

1 0

)
.

So if {V (n)} are iid random variables, by Furstenberg Theorem,
with probability 1 for a fixed value of energy E

lim
n→∞

1
n

log ‖ΠE ,nΠE ,n−1 . . .ΠE ,1‖ = λ > 0
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Example 4: Schrödinger operators.

If {V (n)} are iid random variables, by Furstenberg Theorem, with
probability 1 for a fixed value of energy E

lim
n→∞

1
n

log ‖ΠE ,nΠE ,n−1 . . .ΠE ,1‖ = λ > 0

What if
V (n) = Vbackground(n) + Vrandom(n) ?

Question: Suppose Ai ∈ SL(d ,R) is distributed w.r.t. µi
(independent, but not identically distributed)? What one can say
about the growth rate of ‖Tn‖, where Tn = An · . . . · A1?
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Non-stationary Furstenberg Theorem

Theorem (G, Kleptsyn, 2022)
Assume K is a compact set in the space of probability distributions
on SL(2,R) such that

• For some γ,C > 0 and any µ ∈ K we have
∫
‖A‖γ < C ;

• ("measures condition") For any µ ∈ K , there are no probability
measures ν1, ν2 on RP1 such that (fA)∗ν1 = ν2 for all A ∈ suppµ.

Choose any sequence {µi} ⊂ KN, and let Ai be chosen w.r.t. µi ,
independently. Then

1) For some λ > 0 we have E log ‖Tn‖ = Ln > λn for all n ∈ N;

2) Almost surely, limn→∞
1
n (log ‖Tn‖ − Ln) = 0.
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1
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Addendum:

Almost surely, there exists a unit vector v̄ ∈ R2 such that
Tnv̄ → 0, and

lim
n→∞

1
n

(log |Tnv̄ |+ Ln) = 0.
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Non-stationary Anderson Model

Consider a discrete Schrödiger operator H on `2(Z)

[Hu](n) = u(n + 1) + u(n − 1) + V (n)u(n).

Suppose that {V (n)} are independent (but not necessarily
identically distributed) random variables, distributed with respect
non-degenerate probability measures {µn} with compact support.
In particular, non-stationary Anderson-Bernoulli Model (measure µn
is supported on two points, and depends on n) satisfies our
conditions. Denote

P =
∞∏

n=−∞
µn



Non-stationary Anderson Model

[Hu](n) = u(n + 1) + u(n − 1) + V (n)u(n).

Theorem (Spectral Anderson Localization) Suppose that a
random potential {V (n)} of operator H is defined by independent
probability distributions {νn}, such that

1) suppµn ⊆ [−K ,K ];

2) Var (µn) > ε,

where ε > 0,K <∞ are some uniform constant. Then P-almost
surely operator H has p.p. spectrum, with exponentially decaying
eigenfunctions.



Non-stationary Furstenberg Theorem

Theorem (the case d ≥ 2)
Assume additionally that

• for any µ ∈ K , there are no union of proper subspaces U,U ′ in
Rd such that A(U) = U ′ for all A ∈ suppµ.

Then the same conclusion holds. That is, if we choose any sequence
{µi} ⊂ KN, and set Ai to be chosen w.r.t. µi , independently, then

1) For some λ > 0 we have E log ‖Tn‖ = Ln > λn for all n ∈ N;

2) Almost surely, limn→∞
1
n (log ‖Tn‖ − Ln) = 0.

Remark:
The statement that lim infn→∞

1
nLn > 0, was proven by I.Goldsheid

(independently and by different methods).



Non-stationary Furstenberg Theorem

Theorem (Large Deviation Estimates)
Under the assumptions above, for any ε there exists δ > 0 such
that for all large enough n ∈ N we have

P {| log ‖Tn‖ − Ln| > εn} < e−δn



Exponential growth of the norms

Consider any closed Riemannian manifold M and the set of its
C 1-diffeomorphisms Diff1(M). Set

Jac(f )|x = |det df |x | =
dLebM
df∗LebM

∣∣∣∣
x

.

We will measure the maximum volume contraction rate of a
diffeomorphism by the following quantity:

N (f ) := max
x∈M

Jac(f )|−1
x = max

x∈M

df∗LebM
dLebM

∣∣∣∣
x

.



Exponential growth of the norms

Let KM be a compact subset of the space of probability measures
on Diff1(M) (equipped with the weak-∗ convergence topology). Let
M, KM satisfy the following assumptions:

• (log-moment condition) For any µ ∈ KM one has∫
Diff1(M)

logN (f )dµ(f ) <∞

• (measures condition) For any µ ∈ KM there are no Borel
probability measures ν1, ν2 on M such that f∗ν1 = ν2 for
µ-almost every f ∈ Diff1(M).



