Holder regularity of stationary measures Joint work with A. Gorodetski and G. Monakov

Victor Kleptsyn

CNRS, Institute of Mathematical Research of Rennes, University of Rennes 1

Thermodynamic Formalism: Non-additive Aspects and Related Topics, Bedlewo, May 17, 2023.

Invariant measures

Dynamical systems: one of the main tools (Birkhoff ergodic theorem, etc.).

Dynamical systems: one of the main tools (Birkhoff ergodic theorem, etc.).

Definition

For $f: X \rightarrow X$, a measure ν is invariant if

 $f_*\nu = \nu.$

Dynamical systems: one of the main tools (Birkhoff ergodic theorem, etc.).

Definition For $f : X \to X$, a measure ν is invariant if

 $f_*\nu = \nu.$

Not guaranteed to be regular even for minimal analytic diffeomorphisms:

Dynamical systems: one of the main tools (Birkhoff ergodic theorem, etc.).

Definition For $f: X \to X$, a measure ν is invariant if

 $f_*\nu = \nu.$

Not guaranteed to be regular even for minimal analytic diffeomorphisms: Sullivan's example for circle diffeomorphisms (perturbations near periodic points).

Definition

A random dynamical system on X: a measure μ on Homeo(X).

a measure ν on X such that

 $\nu = \mathbb{E}_{\mu} f_* \nu$

Definition

A random dynamical system on X: a measure μ on Homeo(X).

Example

 $f_1, \ldots, f_s \in \operatorname{Homeo}(X)$ with the associated probabilities

$$p_1+\cdots+p_s=1, \quad p_i>0$$

a measure ν on X such that

 $u = \mathbb{E}_{\mu} f_*
u$

Definition

A random dynamical system on X: a measure μ on Homeo(X).

Example

 $f_1, \ldots, f_s \in \operatorname{Homeo}(X)$ with the associated probabilities

$$p_1+\cdots+p_s=1, \quad p_i>0$$

Definition

A stationary measure for a RDS:

Definition

A random dynamical system on X: a measure μ on Homeo(X).

Example

 $f_1, \ldots, f_s \in \operatorname{Homeo}(X)$ with the associated probabilities

$$p_1+\cdots+p_s=1, \quad p_i>0$$

Definition

A stationary measure for a RDS: a measure ν on X such that

$$u = \mathbb{E}_{\mu} f_*
u$$

Definition

A random dynamical system on X: a measure μ on Homeo(X).

Example

 $f_1, \ldots, f_s \in \operatorname{Homeo}(X)$ with the associated probabilities

$$p_1+\cdots+p_s=1, \quad p_i>0$$

Definition

A stationary measure for a RDS: a measure ν on X such that

$$u = \mathbb{E}_{\mu} f_*
u$$

In the example above:

$$\nu = \sum_i p_i(f_i)_*\nu.$$

Convolutions

Definition

$$\mu * \nu := \mathbb{E}_{\mu} f_* \nu$$

Convolutions

Definition

$$\mu * \nu := \mathbb{E}_{\mu} f_* \nu$$

Equivalently, $\mu * \nu$ is the law of f(x), where $f \sim \mu$, $x \sim \nu$ are chosen independently.

Convolutions

Definition

$$\mu * \nu := \mathbb{E}_{\mu} f_* \nu$$

Equivalently, $\mu * \nu$ is the law of f(x), where $f \sim \mu$, $x \sim \nu$ are chosen independently.

Definition

 $\mu st \mu'$ is the law of $f \circ g$, where $f \sim \mu$, $g \sim \mu'$ are chosen independently.

Hölder regularity

Definition

A measure ν is (C, α) -Hölder if

$\forall x \in X \quad \forall r > 0 \quad \nu(B_r(x)) \leq Cr^{\alpha}.$

Hölder regularity

Definition

A measure ν is (C, α) -Hölder if

$$\forall x \in X \quad \forall r > 0 \quad \nu(B_r(x)) \leq Cr^{\alpha}.$$

Can we claim Hölder regularity for stationary measures?

