Restricted variational principle of Lyapunov exponents for typical cocycles

Reza Mohammadpour

Uppsala University

Thermodynamic Formalism: Non-additive Aspects and Related Topics, Będlewo, Poland

May 15, 2023

Papers

- R. Mohammadpour, Entropy spectrum of Lyapunov exponents for typical cocycles, ArXiv:2210.11574.
- R. Mohammadpour, Restricted variational principle of Lyapunov exponents for typical cocycles, ArXiv:2301.01721.

General setting for this talk

- $\Sigma:=\{1, \ldots, k\}^{\mathbb{Z}}$

General setting for this talk

- $\Sigma:=\{1, \ldots, k\}^{\mathbb{Z}}$
- (Σ, T) is either a topologically mixing subshift of finite type or a full shift.

General setting for this talk

- $\Sigma:=\{1, \ldots, k\}^{\mathbb{Z}}$
- (Σ, T) is either a topologically mixing subshift of finite type or a full shift.
- $\mathcal{M}(\Sigma, T)=$ the space of all T-invariant Borel probability measures on Σ.

General setting for this talk

- $\Sigma:=\{1, \ldots, k\}^{\mathbb{Z}}$
- ($\Sigma, T)$ is either a topologically mixing subshift of finite type or a full shift.
- $\mathcal{M}(\Sigma, T)=$ the space of all T-invariant Borel probability measures on Σ. This space is a nonempty convex set and is compact with respect to the weak-* topology.

Variational principle

Let $f: \Sigma \rightarrow \mathbb{R}$ be a continuous function over (Σ, T). The pressure $P: C(\Sigma) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
P(f):=\sup _{\mu \in \mathcal{M}(\Sigma, T)}\left\{h_{\mu}(T)+\int f d \mu\right\} \tag{1.1}
\end{equation*}
$$

Variational principle

Let $f: \Sigma \rightarrow \mathbb{R}$ be a continuous function over (Σ, T). The pressure $P: C(\Sigma) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
P(f):=\sup _{\mu \in \mathcal{M}(\Sigma, T)}\left\{h_{\mu}(T)+\int f d \mu\right\} . \tag{1.1}
\end{equation*}
$$

If the supremum is attained, then such measures will be called equilibrium state.

Variational principle

Let $f: \Sigma \rightarrow \mathbb{R}$ be a continuous function over (Σ, T). The pressure $P: C(\Sigma) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
P(f):=\sup _{\mu \in \mathcal{M}(\Sigma, T)}\left\{h_{\mu}(T)+\int f d \mu\right\} . \tag{1.1}
\end{equation*}
$$

If the supremum is attained, then such measures will be called equilibrium state. When $f \equiv 0$, the pressure $P(0)$ is equal to the topological entropy $h_{\text {top }}(\Sigma, T)$, which measures the complexity of the system (Σ, T). By (1.1),

$$
\begin{equation*}
h_{\text {top }}(T):=h_{\text {top }}(\Sigma, T)=\sup _{\mu \in \mathcal{M}(\Sigma, T)} h_{\mu}(T) . \tag{1.2}
\end{equation*}
$$

Birkhoff Theorem

We denote $S_{n} f(x):=\sum_{k=0}^{n-1} f\left(T^{k}(x)\right)$ and call this a Birkhoff sum

Birkhoff Theorem

We denote $S_{n} f(x):=\sum_{k=0}^{n-1} f\left(T^{k}(x)\right)$ and call this a Birkhoff sum and we call

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n} f(x)
$$

a Birkhoff average.

Birkhoff Theorem

We denote $S_{n} f(x):=\sum_{k=0}^{n-1} f\left(T^{k}(x)\right)$ and call this a Birkhoff sum and we call

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n} f(x)
$$

a Birkhoff average.
If μ is an ergodic invariant probability measure, then the Birkhoff average converges to $\int f d \mu$ for μ-almost all points, but there are plenty of ergodic invariant measures, for which the limit exists but converges to a different quantity. Furthermore, there are plenty of points which are not generic points for any ergodic measure or even for which the Birkhoff average does not exist.

Level set

Therefore, one may ask about the size of the set of points

$$
E_{f}(\alpha)=\left\{x \in \Sigma: \frac{1}{n} S_{n} f(x) \rightarrow \alpha \text { as } n \rightarrow \infty\right\}
$$

which we call α-level set,

Level set

Therefore, one may ask about the size of the set of points

$$
E_{f}(\alpha)=\left\{x \in \Sigma: \frac{1}{n} S_{n} f(x) \rightarrow \alpha \text { as } n \rightarrow \infty\right\}
$$

which we call α-level set, for a given value α from the set

$$
L=\left\{\alpha \in \mathbb{R}: \exists x \in \Sigma \text { and } \lim _{n \rightarrow \infty} \frac{1}{n} S_{n} f(x)=\alpha\right\}
$$

which we call Birkhoff spectrum.

Level set

Therefore, one may ask about the size of the set of points

$$
E_{f}(\alpha)=\left\{x \in \Sigma: \frac{1}{n} S_{n} f(x) \rightarrow \alpha \text { as } n \rightarrow \infty\right\}
$$

which we call α-level set, for a given value α from the set

$$
L=\left\{\alpha \in \mathbb{R}: \exists x \in \Sigma \text { and } \lim _{n \rightarrow \infty} \frac{1}{n} S_{n} f(x)=\alpha\right\}
$$

which we call Birkhoff spectrum. That size is usually calculated in terms of topological entropy. Let $Z \subset \Sigma$, we denote by $h_{\text {top }}\left(T_{\mid z}\right)$ topological entropy of T restricted to Z or, simply, the topological entropy of Z.

Level set

Therefore, one may ask about the size of the set of points

$$
E_{f}(\alpha)=\left\{x \in \Sigma: \frac{1}{n} S_{n} f(x) \rightarrow \alpha \text { as } n \rightarrow \infty\right\}
$$

which we call α-level set, for a given value α from the set

$$
L=\left\{\alpha \in \mathbb{R}: \exists x \in \Sigma \text { and } \lim _{n \rightarrow \infty} \frac{1}{n} S_{n} f(x)=\alpha\right\}
$$

which we call Birkhoff spectrum. That size is usually calculated in terms of topological entropy. Let $Z \subset \Sigma$, we denote by $h_{\text {top }}\left(T_{\mid z}\right)$ topological entropy of T restricted to Z or, simply, the topological entropy of Z.

