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B-free systems

Class of systems of number theoretic origin that seem interesting both from the number
theory and dynamical systems viewpoint.

For each B ⊆ N define MB := ⋃
b∈B bZ (set of multiples) and FB := Z \ MB

(B-free set)

• each M ⊆ Z is closed under taking multiples is a set of multiples: M = MM
• we usually assume that B is primitive (b|b′ for b, b′ ∈ B =⇒ b = b′)
• for any sets of multiples M, there exists a primitive set B such that M = MB

While it’s clear that these objects can be of an interest in number theory (introduced
and studied first already in the 1930’s!), they attracted recently (since 2010) some
attention from the dynamical systems point of view. My talk will be devoted mostly to
the dynamical aspects, but I will give some examples and applications interesting from
number theory or combinatorics viewpoint.
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Number-thoretic roots

Square-free integers B = P2 = squares of primes.

Then FB = square-free numbers; 1FB
= µ2

• µ : N → {−1, 0, 1} is the Möbius function (µ(0) = 0, µ(p1 · . . . · pk) = (−1)k ,
µ(p2n) = 0).

Abundant numbers
Three classes: abundant numbers A (sum of divisors σ(n) > 2n), perfect numbers P
(σ(n) = 2n) and deficient numbers D (σ(n) < 2n).

• A is closed under taking multiples, so A = MBA for some primitive set BA
• same for A ∪ P: we have MBA∪P
• Bessel-Hagen 1929: Does d(A) = limn→∞

1
n |A ∩ [1, n]| exist?

Davenport-Erdös-Chowla (independently) 1930: yes
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Density questions

Natural question: does there d(MB) always exist?

• Besicovitch 1934: no (whole class of examples)

• Davenport-Erdős 1936:
δ(MB) = limn→∞

1
log n

∑
k≤n,k∈MB

1
k = d(MB) = limK→∞ d(MBK ), where

BK = {b ∈ B : b < K}
• Erdős 1948: d(MB) exists iff

lim
ε→0

lim sup
x→∞

x−1 ∑
x1−ε<a≤x ,a∈B

M(x , a,B) = 0,

where M(x , a,B) = |{1 ≤ n ≤ x : a|n and n ∈ FBa}|.
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Some important classes of B’s

• Besicovitch: whenever d(MB) exists
• Erdős condition: B infinite, pairwise coprime, ∑b∈B 1/b < ∞ (then B is

Besicovitch), e.g. B = P2, d(MB) = 6
π2

• Behrend: if d(MB) = 1 (e.g. B = P′, where P ′ ⊆ P satisfies ∑p∈P′
1
p = ∞)

• taut: for any b ∈ B, we have δ(MB\{b}) < δ(MB)
• B is taut iff dA ̸⊆ B for A Behrend
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Language of dynamics

Let η := 1FB
∈ {0, 1}Z. Let σ : {0, 1}Z → {0, 1}Z stand for the left shift.

Three subshifts: Xη ⊆ X̃η ⊆ XB

• Xη := {σnη : n ∈ Z} (B-free subshift)
• X̃η := M(Xη × {0, 1}Z), where M : ({0, 1}Z)2 → {0, 1}Z is the coordinatewise

multiplication (hereditary closure of Xη)
• XB := {x ∈ {0, 1}Z : |supp x mod b| < b − 1 for each b ∈ B} (admissible

subshift) ⇝ admissible subsets of integers

Dynamical properties of these subshifts ↔ number theoretic properties of MB and FB:

• patterns,
• recurrence,
• combinatorics.
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Consequences of dynamical results – samples: patterns

(A. Dymek, S. Kasjan, JKP, Mariusz Lemańczyk 2018)

If B is taut, F ⊆ FB, M ⊆ MB are finite then
d({n ∈ N : F + n ⊆ FB,M + n ⊆ MB}) > 0.

If B is taut and contains an infinite pairwise coprime subset then
lim supj→∞ inf0≤k≤K (nj+k+1 − nj+k) = ∞, where (nj) is the sequence of consecutive
B-free numbers.

Primitive abundant numbers BA are taut. In fact ∑b∈BA
1/b < ∞, so, in particular,

BA is Besicovitch. E.g., we get

• d{n ∈ N : n + 1, . . . , n + 5 ∈ D} > 0
• lim supj→∞ inf0≤k≤K (nj+k+1 − nj+k) = ∞, (nj) = consecutive deficient numbers
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Consequences of dynamical results – samples: recurrence

(V. Bergelson, JKP, Mariusz Lemańczyk, F.K. Richter 2018)

R ⊆ N is a set of recurrence if for each measure-preserving system (X , µ,T ) and each
A with µ(A) > 0, there exists n ∈ R such that µ(A ∩ T −nA) > 0.