Hölder regularity

Definition

A measure ν is (C, α) -Hölder if

$$\forall x \in X \quad \forall r > 0 \quad \nu(B_r(x)) \leq Cr^{\alpha}.$$

Can we claim Hölder regularity for stationary measures?

It turns out, that in absence of invariant measures the answer is "Yes".

Definition $\mathcal{L}(f) := \max(\operatorname{Lip}(f), \operatorname{Lip}(f^{-1})).$

- For some $\gamma >$ 0, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty.$
- There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

Then there exist $\alpha > 0$, C such that any μ -stationary measure ν is (C, α) -Hölder.

Definition

 $\mathcal{L}(f) := \max(\operatorname{Lip}(f), \operatorname{Lip}(f^{-1})).$

Let M be a compact smooth manifold.

- For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.
- There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

Then there exist $\alpha > 0$, C such that any μ -stationary measure ν is (C, α) -Hölder.

Definition

 $\mathcal{L}(f) := \max(\operatorname{Lip}(f), \operatorname{Lip}(f^{-1})).$

Let M be a compact smooth manifold.

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on Diff¹(M), such that

Definition

 $\mathcal{L}(f) := \max(\operatorname{Lip}(f), \operatorname{Lip}(f^{-1})).$

Let M be a compact smooth manifold.

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on $\text{Diff}^1(M)$, such that

• For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.

Definition

 $\mathcal{L}(f) := \max(\operatorname{Lip}(f), \operatorname{Lip}(f^{-1})).$

Let M be a compact smooth manifold.

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on $\text{Diff}^1(M)$, such that

- For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.
- There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

Definition

 $\mathcal{L}(f) := \max(\operatorname{Lip}(f), \operatorname{Lip}(f^{-1})).$

Let M be a compact smooth manifold.

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on $\text{Diff}^1(M)$, such that

- For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.
- There is no probability measure m on M such that $f_*m = m$ for μ -almost all f.

Then there exist $\alpha > 0$, C such that any μ -stationary measure ν is (C, α) -Hölder.

What if we start with some initial measure ν and make a few averaging steps?

• There is no probability measure m on M such that $f_*m = m$ for μ -almost all f.

Then there exist $\alpha > 0$, C, $\kappa < 1$ such that for any initial measure ν one has

What if we start with some initial measure ν and make a few averaging steps? If both ν and μ are atomic, so is any finite-step averaged image $\mu^{*n} * \nu$.

 There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

Then there exist lpha > 0, C, $\kappa <$ 1 such that for any initial measure u one has

What if we start with some initial measure ν and make a few averaging steps? If both ν and μ are atomic, so is any finite-step averaged image $\mu^{*n} * \nu$. Hence, no Hölder regularity...

 There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

Then there exist lpha > 0, C, $\kappa < 1$ such that for any initial measure u one has

What if we start with some initial measure ν and make a few averaging steps? If both ν and μ are atomic, so is any finite-step averaged image $\mu^{*n} * \nu$. Hence, no Hölder regularity... but only on small scales!

• There is no probability measure m on M such that $f_*m = m$ for μ -almost all f.

Then there exist $\alpha > 0$, C, $\kappa < 1$ such that for any initial measure ν one has

What if we start with some initial measure ν and make a few averaging steps? If both ν and μ are atomic, so is any finite-step averaged image $\mu^{*n} * \nu$. Hence, no Hölder regularity... but only on small scales!

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on $\text{Diff}^1(M)$, such that

• For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.

What if we start with some initial measure ν and make a few averaging steps? If both ν and μ are atomic, so is any finite-step averaged image $\mu^{*n} * \nu$. Hence, no Hölder regularity... but only on small scales!

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on Diff¹(M), such that

- For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.
- There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

What if we start with some initial measure ν and make a few averaging steps? If both ν and μ are atomic, so is any finite-step averaged image $\mu^{*n} * \nu$. Hence, no Hölder regularity... but only on small scales!