Multifractal formalism of Birkhoff averages

$$
E_{f}(\alpha) \neq \emptyset \Leftrightarrow \alpha \in \Omega:=\left\{\int f d \mu: \mu \in \mathcal{M}(\Sigma, T)\right\} .
$$

Multifractal formalism of Birkhoff averages

$$
E_{f}(\alpha) \neq \emptyset \Leftrightarrow \alpha \in \Omega:=\left\{\int f d \mu: \mu \in \mathcal{M}(\Sigma, T)\right\} .
$$

Moreover, $\forall \alpha \in \Omega, h_{\text {top }}\left(T_{\mid E_{f}(\alpha)}\right)=\inf _{q \in \mathbb{R}}\{P(q f)-\alpha q\}$
Legendre transform formula

Multifractal formalism of Birkhoff averages

$$
E_{f}(\alpha) \neq \emptyset \Leftrightarrow \alpha \in \Omega:=\left\{\int f d \mu: \mu \in \mathcal{M}(\Sigma, T)\right\} .
$$

Moreover, $\forall \alpha \in \Omega, h_{\text {top }}\left(T_{\mid E_{f}(\alpha)}\right)=\inf _{q \in \mathbb{R}}\{P(q f)-\alpha q\}$
Legendre transform formula

$$
\begin{gathered}
h_{\text {top }}\left(T_{\mid E_{f}(\alpha)}\right)=\sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T) \text { with } \int f d \mu=\alpha\right\}, \\
\text { restricted variational principle }
\end{gathered}
$$

Multifractal formalism of Birkhoff averages

$$
E_{f}(\alpha) \neq \emptyset \Leftrightarrow \alpha \in \Omega:=\left\{\int f d \mu: \mu \in \mathcal{M}(\Sigma, T)\right\}
$$

Moreover, $\forall \alpha \in \Omega, h_{\text {top }}\left(T_{\mid E_{f}(\alpha)}\right)=\inf _{q \in \mathbb{R}}\{P(q f)-\alpha q\}$
Legendre transform formula

$$
h_{\text {top }}\left(T_{\mid E_{f}(\alpha)}\right)=\sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T) \text { with } \int f d \mu=\alpha\right\}
$$

restricted variational principle
This type of question was considered by Barreira and Saussol ('01). There is actually quite a large literature on multifractal analysis (or multifractal formalism) which addresses various questions related to this one. Pesin, Weiss, Olsen, Barreira, Saussol, Feng, Fan, Schmeling, Climenhaga, Kucherenko, Wolf and

Potentials

Assume that ϕ_{n} is a continuous positive-valued function over (Σ, T).

Potentials

Assume that ϕ_{n} is a continuous positive-valued function over (Σ, T). We say that $\Phi:=\left\{\log \phi_{n}\right\}_{n=1}^{\infty}$ is

Potentials

Assume that ϕ_{n} is a continuous positive-valued function over (Σ, T). We say that $\Phi:=\left\{\log \phi_{n}\right\}_{n=1}^{\infty}$ is

- a subadditive potential if

$$
0<\phi_{n+m}(x) \leqslant \phi_{n}(x) \phi_{m}\left(T^{n}(x)\right) \forall x \in \Sigma, m, n \in \mathbb{N}
$$

Potentials

Assume that ϕ_{n} is a continuous positive-valued function over (Σ, T). We say that $\Phi:=\left\{\log \phi_{n}\right\}_{n=1}^{\infty}$ is

- a subadditive potential if

$$
0<\phi_{n+m}(x) \leqslant \phi_{n}(x) \phi_{m}\left(T^{n}(x)\right) \forall x \in \Sigma, m, n \in \mathbb{N} .
$$

- an almost additive potential if $\exists C \geqslant 1, \forall x \in \Sigma, m, n \in \mathbb{N}$, we have

$$
C^{-1} \phi_{n}(x) \phi_{m}\left(T^{n}\right)(x) \leqslant \phi_{n+m}(x) \leqslant C \phi_{n}(x) \phi_{m}\left(T^{n}(x)\right) .
$$

Potentials

Assume that ϕ_{n} is a continuous positive-valued function over (Σ, T). We say that $\Phi:=\left\{\log \phi_{n}\right\}_{n=1}^{\infty}$ is

- a subadditive potential if

$$
0<\phi_{n+m}(x) \leqslant \phi_{n}(x) \phi_{m}\left(T^{n}(x)\right) \forall x \in \Sigma, m, n \in \mathbb{N}
$$

- an almost additive potential if $\exists C \geqslant 1, \forall x \in \Sigma, m, n \in \mathbb{N}$, we have

$$
C^{-1} \phi_{n}(x) \phi_{m}\left(T^{n}\right)(x) \leqslant \phi_{n+m}(x) \leqslant C \phi_{n}(x) \phi_{m}\left(T^{n}(x)\right)
$$

- an additive potential if

$$
\phi_{n+m}(x)=\phi_{n}(x) \phi_{m}\left(T^{n}(x)\right) \forall x \in \Sigma, m, n \in \mathbb{N}
$$

Matrix(linear) cocycles

The natural example of subadditive potentials is matrix cocycles.

Matrix(linear) cocycles

The natural example of subadditive potentials is matrix cocycles. More precisely, given a continuous map $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ taking values into the space $d \times d$ invertible matrices. We consider the products

$$
\mathcal{A}^{n}(x)=\mathcal{A}\left(T^{n-1}(x)\right) \ldots \mathcal{A}(T(x)) \mathcal{A}(x)
$$

The pair (\mathcal{A}, T) is called a linear cocycle.

Matrix(linear) cocycles

The natural example of subadditive potentials is matrix cocycles. More precisely, given a continuous map $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ taking values into the space $d \times d$ invertible matrices. We consider the products

$$
\mathcal{A}^{n}(x)=\mathcal{A}\left(T^{n-1}(x)\right) \ldots \mathcal{A}(T(x)) \mathcal{A}(x)
$$

The pair (\mathcal{A}, T) is called a linear cocycle. It induces a skew-product dynamics F on $\Sigma \times \mathbb{R}^{d}$ by $(x, v) \mapsto \Sigma \times \mathbb{R}^{d}$, whose n-th iterate is therefore

$$
(x, v) \mapsto\left(T^{n}(x), \mathcal{A}^{n}(x) v\right)
$$

An example of linear cocycles: one step cocycles

A simple class of linear cocycles is one-step cocycles which is defined as follows.