R ⊆ N is an averaging set of polynomial multiple recurrence if for each (X , µ,T )
and each A with µ(A) > 0, ℓ ∈ N and any polynomials pi ∈ Q[t] with pi(Z) ⊆ Z and
pi(0) = 0 (1 ≤ i ≤ ℓ),

lim
N→∞

1
|R ∩ [1,N]|

N∑
n=1

1R(n)µ(A ∩ T −p1(n)A ∩ . . . ∩ T −pℓ(n)(A)) > 0.

Theorem: Suppose that B is Besicovitch, not Behrend. Then there exists D ⊆ FB such
that d(FB \ D) = 0 such that r ∈ D ⇐⇒ FB − r is an averaging set of polynomial
multiple recurrence.
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Dynamics for Behrend sets

If B is Behrend – unclear how “rich dynamically” is the corresponding subshift Xη (the
only invariant measure is δ...000...).

Examples:

• we have FP = {±1}.
• P2 = {pq : p, q ∈ P} =⇒ FP2 = P ∪ (−P) ∪ {±1}. =⇒ studying FB in whole

generality must be hard! X1FP2
= subshift of prime numbers

• P3 = {pqr : p, q, r ∈ P} =⇒ FP3 = (P ∪ (−P)) ∪ (P2 ∪ (−P2)) ∪ {±1}

Problem: what is the cardinality of X1FP2
?

Both, prime k-tuples conjecture and Dickson’s conjecture imply XP ⊆ X1FP2
. In

particular, the subshift of primes is uncountable (c) since XP is uncountable.

Unconditional proof was recently (2023) found by T. Tao and T. Ziegler.
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Dynamics for non-Behrend sets

P. Sarnak (2010): study Xη for B = P2 (i.e. the square-free system). It might give us
knowledge about µ!

• Xµ2 is a topological factor of Xµ = {σnµ : n ∈ Z} via π : Xµ → Xµ2 given by
π(x) = |x | (clearly, σ ◦ π = π ◦ σ)

Results for µ2:

• µ2 is a generic point: 1
N
∑

n≤N δσnµ2νµ2 (Mirsky measure – ergodic, zero entropy,
discrete spectrum)

• Xµ2 = XP2 and Xtop(Xµ2) = 6
π2

• Xµ2 is proximal: for any x , y ∈ Xµ2 , there exists (nk) with d(σnk x , σnk y) → 0

El Abdalaoui, Mariusz Lemańczyk, de la Rue: Sarnak’s program in the Erdős case
(2013/2015). Then M. Boshernitzan during a conference in Toruń (2014) asked what
happens for general B’s . . . ⇝ rich intersting class, with new phenomena. . .
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Topological dynamics phenomena: proximality vs minimality

T : X → X is proximal if for all (x , y), we have lim infn→∞ d(σnx , σny) = 0.

Theorem (A. Dymek, S. Kasjan, JKP, Mariusz Lemańczyk 2018): Xη is proximal ⇐⇒
. . . 000 . . . ∈ Xη ⇐⇒ B ⊇ A (infinite pairwise coprime).

Proximality is an “opposite” notion to minimality. T : X → X is minimal if there is no
closed invariant ∅ ≠ A ⊊ X .

• the only system that is both minimal and proximal is the 1-pt dynamical system: if
x and Tx are proximal, we get a fixed point and two distinct points are never
proximal.
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Topological dynamics phenomena: proximality vs minimality

(A. Dymek, S. Kasjan, G. Keller, JKP, Mariusz Lemańczyk 2017-2022)

Theorem: Xη is minimal ⇐⇒ η is z Toeplitz sequence (for all n ∈ FB there exists
s ≥ 1 such that n + sZ ⊆ FB ⇐⇒ cA ̸⊆ B for infinite pairwise coprime A).

T : X → X is essentially minimal if there is a unique minimal subset A ⊆ X .

Theorem: Each Xη is essentially minimal. There exists B∗ such that

• Xη∗ ⊆ Xη is the unique minimal subset of Xη

• B∗ = (B ∪ C)prim, where C = {c ∈ N : cA ⊆ B for an inf. pairwise coprime A}

E.g. for any Behrend set B, we have B∗ = {1}.