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on $\text{Diff}^1(M)$, such that

- For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.
- There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

Then there exist $\alpha > 0$, C, $\kappa < 1$ such that for any initial measure ν one has

What if we start with some initial measure ν and make a few averaging steps? If both ν and μ are atomic, so is any finite-step averaged image $\mu^{*n} * \nu$. Hence, no Hölder regularity... but only on small scales!

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Let μ be a measure on $\text{Diff}^1(M)$, such that

- For some $\gamma > 0$, one has $\mathbb{E}_{\mu}\mathcal{L}(f)^{\gamma} < \infty$.
- There is no probability measure m on M such that f_{*}m = m for μ-almost all f.

Then there exist $\alpha > 0$, C, $\kappa < 1$ such that for any initial measure ν one has

$$\forall n \quad \forall r > \kappa^n \quad \forall x \quad (\mu^{*n} * \nu)(B_r(x)) < Cr^{\alpha}.$$

What if we are doing nonstationary iterations? That is: we have a compact **K** in the set of measures on $\text{Diff}^1(M)$.

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Assume that

• (finite positive moment) For some $\gamma > 0, C_0$, one has

 $\forall \mu \in \mathbf{K} \quad \mathbb{E}_{\mu} \mathcal{L}(f)^{\gamma} < C_0.$

What if we are doing nonstationary iterations? That is: we have a compact **K** in the set of measures on $\text{Diff}^1(M)$.

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Assume that

• (finite positive moment) For some $\gamma > 0, C_0$, one has

$$\forall \mu \in \mathbf{K} \quad \mathbb{E}_{\mu} \mathcal{L}(f)^{\gamma} < C_0.$$

(no measures with deterministic image) There are no measures m, m' on M and μ ∈ K such that f_{*}m = m' for μ-almost all f.
 Then there exist α > 0, C, κ < 1 such that for any initial probability measure ν on M, any n, and any μ₁,..., μ_n ∈ K one has

What if we are doing nonstationary iterations? That is: we have a compact **K** in the set of measures on $\text{Diff}^1(M)$.

Theorem (A. Gorodetski, V.K., G. Monakov, 2022)

Assume that

• (finite positive moment) For some $\gamma > 0, C_0$, one has

$$\forall \mu \in \mathbf{K} \quad \mathbb{E}_{\mu} \mathcal{L}(f)^{\gamma} < C_0.$$

(no measures with deterministic image) There are no measures m, m' on M and μ ∈ K such that f_{*}m = m' for μ-almost all f.
 Then there exist α > 0, C, κ < 1 such that for any initial probability measure ν on M, any n, and any μ₁,..., μ_n ∈ K one has

$$\forall r > \kappa^n \quad \forall x \quad (\mu_n * \cdots * \mu_1 * \nu)(B_r(x)) < Cr^{\alpha}.$$

Assumptions on measures

Proposition

Assume that there is no measure m such that $f_*m = m$ for μ -a.e. f.

 $u_{n,0} := m, \quad \nu_{n,j} := f_* \nu_{n,j-1} \quad \text{for } \mu\text{-a.e. } f, \quad j = 1, 2, \dots, n,$

$$\overline{\nu}_n := \frac{1}{n} \sum_{j=0}^{n-1} \nu_{n,j}.$$

Then any weak limit of $\overline{
u}_n$ is a common invariant measure.

Assumptions on measures

Proposition

Assume that there is no measure m such that $f_*m = m$ for μ -a.e. f. Then there exists n such that there is no two measures m, m' such that $F_*m = m'$ for μ^{*n} -a.e. F.

 $u_{n,0} := m, \quad
u_{n,j} := f_*
u_{n,j-1} \quad \text{for } \mu\text{-a.e. } f, \quad j = 1, 2, \dots, n,$

$$\overline{\nu}_n := \frac{1}{n} \sum_{j=0}^{n-1} \nu_{n,j}.$$

Then any weak limit of $\overline{
u}_n$ is a common invariant measure.

Assumptions on measures

Proposition

Assume that there is no measure m such that $f_*m = m$ for μ -a.e. f. Then there exists n such that there is no two measures m, m' such that $F_*m = m'$ for μ^{*n} -a.e. F.

Proof.