- $\Sigma=\{1, \ldots, k\}^{\mathbb{Z}}$ is a symbolic space.

An example of linear cocycles: one step cocycles

A simple class of linear cocycles is one-step cocycles which is defined as follows.

- $\Sigma=\{1, \ldots, k\}^{\mathbb{Z}}$ is a symbolic space.
- $T: \Sigma \rightarrow \Sigma$ is a shift map, i.e. $T\left(x_{l}\right)_{I}=\left(x_{l+1}\right)_{l}$

An example of linear cocycles: one step cocycles

A simple class of linear cocycles is one-step cocycles which is defined as follows.

- $\Sigma=\{1, \ldots, k\}^{\mathbb{Z}}$ is a symbolic space.
- $T: \Sigma \rightarrow \Sigma$ is a shift map, i.e. $T\left(x_{l}\right)_{l}=\left(x_{l+1}\right)_{\text {I }}$
- Given a finite set of matrices $\left\{A_{1}, \ldots, A_{k}\right\} \subset G L(d, \mathbb{R})$

An example of linear cocycles: one step cocycles

A simple class of linear cocycles is one-step cocycles which is defined as follows.

- $\Sigma=\{1, \ldots, k\}^{\mathbb{Z}}$ is a symbolic space.
- $T: \Sigma \rightarrow \Sigma$ is a shift map, i.e. $T\left(x_{l}\right)_{l}=\left(x_{l+1}\right)_{\text {I }}$
- Given a finite set of matrices $\left\{A_{1}, \ldots, A_{k}\right\} \subset G L(d, \mathbb{R})$ We define the function $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ by

$$
\mathcal{A}(x)=A_{x_{0}}
$$

An example of linear cocycles: one step cocycles

A simple class of linear cocycles is one-step cocycles which is defined as follows.

- $\Sigma=\{1, \ldots, k\}^{\mathbb{Z}}$ is a symbolic space.
- $T: \Sigma \rightarrow \Sigma$ is a shift map, i.e. $T\left(x_{l}\right)_{I}=\left(x_{l+1}\right)_{I}$
- Given a finite set of matrices $\left\{A_{1}, \ldots, A_{k}\right\} \subset G L(d, \mathbb{R})$ We define the function $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ by

$$
\mathcal{A}(x)=A_{x_{0}}
$$

In this case, we say that (T, \mathcal{A}) is a one step cocycle.

An example of linear cocycles: one step cocycles

A simple class of linear cocycles is one-step cocycles which is defined as follows.

- $\Sigma=\{1, \ldots, k\}^{\mathbb{Z}}$ is a symbolic space.
- $T: \Sigma \rightarrow \Sigma$ is a shift map, i.e. $T\left(x_{l}\right)_{I}=\left(x_{l+1}\right)_{\text {I }}$
- Given a finite set of matrices $\left\{A_{1}, \ldots, A_{k}\right\} \subset G L(d, \mathbb{R})$ We define the function $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ by

$$
\mathcal{A}(x)=A_{x_{0}}
$$

In this case, we say that (T, \mathcal{A}) is a one step cocycle. We denote by \mathcal{L}, and \mathcal{L}_{n} the set of words, and the set of words with the length n, respectively. Let (\mathcal{A}, T) be a one-step cocycle. For any $n \in \mathbb{N}$ and $I=i_{0} i_{1} \ldots i_{n-1} \in \mathcal{L}_{n}$, we define

$$
\mathcal{A}_{I}=A_{i_{n-1}} \ldots A_{i_{0}}
$$

Lyapunov exponents

Let $\mathcal{A}: X \rightarrow G L(d, \mathbb{R})$ be a matrix cocycle over (Σ, T). By Kingman's subadditive ergodic theorem, for any $\mu \in \mathcal{M}(\Sigma, T)$ and μ almost every $x \in X$ such that $\log ^{+}\|\mathcal{A}\| \in L^{1}(\mu)$, the following limit, called the top Lyapunov exponent at x, exists:

Lyapunov exponents

Let $\mathcal{A}: X \rightarrow G L(d, \mathbb{R})$ be a matrix cocycle over (Σ, T). By Kingman's subadditive ergodic theorem, for any $\mu \in \mathcal{M}(\Sigma, T)$ and μ almost every $x \in X$ such that $\log ^{+}\|\mathcal{A}\| \in L^{1}(\mu)$, the following limit, called the top Lyapunov exponent at x, exists:

$$
\chi(x, \mathcal{A}):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|
$$

Lyapunov exponents

Let $\mathcal{A}: X \rightarrow G L(d, \mathbb{R})$ be a matrix cocycle over (Σ, T). By Kingman's subadditive ergodic theorem, for any $\mu \in \mathcal{M}(\Sigma, T)$ and μ almost every $x \in X$ such that $\log ^{+}\|\mathcal{A}\| \in L^{1}(\mu)$, the following limit, called the top Lyapunov exponent at x, exists:

$$
\chi(x, \mathcal{A}):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|
$$

where $\|\mathcal{A}\|$ the Euclidean operator norm of a matrix \mathcal{A} (i.e. the largest singular value of \mathcal{A}), that is submultiplicative i.e.,

$$
0<\left\|\mathcal{A}^{n+m}(x)\right\| \leqslant\left\|\mathcal{A}^{m}\left(T^{n} x\right)\right\|\left\|\mathcal{A}^{n}(x)\right\| \forall x \in \Sigma, m, n \in \mathbb{N}
$$

Lyapunov exponents

Let $\mathcal{A}: X \rightarrow G L(d, \mathbb{R})$ be a matrix cocycle over (Σ, T). By Kingman's subadditive ergodic theorem, for any $\mu \in \mathcal{M}(\Sigma, T)$ and μ almost every $x \in X$ such that $\log ^{+}\|\mathcal{A}\| \in L^{1}(\mu)$, the following limit, called the top Lyapunov exponent at x, exists:

$$
\chi(x, \mathcal{A}):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|
$$

where $\|\mathcal{A}\|$ the Euclidean operator norm of a matrix \mathcal{A} (i.e. the largest singular value of \mathcal{A}), that is submultiplicative i.e.,

$$
0<\left\|\mathcal{A}^{n+m}(x)\right\| \leqslant\left\|\mathcal{A}^{m}\left(T^{n} x\right)\right\|\left\|\mathcal{A}^{n}(x)\right\| \forall x \in \Sigma, m, n \in \mathbb{N}
$$

Let us denote $\chi(\mu, \mathcal{A})=\int \chi(., \mathcal{A}) d \mu$. If the measure μ is ergodic then $\chi(x, \mathcal{A})=\chi(\mu, \mathcal{A})$ for μ-almost every $x \in \Sigma$.