Exponential growth of the norms

Theorem
If M, KM satisfy the assumptions above, then there exists h > 0
such that for any n and any µ1, . . . , µn ∈ KM we have

E logN (Fn) ≥ nh,

where Fn = fn ◦ · · · ◦ f1, and every fi is chosen independently with
respect to the corresponding measure µi , so that the expectation is
taken over the distribution µ1 × µ2 × . . .× µn.



Exponential growth of the norms

Theorem
If M, KM satisfy the assumptions above, then for any given
sequence (µi )i∈N, µi ∈ KM of measures on Diff1(M) we have

lim inf
n→∞

1
n
E logN (Fn) ≥ h > 0,

where Fn = fn ◦ · · · ◦ f1, and the expectation is taken with respect
to the infinite product measure

∏
i µi .

Remark:
If A ∈ SL(d ,R), then N (fA) = ‖A‖d .



Probability of cancellations
For a given (large but fixed) k we decompose the product of
matrices of length n = km,

Tn = An . . .A1,

into m groups of products of length k :

Tn = (An . . .Ak(m−1)+1) . . . (Ak . . .A1) = Bm . . .B1,

where
Bj := (Akj . . .Ak(j−1)+1).

One has

log ‖Tn‖ = log ‖Bm . . .B1‖ ≤
m∑
j=1

log ‖Bj‖.



Probability of cancellations

Tn = (An . . .Ak(m−1)+1) . . . (Ak . . .A1) = Bm . . .B1,

Bj = (Akj . . .Ak(j−1)+1).

B1

B−1
2

B1 B2



Stationary case and stationary measures

In the stationary case:

Definition:
Let µ be a probability distribution on SL(d ,Rd). A probability
measure ν on RPd−1 is stationary if

µ ∗ ν = Eµ((fA)∗ν) =

∫
(fA)∗νdµ(A) = ν

Claim: Under natural conditions on µ (that hold generically), a
stationary measure is unique and has no atoms.



Atom Dissolving

Let X be a metric compact. For a measure µ on the space of
homeomorphisms Homeo(X ), we say that there is
• no finite set with a deterministic image, if there are no two

finite sets F ,F ′ ⊂ X such that f (F ) = F ′ for µ-a.e.
f ∈ Homeo(X );
• no measure with a deterministic image, if there are no two

probability measures ν, ν ′ on X such that f∗ν = ν ′ for µ-a.e.
f ∈ Homeo(X ).

Denote by Max(ν) the weight of a maximal atom of a probability
measure ν. In particular, if ν has no atoms, then Max(ν) = 0.
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Atom Dissolving

Theorem (Atoms Dissolving)
Let KX be a compact set of probability measures on Homeo(X ).
• Assume that for any µ ∈ KX there is no finite set with a

deterministic image. Then for any ε > 0 there exists n such
that for any probability measure ν on X and any sequence
µ1, . . . , µn ∈ KX we have

Max (µn ∗ · · · ∗ µ1 ∗ ν) < ε.

In particular, for any probability measure ν on X and any
sequence µ1, µ2, . . . ∈ KX we have

lim
n→∞

Max (µn ∗ · · · ∗ µ1 ∗ ν) = 0.



Atom Dissolving

Theorem (Atoms Dissolving)
Let KX be a compact set of probability measures on Homeo(X ).
• If for any µ ∈ KX there is no measure with a deterministic

image, then the convergence is exponential and uniform over
all sequences µ1, µ2, . . . from KN and all probability measures
ν. That is, there exists λ < 1 such that for any n, any ν and
any µ1, µ2, · · · ∈ KX

Max (µn ∗ · · · ∗ µ1 ∗ ν) < λn.



Non-stationary Ergodic Theorem

Let X be a compact metric space, and µ be a probability measure
on the space of continuous maps C (X ,X ). The iterations of the
corresponding random dynamical system are the sequences of
compositions

f1, f2 ◦ f1, . . . , fn ◦ · · · ◦ f1, . . . ,

where fi : X → X are chosen randomly and independently w.r.t. the
measure µ.



Non-stationary Ergodic Theorem

The following theorem corresponds to the Birkhoff Ergodic
Theorem for the stationary random dynamics:

Theorem (Random Birkhoff Ergodic Theorem)
For any ergodic stationary measure ν on X , for any ϕ ∈ C (X ,R),
for ν-a.e. x ∈ X , µN-almost surely one has

1
n

n−1∑
k=0

ϕ(fk ◦ . . . ◦ f1(x))→
∫
X
ϕ(x)dν(x),

where f1, f2, . . . are chosen randomly and independently, with
respect to the distribution µ.