Assume that
$$(\underbrace{f_n \circ \cdots \circ f_1}_{F})_* m = m'$$
 for μ -a.e. f_j .

Proposition

Assume that there is no measure m such that $f_*m = m$ for μ -a.e. f. Then there exists n such that there is no two measures m, m' such that $F_*m = m'$ for μ^{*n} -a.e. F.

Proof.

Assume that
$$(\underbrace{f_n \circ \cdots \circ f_1}_{F})_* m = m'$$
 for μ -a.e. f_j . Take

$$\nu_{n,0}:=m,$$

Proposition

Assume that there is no measure m such that $f_*m = m$ for μ -a.e. f. Then there exists n such that there is no two measures m, m' such that $F_*m = m'$ for μ^{*n} -a.e. F.

Proof.

Assume that
$$(\underbrace{f_n \circ \cdots \circ f_1}_{F})_* m = m'$$
 for μ -a.e. f_j . Take

 $u_{n,0} := m, \quad \nu_{n,j} := f_* \nu_{n,j-1} \quad \text{for μ-a.e. f}, \quad j = 1, 2, \dots, n,$

Proposition

Assume that there is no measure m such that $f_*m = m$ for μ -a.e. f. Then there exists n such that there is no two measures m, m' such that $F_*m = m'$ for μ^{*n} -a.e. F.

Proof.

Assume that
$$(\underbrace{f_n \circ \cdots \circ f_1}_{F})_* m = m'$$
 for μ -a.e. f_j . Take

$$u_{n,0} := m, \quad \nu_{n,j} := f_* \nu_{n,j-1} \quad \text{for μ-a.e. f}, \quad j = 1, 2, \dots, n,$$

$$\overline{\nu}_n := \frac{1}{n} \sum_{j=0}^{n-1} \nu_{n,j}.$$

Proposition

Assume that there is no measure m such that $f_*m = m$ for μ -a.e. f. Then there exists n such that there is no two measures m, m' such that $F_*m = m'$ for μ^{*n} -a.e. F.

Proof.

Assume that
$$(\underbrace{f_n \circ \cdots \circ f_1}_{F})_* m = m'$$
 for μ -a.e. f_j . Take

$$u_{n,0} := m, \quad \nu_{n,j} := f_* \nu_{n,j-1} \quad \text{for μ-a.e. f}, \quad j = 1, 2, \dots, n,$$

$$\overline{\nu}_n := \frac{1}{n} \sum_{j=0}^{n-1} \nu_{n,j}.$$

Then any weak limit of $\overline{\nu}_n$ is a common invariant measure.

Lemma

Assume that

$$\mathcal{E}_{lpha}(
u) := \iint_M d(x,y)^{-lpha} \, d
u(x) \, d
u(y) < C_1.$$

Lemma

Assume that

$$\mathcal{E}_{lpha}(
u) := \iint_M d(x,y)^{-lpha} \, d
u(x) \, d
u(y) < C_1.$$

Then the measure ν is $\frac{\alpha}{2}$ -Hölder.

Lemma

Assume that

$$\mathcal{E}_{lpha}(
u) := \iint_M d(x,y)^{-lpha} \, d
u(x) \, d
u(y) < C_1.$$

Then the measure ν is $\frac{\alpha}{2}$ -Hölder.

Proof.

Markov inequality:

$$C_1 > \mathcal{E}_{\alpha}(\nu) \geq \nu(B_r(x))^2 \cdot (2r)^{-\alpha};$$

Lemma

Assume that

$$\mathcal{E}_{lpha}(
u) := \iint_M d(x,y)^{-lpha} \, d
u(x) \, d
u(y) < C_1.$$

Then the measure ν is $\frac{\alpha}{2}$ -Hölder.

Proof.

Markov inequality:

$$egin{aligned} \mathcal{C}_1 > \mathcal{E}_lpha(
u) \geq
u(B_r(x))^2 \cdot (2r)^{-lpha}; \ & \mathcal{C}_1(2r)^lpha >
u(B_r(x))^2; \end{aligned}$$

Lemma

Assume that

$$\mathcal{E}_{lpha}(
u) := \iint_M d(x,y)^{-lpha} \, d
u(x) \, d
u(y) < C_1.$$

Then the measure ν is $\frac{\alpha}{2}$ -Hölder.