Level sets of the top Lyapunov exponent

- Level set

$$
E(\alpha)=\left\{x \in \Sigma: \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|=\alpha\right\}
$$

Level sets of the top Lyapunov exponent

- Level set

$$
E(\alpha)=\left\{x \in \Sigma: \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|=\alpha\right\}
$$

- Lyapunov spectrum

$$
L=\left\{\alpha: \exists x \in \sum \text { such that } \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|=\alpha\right\}
$$

Level sets of the top Lyapunov exponent

- Level set

$$
E(\alpha)=\left\{x \in \Sigma: \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|=\alpha\right\}
$$

- Lyapunov spectrum

$$
L=\left\{\alpha: \exists x \in \Sigma \text { such that } \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|=\alpha\right\}
$$

- $\Omega=\{\chi(\mu, \mathcal{A}) ; \mu \in \mathcal{M}(\Sigma, T)\}$.

Level sets of the top Lyapunov exponent

- Level set

$$
E(\alpha)=\left\{x \in \Sigma: \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|=\alpha\right\}
$$

- Lyapunov spectrum

$$
L=\left\{\alpha: \exists x \in \Sigma \text { such that } \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\mathcal{A}^{n}(x)\right\|=\alpha\right\}
$$

- $\Omega=\{\chi(\mu, \mathcal{A}) ; \mu \in \mathcal{M}(\Sigma, T)\}$.
$h_{\text {top }}(E(\alpha)):=h_{\text {top }}\left(T_{\mid E(\alpha)}\right)$.

All Lyapunov exponents

Let (\mathcal{A}, T) be matrix cocycle. Let μ be an T-invariant measure. By Oseledets' theorem, there might exist several Lyapunov exponents. We denote by $\chi_{1}(x, \mathcal{A}) \geqslant \chi_{2}(x, \mathcal{A}) \geqslant \ldots \geqslant \chi_{d}(x, \mathcal{A})$ the Lyapunov exponents, counted with multiplicity, of the cocycle (\mathcal{A}, T). Also, we denote $\chi_{i}(\mu, \mathcal{A}):=\int \chi_{i}(x, \mathcal{A}) d \mu$. Therefore, one may ask the size of the $\vec{\alpha}$-level set.

All Lyapunov exponents

Let (\mathcal{A}, T) be matrix cocycle. Let μ be an T-invariant measure. By Oseledets' theorem, there might exist several Lyapunov exponents. We denote by $\chi_{1}(x, \mathcal{A}) \geqslant \chi_{2}(x, \mathcal{A}) \geqslant \ldots \geqslant \chi_{d}(x, \mathcal{A})$ the Lyapunov exponents, counted with multiplicity, of the cocycle (\mathcal{A}, T). Also, we denote $\chi_{i}(\mu, \mathcal{A}):=\int \chi_{i}(x, \mathcal{A}) d \mu$. Therefore, one may ask the size of the $\vec{\alpha}$-level set. For $\vec{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$,

$$
\begin{aligned}
& E(\vec{\alpha})=\left\{x \in \Sigma: \frac{1}{n} \log \sigma_{i}\left(\mathcal{A}^{n}(x)\right) \rightarrow \alpha_{i} \text { as } n \rightarrow \infty\right\}, \\
& \vec{L}=\left\{\vec{\alpha} \in \mathbb{R}^{d}: \exists x \in \Sigma \text { such that } \lim _{n \rightarrow \infty} \frac{1}{n} \log \sigma_{i}\left(\mathcal{A}^{n}(x)\right)=\alpha_{i}\right\} . \\
& \vec{\Omega}:=\left\{\left(\chi_{1}(\mu, \mathcal{A}), \chi_{2}(\mu, \mathcal{A}), \ldots, \chi_{d}(\mu, \mathcal{A})\right): \mu \in \mathcal{M}(\Sigma, T)\right\} .
\end{aligned}
$$

Dominated cocycles-Bochi and Gourmelon('09)

We say that a matrix cocycle $\mathcal{A}: X \rightarrow G L(d, \mathbb{R})$ over a homeomorphism map (X, T) is dominated with index i if there exist constants $C>1,0<\tau<1$ such that

$$
\frac{\sigma_{i+1}\left(\mathcal{A}^{n}(x)\right)}{\sigma_{i}\left(\mathcal{A}^{n}(x)\right)} \leqslant C \tau^{n}, \quad \forall n \in \mathbb{N}, x \in X .
$$

We say that the matrix cocycle \mathcal{A} is dominated if it is dominated with index i for all $i \in\{1, \ldots, d-1\}$.

Dominated cocycles-Bochi and Gourmelon('09)

We say that a matrix cocycle $\mathcal{A}: X \rightarrow G L(d, \mathbb{R})$ over a homeomorphism map (X, T) is dominated with index i if there exist constants $C>1,0<\tau<1$ such that

$$
\frac{\sigma_{i+1}\left(\mathcal{A}^{n}(x)\right)}{\sigma_{i}\left(\mathcal{A}^{n}(x)\right)} \leqslant C \tau^{n}, \quad \forall n \in \mathbb{N}, x \in X
$$

We say that the matrix cocycle \mathcal{A} is dominated if it is dominated with index i for all $i \in\{1, \ldots, d-1\}$.
Let \mathbf{A} be a compact set in $G L(d, \mathbb{R})$. We say that \mathbf{A} is dominated of index i iff there exist $C>0$ and $0<\tau<1$ such that for any finite sequence A_{1}, \ldots, A_{N} in \mathbf{A} we have

$$
\frac{\sigma_{i+1}\left(A_{1} \cdots A_{N}\right)}{\sigma_{i}\left(A_{1} \cdots A_{N}\right)}<C \tau^{N} .
$$

We say that \mathbf{A} is dominated iff it is dominated of index i for each i. A one step cocycle \mathcal{A} generated by \mathbf{A} is dominated if \mathbf{A} is dominated.