Non-stationary Ergodic Theorem

Assume that a “test function” ϕ ∈ C (X ) is given. Also, for every n
we assume that a measure µn on C (X ,X ) is given (if the dynamics
is assumed to be invertible, one can ask instead for the measure on
the set of homeomorphisms of X ). Denote

P :=
∞∏
n=1

µn, (1)

and our goal is to describe time averages along P-almost every
sequence of iterations.
Let us denote byM =M(X ) the space of Borel probability
measures on the compact metric space X . We consider it to be
equipped with the Wasserstein distance (that is one of the ways to
metrize the weak-* topology in the space of probability measures).



Non-stationary Ergodic Theorem

Standing Assumption: We will say that a sequence of
distributions µ1, µ2, µ3, . . . on C (X ,X ) satisfies the Standing
Assumption if for any δ > 0 there exists m ∈ N such that the
images of any two initial measures after averaging over m random
steps after any initial moment n become δ-close to each other:

∀ν, ν ′ ∈M, ∀n ∈ N,
distM(µn+m ∗ . . . ∗ µn+1 ∗ ν, µn+m ∗ . . . ∗ µn+1 ∗ ν ′) < δ.



Non-stationary Ergodic Theorem

Theorem (G, Kleptsyn, 2023)
Suppose the sequence of distributions µ1, µ2, µ3, . . . satisfies the
Standing Assumption above. Given any Borel probability measure
ν0 on X , define

νn := µn ∗ νn−1, n = 1, 2, . . . .

Then for any ϕ ∈ C (X ,R) and any x ∈ X , almost surely

1
n

∣∣∣∣∣
n∑

k=1

ϕ(fk ◦ . . . ◦ f1(x))−
n∑

k=1

∫
X
ϕ dνk

∣∣∣∣∣→ 0 as n→∞,

where νn := µn ∗ νn−1, n = 1, 2, . . . , and ν0 is arbitrary.



Non-stationary Ergodic Theorem

Moreover, an analogue of the Large Deviations Theorem holds.
Namely, for any ε > 0 there exist C , δ > 0 such that for any x ∈ X

∀n ∈ N,

P

(
1
n

∣∣∣∣∣
n∑

k=1

ϕ(fk ◦ . . . ◦ f1(x))−
n∑

k=1

∫
X
ϕ dνk

∣∣∣∣∣ > ε

)
<

< C exp(−δn).



Random Iterated Function Systems

Proposition:
Let X be a compact metric space, and λ ∈ (0, 1) be a constant.
Suppose {µi}i∈N be a sequence of probability distributions in the
space of contractions X → X with Lipschitz constant at most λ.
Then Standing Assumption holds, i.e. for any Borel probability
measures ν, ν ′ on X we have

distM(µn+m∗ . . .∗µn+1∗ν, µn+m∗ . . .∗µn+1∗ν ′)→ 0 as m→∞,

uniformly in (ν, ν ′) and n ∈ N.



Random Matrix Products

Suppose K is a compact set in the space of probability distributions
on SL(2,R) such that for any µ ∈ K the measures condition is
satisfied, i.e. there are no probability measures ν1, ν2 on RP1 such
that (fA)∗(ν1) = ν2 for all A ∈ suppµ. Slightly abusing the
notation, we will treat µ also as a measure on the space of
projective maps fA : RP1 → RP1.

Proposition:
Suppose the measure condition holds for each µ ∈ K. Then for any
sequence {µi} ∈ KN and any probability measures ν, ν ′ ∈M we
have:

distM(µn+m∗ . . .∗µn+1∗ν, µn+m∗ . . .∗µn+1∗ν ′)→ 0 as m→∞,

uniformly in (ν, ν ′) and n ∈ N.



Central Limit Theorem

Theorem (CLT, La Page, 1982)
Suppose {Ai} are random iid SL(d ,R) matrices, distributed w.r.t.
µ, which is strongly irreducible and contracting, and∫

‖A‖γdµ <∞

for some γ > 0. Then there exists a > 0 such that

log ‖Tn‖ − nλF√
n

dist−−→ N (0, a2).



Central Limit Theorem

Conjecture:
Under suitable (non-stationary) assumptions, if {Ai} are random
independent (but not neccessarily identically distributed) SL(d ,R)
matrices, distributed w.r.t. µi , Var(log ‖Tn‖) growth linearly, and

log ‖Tn‖ − Ln√
Var(log ‖Tn‖)

dist−−→ N (0, 1).

Work in progress, joint with Victor Kleptsyn and Grigorii Monakov.



Thank you!