Proof.

Markov inequality:

$$C_1 > \mathcal{E}_{\alpha}(\nu) \ge \nu (B_r(x))^2 \cdot (2r)^{-\alpha};$$

 $C_1(2r)^{\alpha} > \nu (B_r(x))^2;$
 $Cr^{rac{lpha}{2}} >
u (B_r(x)).$

Lemma

Assume that

$$\mathcal{E}_{\alpha}(\nu) := \iint_M d(x,y)^{-lpha} \, d
u(x) \, d
u(y) < C_1.$$

Then the measure ν is $\frac{\alpha}{2}$ -Hölder.

Proof.

Markov inequality:

 $Cr^{\frac{\alpha}{2}} > \nu(B_r(x)).$

Lemma

Assume that

$$\mathcal{E}_{\alpha}(\nu) := \iint_M d(x,y)^{-lpha} \, d
u(x) \, d
u(y) < C_1.$$

Then the measure ν is $\frac{\alpha}{2}$ -Hölder.

Proof.

Markov inequality:

 $Cr^{\frac{\alpha}{2}} > \nu(B_r(x)).$

Remark

In other words: Frostman dimension is at least half of the correlation one.

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that

 $\mathcal{E}_{\alpha}(\mu * \nu) < \lambda \mathcal{E}_{\alpha}(\nu) + C.$

Their energies do not tend to infinity, hence the same holds for their Cesaro averages. Extract a convergent subsequence.

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that

 $\mathcal{E}_{\alpha}(\mu * \nu) < \lambda \mathcal{E}_{\alpha}(\nu) + C.$

In other words, high energies get decreased by averaging of images.

Their energies do not tend to infinity, hence the same holds for their Cesaro averages. Extract a convergent subsequence.

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that

 $\mathcal{E}_{\alpha}(\mu * \nu) < \lambda \mathcal{E}_{\alpha}(\nu) + C.$

In other words, high energies get decreased by averaging of images.

Corollary

Under our assumptions, there exists $\alpha > 0$ and a stationary measure ν that is α -Hölder.

Their energies do not tend to infinity, hence the same holds for their Cesaro averages. Extract a convergent subsequence.

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that

 $\mathcal{E}_{\alpha}(\mu * \nu) < \lambda \mathcal{E}_{\alpha}(\nu) + C.$

In other words, high energies get decreased by averaging of images.

Corollary

Under our assumptions, there exists $\alpha > 0$ and a stationary measure ν that is α -Hölder.

Proof.

Start with any initial measure ν_0 ; consider averaged images $\mu^{*n} * \nu_0$.

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that

 $\mathcal{E}_{\alpha}(\mu * \nu) < \lambda \mathcal{E}_{\alpha}(\nu) + C.$

In other words, high energies get decreased by averaging of images.

Corollary

Under our assumptions, there exists $\alpha > 0$ and a stationary measure ν that is α -Hölder.

Proof.

Start with any initial measure ν_0 ; consider averaged images $\mu^{*n} * \nu_0$. Their energies do not tend to infinity, hence the same holds for their Cesaro averages.

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that

 $\mathcal{E}_{\alpha}(\mu * \nu) < \lambda \mathcal{E}_{\alpha}(\nu) + C.$

In other words, high energies get decreased by averaging of images.

Corollary

Under our assumptions, there exists $\alpha > 0$ and a stationary measure ν that is α -Hölder.

Proof.

Start with any initial measure ν_0 ; consider averaged images $\mu^{*n} * \nu_0$. Their energies do not tend to infinity, hence the same holds for their Cesaro averages. Extract a convergent subsequence.