Theorem (Barreira and Gelfert, CMP('06))

Let Λ be a repeller of a $C^{1+\alpha}$ map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that:

- $d_{x} f$ has bounded distortion on Λ;
- $d_{x} f$ is dominated,

Then for each $q \in \mathbb{R}^{2}$ and each
$\vec{\alpha} \in \nabla P\left(\left\langle q,\left(\log \sigma_{1}\left(d_{x} f\right), \log \sigma_{2}\left(d_{x} f\right)\right\rangle\right)\right.$,

$$
h_{t o p}(E(\vec{\alpha}))=\inf _{q \in \mathbb{R}^{2}}\left\{P\left(\left\langle q,\left(\log \sigma_{1}\left(d_{x} f\right), \log \sigma_{2}\left(d_{x} f\right)\right)\right\rangle\right)-\langle q, \vec{\alpha}\rangle\right\}
$$

Legendre transform

Figure: $P(q \Phi)$ is a convex function for $q \in \mathbb{R}$. The blue line is tangent to $P(q \Phi)$ at q with slope $-\alpha=P^{\prime}(q \Phi)$.

A crucial technique in their work

Barreira and Gelfert considered a C^{1} local diffeomorphism $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, and a compact f-invariant set $\Lambda \subset \mathbb{R}^{2}$. They showed that if there is a dominated splitting $T_{\wedge} \mathbb{R}^{2}:=E(x) \oplus F(x)$, then there exists $C \geqslant 1$ such that for every $x \in \Lambda$ and $n, m \in \mathbb{N}$ we have

$$
C^{-1} \sigma_{i}\left(d_{x} f^{n}\right) \sigma_{i}\left(d_{n^{n} x} f^{m}\right) \leqslant \sigma_{i}\left(d_{x} f^{n+m}\right) \leqslant \sigma_{i}\left(d_{x} f^{n}\right) \sigma_{i}\left(d_{f^{n_{x}}} f^{m}\right) .
$$

Almost additivity of all singular values

Theorem (M('22), JSP)

Let X be a compact metric space, and let $\mathcal{A}: X \rightarrow G L(d, \mathbb{R})$ be a matrix cocycle over a homeomorphism (X, T). Assume that the cocycle \mathcal{A} is dominated with index 1. Then, there exists $\kappa>0$ such that for every $m, n>0$ and for every $x \in X$ we have

$$
\left\|\mathcal{A}^{m+n}(x)\right\| \geqslant \kappa\left\|\mathcal{A}^{m}(x)\right\| \cdot\left\|\mathcal{A}^{n}\left(T^{m}(x)\right)\right\| .
$$

Entropy spectrum of all almost additive potentials

Theorem (Feng and Huang('10), CMP)

Let (Σ, T) be a topologically mixing SFT, and $\Phi_{i}:=\left\{\log \phi_{n}^{i}\right\}_{n \in \mathbb{N}}$ ($i=1, \ldots, d$) be an almost additive potentials on Σ. Then

$$
\begin{aligned}
& h_{\text {top }}(E(\vec{\alpha}))=\inf _{q \in \mathbb{R}^{d}}\left\{P\left(\sum_{i=1}^{d} q_{i} \log \Phi_{i}\right)-\langle q, \vec{\alpha}\rangle\right\} \\
& =\sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T),\left(\chi\left(\mu, \Phi_{1}\right), \ldots, \chi\left(\mu, \Phi_{d}\right)\right)=\vec{\alpha}\right\}
\end{aligned}
$$

for any $\vec{\alpha} \in \vec{\Omega}$.

Generic matrix cocycles

Theorem (Feng ('09), Isr. J. Math.)

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Suppose that $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is irreducible. Then,

$$
h_{\text {top }}(E(\alpha))=\inf _{q \in \mathbb{R}}\{P(q \log \|\mathcal{A}\|)-\alpha q\},
$$

for $\alpha \in L$.

Generic matrix cocycles

Theorem (Feng ('09), Isr. J. Math.)

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Suppose that $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is irreducible. Then,

$$
h_{\text {top }}(E(\alpha))=\inf _{q \in \mathbb{R}}\{P(q \log \|\mathcal{A}\|)-\alpha q\},
$$

for $\alpha \in L$.

Theorem (M('22), JSP)

Assume that $T: \Sigma \rightarrow \Sigma$ is a topologically mixing subshift of finite type. Suppose that $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is a typical cocycle. Then,

$$
\begin{aligned}
h_{\text {top }}(E(\alpha)) & =\sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T), \chi(\mu, \mathcal{A})=\alpha\right\} \\
& =\inf _{q \in \mathbb{R}}\{P(q \log \|\mathcal{A}\|)-\alpha . q\} \quad \forall \alpha \in \Omega .
\end{aligned}
$$

Typical cocycles-Bonatti and Viana ('04), Avila and Viana('07)

We say that a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$

- is pinching if there is $I \in \mathcal{L}$ such that the matrix $\mathcal{A}_{\text {I }}$ is simple, where the logarithms $\theta_{i}=\log \sigma_{i}\left(\mathcal{A}_{l}\right)$ of the singular values $\sigma_{i}\left(\mathcal{A}_{l}\right)$ of $\mathcal{A}_{\text {l }}$ satisfy the following inequality

$$
\theta_{i}>\theta_{i+1} .
$$

- is twisting if for any $1 \leqslant k \leqslant d-1$, any $F \in \operatorname{Gr}(k)$, and any finite $G_{1}, \ldots, G_{n} \in \operatorname{Gr}(d-k)$, there exists $J \in \mathcal{L}$ such that $\mathcal{A}_{J}(F) \cap G_{i}=\{0\}$.
We say that the cocycle \mathcal{A} is typical if it is pinching and twisting.