Toeplitz sequence x if regular if d({n : x(n) is periodic with a period ≤ K}) → 1.
B-free Toeplitz sequences can be both regular and irregular.
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Measure theoretic phenomena: invariant measures

Davenport-Erdős theorem:
δ(MB) = limn→∞

1
log n

∑
k≤n,k∈MB

1
k = d(MB) = limK→∞ d(MBK ).

Theorem (A. Dymek, S. Kasjan, JKP, Mariusz Lemańczyk 2018): For (Nk) realizing
d(MB), we have 1

Nk

∑
n≤Nk

δσnη → νη (frequency of 0-1 blocks in [1,Nk ]).

P. Sarnak: What about M(X̃η) (i.e. all invariant measures on X̃η)?

This question appears first in the Erdős case, where X̃η = Xη, so we need to look at
[Mk + 1,Mk + Nk ] with Mk arbitrary and Nk → ∞.

Let M be the coordinatewise multiplication of 0-1-sequences. We have
M : Xη × {0, 1}Z → X̃η, so M∗(νη ∨ κ) ∈ M(X̃η).

Theorem (Erdös case: JKP, Mariusz Lemańczyk, B. Weiss 2015, general case: AD, SK,
JKP, ML 2018): M(X̃η) = {M∗(νη ∨ κ) : κ ∈ M({0, 1}Z)}.
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Measure theoretic phenomena: tautness

B is taut if δ(MB\{b}) < δ(MB) for each b ∈ B.

Theorem (A. Dymek, S. Kasjan, JKP, Mariusz, Lemańczyk 2018 and 2022): For all B

there exists a (unique!) taut set B′ such that νη = νη′ . Additionally, we have:

• η′ ≤ η

• M(Xη) = M(Xη′)
• B′ = (B ∪ D)prim, where D = {d ∈ N : dA ⊆ B for some Behrend set A}

(this is simliar to the construction of B∗ yielding the unique minimal susbet of Xη –
instead of scales of infinite pairwise coprime subset, we search fo scales of Behrend sets!)

Theorem (AD, SK, JKP, ML 2018): If B1,B2 are taut then
XB1 = XB2 ⇐⇒ B1 = B2 ⇐⇒ νη1 = νη2 .

The first proof (in the Erdős case!) used the intrinsic ergodicity of Xη = X̃η.
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Measure theoretic phenomena: entropy

Let X ⊆ {0, 1}Z be a subshift.

• Topological entropy htop(X ) = complexity of blocks = limn→∞
1
n log |L(n)|, where

L(n) = all 0-1 blocks of length n appearing in X .
• Variational principle: htop(X ) = sup{h(X , µ) : µ ∈ M(X )}.
• If there is only one measure of maximal entropy, we say that X is intrinsically

ergodic.

Theorem (A. Dymek, JKP, S. Kasjan, Mariusz Lemańczyk, R.Peckner, B. Weiss 2015
and 2018):

• htop(X̃η) = d(FB)
• X̃η is intrinsically ergodic, the unique measure of maximal entropy: M∗(νη ⊗ B1/2)

Main tool: finite approximations BK = {b ∈ B : b < K} of B ⇝ periodic
approximation ηK ↘ η ⇝ periodic approximation νηK of νη (weak topology).
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Measure theoretic phenomena: convolution systems

X ⊆ {0, 1}Z is a convolution system if M(X ) = {M∗(ν ∨ κ) : κ ∈ M({0, 1}Z)}.

Proposition (JKP, ML, MR 2022/23): The measure ν is unique and ergodic. It is the
unique measure of maximal density. (We call ν the base measure.)

X̃η is a convolution system with base measure νη (earlier slide).

Theorem (JKP, ML, MR 2023/23): Let X be a convolution system with zero entropy
base measure ν. Then X is intrinsically ergodic, with htop(X ) = ν(1) and the unique
measure of maximal entropy equals M∗(ν ⊗ B1/2,1/2).
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Measure theoretic phenomena: entropy

What about Xη?