Definition

For $\alpha > 0$ and a measure ν , define

$$\rho_{\alpha}[\nu](y) := \int_{M} \varphi_{\alpha}(d(x,y)) \, d\nu(x),$$

$= \|\rho_{\alpha}[\nu](y)\|_{L_{2}(M)}^{2}$

Definition

For $\alpha > 0$ and a measure ν , define

$$\rho_{\alpha}[\nu](y) := \int_{M} \varphi_{\alpha}(d(x,y)) \, d\nu(x),$$

where $\varphi_{\alpha}(r) := r^{-\frac{k+\alpha}{2}}$, and k is the dimension of M.

$$= \|\rho_{\alpha}[\nu](y)\|_{L_{2}(M)}^{2}$$

Definition

For $\alpha > 0$ and a measure ν , define

$$\rho_{\alpha}[\nu](y) := \int_{M} \varphi_{\alpha}(d(x,y)) \, d\nu(x),$$

where $\varphi_{\alpha}(r) := r^{-\frac{k+\alpha}{2}}$, and k is the dimension of M.

Definition

$$\widetilde{\mathcal{E}}_{\alpha}[\nu] := \int_{M} (\rho_{\alpha}[\nu](y))^2 \, d\mathrm{Leb}_{M}(y)$$

Definition

For $\alpha > 0$ and a measure ν , define

$$\rho_{\alpha}[\nu](y) := \int_{M} \varphi_{\alpha}(d(x,y)) \, d\nu(x),$$

where $\varphi_{\alpha}(r) := r^{-\frac{k+\alpha}{2}}$, and k is the dimension of M.

Definition

$$\widetilde{\mathcal{E}}_{\alpha}[\nu] := \int_{M} (\rho_{\alpha}[\nu](y))^2 \, d \mathrm{Leb}_{M}(y) = \|\rho_{\alpha}[\nu](y)\|_{L_{2}(M)}^2$$

High energy come from local interactions;

High energy come from local interactions; locally, a smooth manifold looks like \mathbb{R}^k .

Proposition

There is a constant c_{α} such that

$$\widetilde{\mathcal{E}}_{\alpha}[
u] \sim c_{\alpha} \mathcal{E}_{\alpha}[
u]$$

as either of the sides tends to ∞ .

High energy come from local interactions; locally, a smooth manifold looks like \mathbb{R}^k .

Proposition

There is a constant c_{α} such that

$$\widetilde{\mathcal{E}}_{\alpha}[\nu] \sim c_{\alpha} \mathcal{E}_{\alpha}[\nu]$$

as either of the sides tends to ∞ .

Proof.

$$\widetilde{\mathcal{E}}_{\alpha}[\nu] = \int_{\mathcal{M}} \left(\iint_{\mathcal{M}} \varphi_{\alpha}(x, y) \varphi_{\alpha}(z, y) \, d\nu(x) \, d\nu(z) \right) \, d\text{Leb}(y)$$

High energy come from local interactions; locally, a smooth manifold looks like \mathbb{R}^k .

Proposition

There is a constant c_{α} such that

$$\widetilde{\mathcal{E}}_{\alpha}[\nu] \sim c_{\alpha} \mathcal{E}_{\alpha}[\nu]$$

as either of the sides tends to ∞ .

Proof.

$$\widetilde{\mathcal{E}}_{\alpha}[\nu] = \int_{M} \left(\iint_{M} \varphi_{\alpha}(x, y) \varphi_{\alpha}(z, y) \, d\nu(x) \, d\nu(z) \right) \, d\operatorname{Leb}(y)$$

= $\iint_{M} K_{\alpha}(x, z) \, d\nu(x) \, d\nu(z).$

For \mathbb{R}^k :

Lemma

$$\int_{\mathbb{R}^k} d(x,y)^{-\frac{k+\alpha}{2}} d(z,y)^{-\frac{k+\alpha}{2}} d\mathrm{Leb}(y) = c_\alpha d(x,z)^{-\alpha}.$$

For \mathbb{R}^k :

Lemma

$$\int_{\mathbb{R}^k} d(x,y)^{-\frac{k+\alpha}{2}} d(z,y)^{-\frac{k+\alpha}{2}} d\mathrm{Leb}(y) = c_\alpha d(x,z)^{-\alpha}.$$

Proof.

Isometries + scaling.