Typical cocycles-Bonatti and Viana ('04), Avila and Viana('07)

We say that a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$

- is pinching if there is $I \in \mathcal{L}$ such that the matrix $\mathcal{A}_{\text {I }}$ is simple, where the logarithms $\theta_{i}=\log \sigma_{i}\left(\mathcal{A}_{1}\right)$ of the singular values $\sigma_{i}\left(\mathcal{A}_{l}\right)$ of \mathcal{A}_{l} satisfy the following inequality

$$
\theta_{i}>\theta_{i+1} .
$$

- is twisting if for any $1 \leqslant k \leqslant d-1$, any $F \in \operatorname{Gr}(k)$, and any finite $G_{1}, \ldots, G_{n} \in \operatorname{Gr}(d-k)$, there exists $J \in \mathcal{L}$ such that $\mathcal{A}_{J}(F) \cap G_{i}=\{0\}$.
We say that the cocycle \mathcal{A} is typical if it is pinching and twisting. Bonatti-Viana and Avila-Viana showed that the set of typical cocycles is open and dense.

Falconer's singular value function

We define Falconer's singular value function $\varphi^{s}(\mathcal{A})$ as follows. Let $k \in\{0, \ldots, d-1\}$ and $k \leqslant s<k+1$. Then,

$$
\varphi^{s}(\mathcal{A})=\sigma_{1}(\mathcal{A}) \cdots \sigma_{k}(\mathcal{A}) \sigma_{k+1}(\mathcal{A})^{s-k}
$$

and if $s \geqslant d$, then $\varphi^{s}(\mathcal{A})=(\operatorname{det}(\mathcal{A}))^{\frac{s}{d}}$.
For $s:=\left(s_{1}, \cdots, s_{d}\right) \in \mathbb{R}^{d}$, we define the generalized singular value function $\psi^{s_{1}, \ldots, s_{d}}(\mathcal{A}): \mathbb{R}^{d \times d} \rightarrow[0, \infty)$ as

$$
\psi^{s_{1}, \ldots, s_{d}}(\mathcal{A}):=\sigma_{1}(\mathcal{A})^{s_{1}} \cdots \sigma_{d}(\mathcal{A})^{s_{d}}=\left(\prod_{m=1}^{d-1}\left\|\mathcal{A}^{\wedge m}\right\|^{s_{m}-s_{m+1}}\right)\left\|\mathcal{A}^{\wedge d}\right\|^{s_{d}}
$$

When $s \in[0, d]$, the singular value function $\varphi^{s}(\mathcal{A}(\cdot))$ coincides with the generalized singular value function $\psi^{s_{1}, \ldots, s_{d}}(\mathcal{A}(\cdot))$ where

$$
\left(s_{1}, \ldots, s_{d}\right)=(\underbrace{1, \ldots, 1}_{m \text { times }}, s-m, 0, \ldots, 0)
$$

with $m=\lfloor s\rfloor$. We denote $\psi^{s}(\mathcal{A}):=\psi^{s_{1}, \ldots, s_{d}}(\mathcal{A})$.

Main result1

Theorem (M('22))

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Let $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ be a typical cocycle. Then

$$
h_{\text {top }}(E(\vec{\alpha}))=\inf _{q \in \mathbb{R}^{d}}\left\{P\left(\log \psi^{q}(\mathcal{A})\right)-\langle q, \vec{\alpha}\rangle\right\}
$$

for all $\vec{\alpha} \in \dot{\vec{L}}$.

Main result2

Theorem (M('23))

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Let $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ be a typical cocycle.
Suppose that

$$
\begin{aligned}
& \sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T), \chi_{i}(\mu, \mathcal{A})=\alpha_{i}\right\}= \\
& \inf _{q \in \mathbb{R}^{d}}\left\{P\left(\log \psi^{q}(\mathcal{A})\right)-\langle q, \vec{\alpha}\rangle\right\}
\end{aligned}
$$

for $\vec{\alpha} \in \operatorname{ri}(\vec{\Omega})$, where ri $(\vec{\Omega})$ denotes the relative interior of $\vec{\Omega}$.

Main result2

Theorem (M('23))

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Let $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ be a typical cocycle.
Suppose that

$$
\begin{aligned}
& \sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T), \chi_{i}(\mu, \mathcal{A})=\alpha_{i}\right\}= \\
& \inf _{q \in \mathbb{R}^{d}}\left\{P\left(\log \psi^{q}(\mathcal{A})\right)-\langle q, \vec{\alpha}\rangle\right\}
\end{aligned}
$$

for $\vec{\alpha} \in \operatorname{ri}(\vec{\Omega})$, where ri $(\vec{\Omega})$ denotes the relative interior of $\vec{\Omega}$.

$$
\Rightarrow h_{\mathrm{top}}(E(\vec{\alpha}))=\sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T), \chi_{i}(\mu, \mathcal{A})=\alpha_{i}\right\}
$$

Main result2

Theorem (M('23))

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Let $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ be a typical cocycle.
Suppose that

$$
\begin{aligned}
& \sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T), \chi_{i}(\mu, \mathcal{A})=\alpha_{i}\right\}= \\
& \inf _{q \in \mathbb{R}^{d}}\left\{P\left(\log \psi^{q}(\mathcal{A})\right)-\langle q, \vec{\alpha}\rangle\right\}
\end{aligned}
$$

for $\vec{\alpha} \in \operatorname{ri}(\vec{\Omega})$, where ri $(\vec{\Omega})$ denotes the relative interior of $\vec{\Omega}$.
$\Rightarrow h_{\mathrm{top}}(E(\vec{\alpha}))=\sup \left\{h_{\mu}(T): \mu \in \mathcal{M}(\Sigma, T), \chi_{i}(\mu, \mathcal{A})=\alpha_{i}\right\}$.
Affirmative answer to Breuillard and Sert's question,

QM

We say that a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is simultaneously quasi-multiplicative if there exist $C>0$ and $k \in \mathbb{N}$ such that for all $I, J \in \mathcal{L}$, there is $K=K(I, J) \in \mathcal{L}_{k}$ such that $I K J \in \mathcal{L}$ and for each $i \in\{1, \ldots, d-1\}$, we have

$$
\left\|\mathcal{A}_{l K J}^{\wedge i}\right\| \geqslant C\left\|\mathcal{A}_{\jmath}^{\wedge i}\right\|\left\|\mathcal{A}_{j}^{\wedge i}\right\| .
$$