• Xη∗ ⊆ Xη, so we need to “control” M(Xη∗) =⇒ assumption: η∗ is a regular
Toeplitz sequence =⇒ periodic approximations η∗

k ↗ η∗ such that νη∗
k

→ νη∗

(recall that we always have ηk ↘ η)

• G. Keller (2021) proved that Xη is in a sense hereditary: if B is taut then
Xη = {σnx : η∗ ≤ x ≤ η} (implicit)

Theorem (A. Dymek, JKP, D. Sell 2023, motivated by a conjecture of Keller 2021): If
η∗ is a regular Toeplitz sequence then M(Xη) = {N∗(νη∗ ∨ νη ∨ κ) : κ ∈ M({0, 1}Z)}.

• νη∗ ∨ νη is the weak limit of 1
Nk

∑
n≤Nk

δ(σnη∗,σnη)
• N : ({0, 1}Z)3 → {0, 1}Z, N(w , x , y) = yw + (1 − y)x

Moreover, Xη is intrinsically ergodic, with htop(Xη) = d(FB) − d(FB∗).
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Measure-theoretic phenomena: bi-convolution systems

X ⊆ {0, 1}Z is a bi-convolution system if M(X ) = {N∗(ρ ∨ κ) : κ ∈ M({0, 1}Z)},
where N(w , x , y) = yw + (1 − y)x .

• If X is a convolution system then there exists ρ satisfying the above such that
ρ({(w , x) : w ≤ x}) = 1. We call each such ρ a base measure.

• We don’t know if ρ is unique (its marginals are unique and ergodic).

If η∗ is a regular Toeplitz sequence then Xη is a bi-convolution system (previous slide).

Theorem (JKP, ML, MR 2022/23): Let X be a bi-convolution system with a zero
entropy base measure ρ. Then X is intrinsically ergodic, with
htop(X ) = ρ(∗ × 1) − ρ(1 × ∗) and the unique measure of maximal entropy equals
N∗(ρ⊗ B1/2,1/2).
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Thermodynamic formalism: absence of Gibbs property

Measure µ ∈ M(X ) has Gibbs property if there exists a > 0 such that
µ(C) ≥ a · 2−|C |htop(X) for all blocks C with µ(C) > 0.

• Gibbs property =⇒ µ is a Gibbs measure: additionally, for some b > 0, we have
µ(C) ≤ b · 2−|C |htop(X) (B. Weiss, M. Hochman).

Motivation:

• for sofic systems, systems with specification property/ies there is a unique measure
of maximal entropy and it has (some) Gibbs property.

• B. Weiss: if µ has Gibbs property and is a measure of maximal entropy then X is
intrinsically ergodic.

Theorem (R. Pecker 2015: square-free case, JKP, ML 2021): For any B such that νη is
non-atomic, the measure of maximal entropy on X̃η does not have the Gibbs property.
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Thermodynamic formalism: topological pressure φ(x) = φ(x0)

Let X be a subshift and φ : X → R (potential).

Topological pressure PX ,φ = limn→∞ log∑A∈L(n) 2supx∈A φ(n)(x)

• variational principle: PX ,φ = sup{h(X , µ) +
∫

X φ dµ : µ ∈ M(X )}
• µ is a Gibbs measure corresponding to φ if there exists c > 0 and P such that

c−1 ≤ µ(x [0,n−1])
2φ(n)(x)−nP

≤ c for any C ∈ L(n) with µ(C) > 0 and x ∈ C . Then P = PX ,φ.

Theorem (JKP, ML, MR 2022/23): For any B and φ(x) = φ(x0), we have
PX̃η ,φ

= (1 − d)φ(0) + d log(2φ(0) + 2φ(1)), where d = νη(1). Moreover, there is a
unique equilibrium measure.

• This result is more general. We don’t need the special structure of X̃η for this ⇝
convolution / bi-convolution systems.
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Thermodynamic formalism: topological pressure φ(x) = φ(x0, x1)

Let now φ(x) = φ(x0, x1) and let M :=
(

2φ(0,0) 2φ(0,1)

2φ(1,0) 2φ(1,1)

)
det M = 0 =⇒ (for any subshift!) we are back to ψ(x) = ψ(x0) since∫
φ dµ =

∫
ψ dµ, where ψ(i) = φ(i , i).

• Use φ(0, 0) + φ(1, 1) = φ(1, 0) + φ(0, 1) and µ(01) = µ(10).

det M ̸= 0 =⇒ P{0,1}Z = log λ+, where |λ−| < λ+ are the eigenvalues of M.