For \mathbb{R}^k :

Lemma

$$\int_{\mathbb{R}^k} d(x,y)^{-\frac{k+\alpha}{2}} d(z,y)^{-\frac{k+\alpha}{2}} d\mathrm{Leb}(y) = c_\alpha d(x,z)^{-\alpha}.$$

Proof.

lsometries + scaling.

Corollary

For \mathbb{R}^k , one has an exact equality

$$\widetilde{\mathcal{E}}_{\alpha}[\nu] = c_{\alpha} \mathcal{E}_{\alpha}[\nu]$$

• As α gets smaller, \mathcal{E}_{α} gets more and more *f*-invariant:

 $\mathcal{L}(f)^{-lpha}\mathcal{E}_{lpha}(
u)\leq \mathcal{E}_{lpha}(f_{*}
u)\leq \mathcal{L}(f)^{lpha}\mathcal{E}_{lpha}(
u).$

• As α gets smaller, \mathcal{E}_{α} gets more and more *f*-invariant:

$$\mathcal{L}(f)^{-lpha}\mathcal{E}_{lpha}(
u)\leq \mathcal{E}_{lpha}(f_{*}
u)\leq \mathcal{L}(f)^{lpha}\mathcal{E}_{lpha}(
u).$$

• For high energies, the same applies to $\widetilde{\mathcal{E}}_{\alpha}$.

$$\mathcal{L}(f)^{-lpha}\mathcal{E}_{lpha}(
u)\leq \mathcal{E}_{lpha}(f_*
u)\leq \mathcal{L}(f)^{lpha}\mathcal{E}_{lpha}(
u).$$

- For high energies, the same applies to $\widetilde{\mathcal{E}}_{\alpha}$.
- (Main idea) Either the L₂-vectors $\rho_{\alpha}[f_*\nu]$ are almost aligned,

$$\mathcal{L}(f)^{-lpha}\mathcal{E}_{lpha}(
u)\leq \mathcal{E}_{lpha}(f_*
u)\leq \mathcal{L}(f)^{lpha}\mathcal{E}_{lpha}(
u).$$

- For high energies, the same applies to $\widetilde{\mathcal{E}}_{\alpha}$.
- (Main idea) Either the L₂-vectors ρ_α[f_{*}ν] are almost aligned, or the L₂-norm of their average is noticeably less than their lengths.

$$\mathcal{L}(f)^{-lpha}\mathcal{E}_{lpha}(
u)\leq \mathcal{E}_{lpha}(f_*
u)\leq \mathcal{L}(f)^{lpha}\mathcal{E}_{lpha}(
u).$$

- For high energies, the same applies to $\widetilde{\mathcal{E}}_{\alpha}$.
- (Main idea) Either the L₂-vectors ρ_α[f_{*}ν] are almost aligned, or the L₂-norm of their average is noticeably less than their lengths.
- In the former case, we will find a measure with a deterministic image,

$$\mathcal{L}(f)^{-lpha}\mathcal{E}_{lpha}(
u)\leq \mathcal{E}_{lpha}(f_*
u)\leq \mathcal{L}(f)^{lpha}\mathcal{E}_{lpha}(
u).$$

- For high energies, the same applies to $\widetilde{\mathcal{E}}_{\alpha}$.
- (Main idea) Either the L₂-vectors ρ_α[f_{*}ν] are almost aligned, or the L₂-norm of their average is noticeably less than their lengths.
- In the former case, we will find a measure with a deterministic image, and the latter is the conclusion of the theorem.

Constructing measures

Definition

Define a non-probability measure:

$$\Theta_{\alpha}[\nu] = \rho_{\alpha}[\nu]^{2}(y) \, d \operatorname{Leb}(y),$$

Constructing measures

Definition

Define a non-probability measure:

$$\Theta_{\alpha}[\nu] = \rho_{\alpha}[\nu]^{2}(y) \, d \mathrm{Leb}(y),$$

and let

$$heta_lpha[
u] = rac{1}{\widetilde{\mathcal{E}}_lpha(
u)} \Theta_lpha[
u]$$

be its normalization.