QM

We say that a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is simultaneously quasi-multiplicative if there exist $C>0$ and $k \in \mathbb{N}$ such that for all $I, J \in \mathcal{L}$, there is $K=K(I, J) \in \mathcal{L}_{k}$ such that $I K J \in \mathcal{L}$ and for each $i \in\{1, \ldots, d-1\}$, we have

$$
\left\|\mathcal{A}_{l K J}^{\wedge}\right\| \geqslant C\left\|\mathcal{A}_{\jmath}^{\wedge}\right\|\| \| \mathcal{A}_{j}^{\wedge i} \| .
$$

Theorem (Park('20), CMP)

Typical cocycles are simultaneously quasi-multiplicative.

QM

We say that a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is simultaneously quasi-multiplicative if there exist $C>0$ and $k \in \mathbb{N}$ such that for all $I, J \in \mathcal{L}$, there is $K=K(I, J) \in \mathcal{L}_{k}$ such that $I K J \in \mathcal{L}$ and for each $i \in\{1, \ldots, d-1\}$, we have

$$
\left\|\mathcal{A}_{l k j}^{\wedge i}\right\| \geqslant C\left\|\mathcal{A}_{\jmath}^{\wedge i}\right\|\left\|\mathcal{A}_{j}^{\wedge i}\right\| .
$$

Theorem (Park('20), CMP)

Typical cocycles are simultaneously quasi-multiplicative.
More information about QM,
R. Mohammadpour and K. Park, Uniform quasi-multiplicativity of locally constant cocycles and applications. ArXiv:2209.08999.

Topological pressure

For any $q \in \mathbb{R}^{d}$, note that $\psi^{q}(\mathcal{A})$ is neither submultiplicative nor supermultiplicative. For one-step cocycles, the limsup topological pressure of $\log \psi^{q}(\mathcal{A})$ can be defined by

$$
P^{*}\left(\log \psi^{q}(\mathcal{A})\right):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n}(q), \quad \forall q \in \mathbb{R}^{d},
$$

where $s_{n}(q):=\sum_{l \in \mathcal{L}_{n}} \psi^{q}\left(\mathcal{A}_{l}\right)$. When the limit exists, we denote the topological pressure by $P\left(\log \psi^{q}(\mathcal{A})\right)$.

Topological pressure

For any $q=\left(q_{1}, \ldots, q_{d}\right) \in \mathbb{R}^{d}$, we can write

$$
\begin{equation*}
\psi^{q}\left(\mathcal{A}_{\mid K J}\right)=\underbrace{\prod_{i=1}^{d}\left\|\mathcal{A}_{1 K J}^{\wedge i}\right\|^{t_{i}}}, \tag{1}
\end{equation*}
$$

where $t_{i}=q_{i}-q_{i+1}$, and $q_{d+1}=0$ for $1 \leqslant i \leqslant d$.
If $t_{i}<0$, then by the sub-multiplicativity property, there is $C_{0}>0$ such that

$$
\begin{equation*}
\left\|\mathcal{A}_{1 K}^{\wedge}\right\|^{t_{i}} \geqslant \mathcal{C}_{0}^{t_{i}}\left\|\mathcal{A}_{l}^{\wedge}\right\|^{t_{i}}\left\|\mathcal{A}_{j}^{\wedge i}\right\|^{t_{i}} . \tag{1.3}
\end{equation*}
$$

If $t_{i} \geqslant 0$, then by the simultaneous quasi-multiplicativity of \mathcal{A}, we have

$$
\begin{equation*}
\left\|\mathcal{A}_{I K J}^{\wedge i}\right\|^{t_{i}} \geqslant C^{t_{i}}\left\|\mathcal{A}_{\jmath}^{\wedge i}\right\|^{t_{i}}\left\|\mathcal{A}_{\jmath}^{\wedge i}\right\|^{t_{i}} \tag{1.4}
\end{equation*}
$$

Topological pressure

By (1.3) and (1.4),

$$
(1) \geqslant C_{1} \prod_{i=1}^{d}\left\|\mathcal{A}^{\wedge}\right\|^{t_{j}} \prod_{i=1}^{d}\left\|\mathcal{A}_{j}^{\wedge}\right\|^{t_{i}}
$$

where $C_{1}:=C_{1}\left(C_{0}^{t_{i}}, C^{t_{i}}\right)$. Therefore,

$$
\psi^{q}\left(\mathcal{A}_{I K J}\right) \geqslant C_{1} \psi^{q}\left(\mathcal{A}_{\curlywedge}\right) \psi^{q}\left(\mathcal{A}_{J}\right) .
$$

Then,

$$
s_{n+k+m}(q) \geqslant C_{1} s_{n}(q) s_{m}(q) .
$$

Upper bound

Theorem (M('22))

Assume that a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is simultaneously quasi-multiplicative. Then,

$$
h_{\mathrm{top}}(E(\vec{\alpha})) \leqslant \inf _{t \in \mathbb{R}^{d}}\left\{P\left(\log \psi^{t}(\mathcal{A})\right)-\langle t, \vec{\alpha}\rangle\right\}
$$

for all $\alpha \in \dot{\vec{L}}$.

Dominated subsystem

Theorem (M('22))

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Assume that $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ is a typical cocycle. Then, there exists $K_{0} \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ and $I \in \mathcal{L}_{n}$ there exist $J_{2}=J_{2}(I)$ and $J_{1}=J_{1}(I)$ with $\left|J_{i}\right| \leqslant K_{0}$ for $i=1,2$ such that the tuple

$$
\left(\mathcal{A}_{\mathrm{k}}\right)_{\mathrm{k} \in \mathcal{L}_{\ell(I)}^{\mathcal{D}}}, \quad \text { where } \mathcal{L}_{\ell(I)}^{\mathcal{D}}:=\left\{J_{1} \mid J_{2}: I \in \mathcal{L}_{n}\right\}
$$

is dominated.
For simplicity, we denote by $\ell:=\ell(I)$ the length of each $I \in \mathcal{L}_{\ell(I)}^{\mathcal{D}}$, where $\ell \in\left[n, n+2 K_{0}\right]$.