• Walters’ method for finite type shifts.
• X̃ηk is a factor of a finite type subshift (with finite fibers!). Each 0-1 block w yields

the following edge Markov shift: if wj = 0 then the corresponding edge is single
(labeled with aj), if wj = 1 then the edge is double (labeled with aj and cj). The
factor (corresp. to X̃ηk when ηk = w∞) arises by taking aj 7→ 0, cj 7→ 1.

• The arising matrices are huge. . . ⇝ relations between the eigenvalues = ???
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Thermodynamic formalism: topological pressure φ(x) = φ(x0, x1)

φ(x) = φ(x0, x1), det M ̸= 0. Second attempt.

P{0,1}Z,φ = limn→∞ log∑A∈{0,1}n−1 2φn)(x) = limn→∞
1
n
∑

A∈{0,1}n−1 2φ(n)(0A0).

Let Z 0
n = Z 0,0

n := ∑
A∈{0,1}n−1 2φ(n)(0A0), Z 1

n = Z 1,0
n := ∑

A∈{0,1}n−1 2φ(n)(1A0). We have
the following recurrence relations (Z 0

0 = 1,Z 1
0 = 0):

•
(

Z 0
n

Z 1
n

)
= M

(
Z 0

n−1
Z 1

n−1

)
= · · · = Mn

(
Z 0

0
Z 1

0

)
.

Since M = I
(
λ+ 0
0 λ−

)
I−1, we get Z 0

n = c1(λ+)n
(
1 + c2

(
λ−

λ+

)n)
for some c1, c2 > 0

that depend only on φ. Hence P{0,1}Z,φ = limn→∞
1
n log Z 0

n = log λ+.
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Thermodynamic formalism: topological pressure φ(x) = φ(x0, x1)

Theorem (JKP, ML, MR 2022/23):

PX̃η ,φ
=

b1∑
ℓ=1

ν(Bℓ0) log Z 0
ℓ = log λ+ +(1−d) log c1 +

b1∑
ℓ=1

νη(Bℓ0) log

1 + c2

(
λ−

λ+

)ℓ
 ,

where Bℓ = 01 . . . 1 ∈ {0, 1}ℓ and Z 0
ℓ = ∑

A∈{0,1}ℓ−1 2φ(ℓ)(0A0). Constants c1, c2 > 0
depend only on φ.

Step 1. Reduction to finite B.

Theorem: We have X̃η ⊆ · · · ⊆ X̃ηk+1 ⊆ X̃ηk . Moreover, M(X̃η) = M(⋂k≥1 X̃ηk ).

Corollary: PX̃η ,φ
= limk→∞ PX̃ηk ,φ

(upper semicontinuity of entropy).
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Thermodynamic formalism: topological pressure φ(x) = φ(x0, x1)

Step 2. Proof for finite B.

Let s :=period of η. Then

PX̃η ,φ
= lim

n→∞
1
sn log

∑
A≤η[0,sn−1]

2φ(sn)(A0)

= lim
n→∞

1
sn log

 ∑
A≤η[0,s−1]

n

= 1
s log

∑
A≤η[0,s−1]

2φ(s)(A0).

We have η[0, s − 1] = Bℓ1 . . .Bℓ(1−d)s , where Bℓ = 01 . . . 1 ∈ {0, 1}ℓ.

Each A ≤ η[0, s − 1] has at least (1 − d)s zeros (with d = νη(1)), whose positions are
the same as the positions of zeros on η[0, s − 1]. The remaining positions can be filled
either with 0’s or 1’s in an arbitrary way.
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Thermodynamic formalism: topological pressure φ(x) = φ(x0, x1)

Recall: PX̃η ,φ
= 1

s log∑A≤η[0,s−1] 2φ(s)(A0) and η[0, s − 1] = Bℓ1 . . .Bℓ(1−d)s .

Z 0
ℓ = ∑

A∈{0,1}ℓ−1 2φ(ℓ)(0A0) = ∑
A≤Bℓ

2φ(ℓ)(A0) =⇒ PX̃η ,φ
= 1

s log∏(1−d)s
i=1 Z 0

ℓi
.

First formula

PX̃η ,φ
= 1

s log
(1−d)s∏

i=1
Z 0

ℓi = 1
s

(1−d)s∑
i=1

log(Z 0
ℓ )#{1≤i≤(1−d)s:ℓi =ℓ}

=
b1∑

ℓ=1

#{1 ≤ i ≤ (1 − d)s : ℓi = ℓ}
s log Z 0

ℓ =
b1∑

ℓ=1
νη(Bℓ0) log Z 0

ℓ .