Images

Proposition

At high energies and small $\alpha,$ one has

 $\theta_{\alpha}[f_*\nu] \approx f_*\theta_{\alpha}[\nu].$

Images

Proposition

At high energies and small α , one has

$$\theta_{\alpha}[f_*\nu] \approx f_*\theta_{\alpha}[\nu].$$

Proposition

If the conclusion of the theorem does not hold, one has

$$f_*\theta_{\alpha}[\nu] \approx \theta_{\alpha}[\mu * \nu]$$

for μ -most f.

Passing to the limit provides $f_*m = m'$ for μ -a.e. f.

General theorem: cut-off

Definition

$$arphi_{lpha,arepsilon}(r) := egin{cases} r^{-rac{k+lpha}{2}}, & r > arepsilon\ arepsilon^{-lpha - lpha}, & r \leq arepsilon \end{cases}$$

General theorem: cut-off

Definition

$$arphi_{lpha,arepsilon}(\mathbf{r}) := egin{cases} \mathbf{r}^{-rac{k+lpha}{2}}, & \mathbf{r} > arepsilon \ arepsilon^{-lpha-lpha}, & \mathbf{r} \le arepsilon \end{cases}$$

Define $\rho_{\alpha,\varepsilon}[\nu]$ and $\widetilde{\mathcal{E}}_{\alpha,\varepsilon}[\nu]$ accordingly:

Definition

$$egin{aligned} &
ho_{lpha,arepsilon}[
u](y) &:= \int_M arphi_{lpha,arepsilon}(d(x,y)) \, d
u(x), \ & & & & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & \$$

Function $\varphi_{\alpha,\varepsilon}$ belongs to $L_2(M)$, thus the energy $\widetilde{\mathcal{E}}_{\alpha,\varepsilon}$ is always finite (and bounded uniformly from above).

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that for any $\mu \in \mathbf{K}$, any ν , and

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that for any $\mu \in \mathbf{K}$, any ν , and any $\varepsilon > 0$

$$\widetilde{\mathcal{E}}_{lpha,arepsilon}(\mu*
u)< ext{max}(\lambda\widetilde{\mathcal{E}}_{lpha,arepsilon}(
u),\mathcal{C}).$$

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that for any $\mu \in \mathbf{K}$, any ν , and any $\varepsilon > 0$

$$\widetilde{\mathcal{E}}_{lpha,arepsilon}(\mu*
u)< ext{max}(\lambda\widetilde{\mathcal{E}}_{lpha,arepsilon}(
u),\mathcal{C}).$$

Once this theorem is proven:

• For *n*-fold convolution, we can choose ε so that $\lambda^n \widetilde{\mathcal{E}}_{\alpha,\varepsilon}(\nu) \sim \text{const}$,

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that for any $\mu \in \mathbf{K}$, any ν , and any $\varepsilon > 0$

$$\widetilde{\mathcal{E}}_{lpha,arepsilon}(\mu*
u)< ext{max}(\lambda\widetilde{\mathcal{E}}_{lpha,arepsilon}(
u),\mathcal{C}).$$

Once this theorem is proven:

• For *n*-fold convolution, we can choose ε so that $\lambda^n \widetilde{\mathcal{E}}_{\alpha,\varepsilon}(\nu) \sim \text{const}$, that is, $\varepsilon = (\lambda^{1/\alpha})^n$.

Theorem

Under our assumptions, there exists $\alpha > 0$, $\lambda < 1$ and C such that for any $\mu \in \mathbf{K}$, any ν , and any $\varepsilon > 0$

$$\widetilde{\mathcal{E}}_{lpha,arepsilon}(\mu*
u)< ext{max}(\lambda\widetilde{\mathcal{E}}_{lpha,arepsilon}(
u),\mathcal{C}).$$

Once this theorem is proven:

- For n-fold convolution, we can choose ε so that λⁿ *E*_{α,ε}(ν) ~ const, that is, ε = (λ^{1/α})ⁿ.
- Markov inequality: this provides an estimate of measures of B_r(x) for r > ε.

Thank you for your attention!