Second formula

Follows immediately by Z 0
n = c1(λ+)n

(
1 + c2

(
λ−

λ+

)m)
.
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Thermodynamic formalism: “approximation” of {0, 1}Z with X̃ηk

Recall: PX̃η ,φ
= log λ+ + (1 − d) log c1 +∑b1

ℓ=1 νη(Bℓ0) log
(

1 + c2
(

λ−

λ+

)ℓ
)
,

Question: what happens to the third term when X̃η more and more resembles {0, 1}Z?

By “resembling” we mean that d(FB) (it is not sufficient to look at L(n)(X̃η) as it
equals {0, 1}n, whenver min B is large enough!

Theorem (JKP, ML, MR 2022/23): For any ε ∈ (0, 2), within the family of Erdős sets
B, as d → 1 we have

b1∑
ℓ=1

νη(Bℓ0) log

1 + c2

(
λ−

λ+

)ℓ
 ≪ (1 − d)ε.
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Thermodynamic formalism: “approximation” of {0, 1}Z with X̃ηk

Theorem (JKP, ML, MR 2022/23): For any ε ∈ (0, 2), within the family of Erdős sets
B, as d → 1 we have ∑b1

ℓ=1 νη(Bℓ0) log
(

1 + c2
(

λ−

λ+

)ℓ
)

≪ (1 − d)ε.

Tools:

• d = νη(1) = ∏∞
i=1

(
1 − 1

bi

)
, νη(Bℓ0) ≤

∑
i ,j≥1

1
bi bj

= S2, where S = ∑
i≥1

1
bi

.
• for d0 ∈ (0, 1), there exists C > 0 such that for any B that is Erdős, with

d ∈ [d0, 1], we have 1 − d ≤ S ≤ C(1 − d)

For ε ∈ (0, 2), we split our sum at ℓ0 ≃ (1 − d)−2+ε.

Part 1.
∣∣∣∣∑ℓ0−1

ℓ=1 νη(Bℓ0) log
(

1 + c2
(

λ−

λ+

)ℓ
)∣∣∣∣ ≤

∑ℓ0−1
ℓ=1 νη(Bℓ0)

∣∣∣∣log
(

1 + c2
(

λ−

λ+

)ℓ
)∣∣∣∣ ≤

ℓ0 · S2 · const = const · (1 − d)ε.
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Thermodynamic formalism: “approximation” of {0, 1}Z with X̃ηk
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ℓ=1 νη(Bℓ0) log
(

1 + c2
(

λ−

λ+

)ℓ
)

≪ (1 − d)ε.

Part 2.∣∣∣∣∑b1
ℓ=ℓ0

νη(Bℓ0) log
(

1 + c2
(

λ−

λ+

)ℓ
)∣∣∣∣ ≤

∑b1
ℓ=ℓ0

νη(Bℓ0) maxℓ0≤ℓ≤b1

∣∣∣∣log
(

1 + c2
(

λ−

λ+

)ℓ
)∣∣∣∣
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Thermodynamic formalism: “approximation” of {0, 1}Z with X̃ηk

Theorem (JKP, ML, MR 2022/23): For any ε ∈ (0, 2), within the family of Erdős sets
B, as d → 1 we have ∑b1

ℓ=1 νη(Bℓ0) log
(

1 + c2
(

λ−

λ+

)ℓ
)

≪ (1 − d)ε.

Part 2.∣∣∣∣∑b1
ℓ=ℓ0

νη(Bℓ0) log
(

1 + c2
(

λ−

λ+

)ℓ
)∣∣∣∣ ≤

∑b1
ℓ=ℓ0

νη(Bℓ0) maxℓ0≤ℓ≤b1

∣∣∣∣log
(

1 + c2
(

λ−

λ+

)ℓ
)∣∣∣∣

maxℓ0≤ℓ≤b1

∣∣∣∣log
(

1 + c2
(

λ−

λ+

)ℓ
)∣∣∣∣ =

∣∣∣∣log
(

1 + c2
(

λ−

λ+

)ℓ0
)∣∣∣∣ (ℓ0 large ⇐⇒ 1 − d small).

log(1 + x) ≃ x for small x , so for any P,
∣∣∣∣log

(
1 + c2

(
λ−

λ+

)ℓ0
)∣∣∣∣ ≃

(
λ−

λ+

)ℓ0 ≪ P(1 − d).

Question: What happend for non-Erdős B?

28



Thank you!
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