Topological pressure for dominated subsystems

We define the one-step cocycle $\mathcal{B}:\left(\mathcal{L}_{\ell}^{\mathcal{D}}\right)^{\mathbb{Z}} \rightarrow G L(d, \mathbb{R})$ over a full shift $\left(\left(\mathcal{L}_{\ell}^{\mathcal{D}}\right)^{\mathbb{Z}}, f\right)$ defined by $\mathcal{B}(\omega):=\mathcal{A}_{J_{1}(I) J_{2}(I)}$, where \mathcal{B} depends only on the zero-th symbol $J_{1}(I) I J_{2}(I)$ of $\omega \in\left(\mathcal{L}_{\ell}^{\mathcal{D}}\right)^{\mathbb{Z}}$, is dominated. It is easy to see that $\left(\mathcal{L}_{\ell}^{\mathcal{D}}\right)^{\mathbb{Z}} \subset \Sigma$.

Topological pressure for dominated subsystems

We define the one-step cocycle $\mathcal{B}:\left(\mathcal{L}_{\ell}^{\mathcal{D}}\right)^{\mathbb{Z}} \rightarrow G L(d, \mathbb{R})$ over a full shift $\left(\left(\mathcal{L}_{\ell}^{\mathcal{D}}\right)^{\mathbb{Z}}, f\right)$ defined by $\mathcal{B}(\omega):=\mathcal{A}_{J_{1}(I) J_{2}(I)}$, where \mathcal{B} depends only on the zero-th symbol $J_{1}(I) I J_{2}(I)$ of $\omega \in\left(\mathcal{L}_{\ell}^{D}\right)^{\mathbb{Z}}$, is dominated. It is easy to see that $\left(\mathcal{L}_{\ell}^{\mathcal{D}}\right)^{\mathbb{Z}} \subset \Sigma$.
We define a pressure on the dominated subsystem $\mathcal{L}_{\ell}^{\mathcal{D}}$ by setting

$$
P_{\ell, \mathcal{D}}(\log \varphi):=\lim _{k \rightarrow \infty} \frac{1}{k} \log \sum_{I_{1}, \ldots, I_{k} \in \mathcal{L}_{\ell}^{D}} \varphi\left(I_{1} \ldots I_{k}\right),
$$

where $\varphi: \mathcal{L} \rightarrow \mathbb{R}_{\geqslant 0}$ is submultiplicative, i.e.,

$$
\varphi(\mathrm{I}) \varphi(\mathrm{J}) \geqslant \varphi(\mathrm{IJ}) .
$$

for all $I, J \in \mathcal{L}$ with $I J \in \mathcal{L}$.

Relation between the dominated subsystems and the original system

$$
\lim _{\ell \rightarrow \infty} \frac{1}{\ell} P_{\ell, \mathcal{D}}\left(\psi^{q}(\mathcal{B})\right)=P\left(\log \psi^{q}(\mathcal{A})\right)
$$

Relation between the dominated subsystems and the original system

$$
\lim _{\ell \rightarrow \infty} \frac{1}{\ell} P_{\ell, \mathcal{D}}\left(\psi^{q}(\mathcal{B})\right)=P\left(\log \psi^{q}(\mathcal{A})\right)
$$

For any $\mu^{\prime} \in \mathcal{M}\left(\left(\mathcal{L}_{\ell(I)}^{\mathcal{D}}\right)^{\mathbb{Z}}, f\right)$, there is $\mu \in \mathcal{M}(\Sigma, T)$ such that

$$
h_{\mu^{\prime}}(f) \leqslant\left(n+2 K_{0}\right) h_{\mu}(T)+\frac{n+2 K_{0}}{n} \log \left(2 K_{0}+1\right)
$$

and
$\lim _{k \rightarrow \infty} \frac{1}{k} \int \log \psi^{q}\left(\mathcal{B}^{k}(x)\right) d \mu^{\prime}(x) \leqslant\left(n+2 K_{0}\right) \lim _{k \rightarrow \infty} \frac{1}{k} \int \log \psi^{q}\left(\mathcal{A}^{k}(x)\right) d \mu(x)$.

Proof

$$
\begin{aligned}
& s_{0}(\vec{\alpha}):=\inf _{q \in \mathbb{R}^{d}}\left\{P\left(\log \psi^{q}(\mathcal{A})\right)-\langle q, \vec{\alpha}\rangle\right\}, \\
& \left.\left.s_{\ell}(\vec{\alpha}):=\inf _{q \in \mathbb{R}^{d}}\left\{P_{\ell, \mathcal{D}}\left(\psi^{q}(\mathcal{B})\right)\right\rangle\right)-\langle q, \ell \vec{\alpha}\rangle\right\},
\end{aligned}
$$

Proof

$$
\begin{aligned}
& s_{0}(\vec{\alpha}):=\inf _{q \in \mathbb{R}^{d}}\left\{P\left(\log \psi^{q}(\mathcal{A})\right)-\langle q, \vec{\alpha}\rangle\right\} \\
&\left.\left.s_{\ell}(\vec{\alpha}):=\inf _{q \in \mathbb{R}^{d}}\left\{P_{\ell, \mathcal{D}}\left(\psi^{q}(\mathcal{B})\right)\right\rangle\right)-\langle q, \ell \vec{\alpha}\rangle\right\} \\
& \frac{1}{\ell} s_{\ell}(\vec{\alpha})=\frac{n+2 K_{0}}{n+2 K_{0}} \frac{1}{\ell} h_{\mathrm{top}}\left(E^{\ell, \mathcal{D}}(\vec{\alpha})\right) \\
& \leqslant \frac{n+2 K_{0}}{\ell} h_{\mathrm{top}}(E(\vec{\alpha})) \\
& \leqslant \frac{n+2 K_{0}}{\ell} s_{0}(\vec{\alpha})
\end{aligned}
$$

Therefore,

$$
h_{\mathrm{top}}(E(\vec{\alpha}))=s_{0}(\vec{\alpha})
$$

when $\ell \rightarrow \infty$.

Variational principle

Theorem (M('23))

Assume that $\left(A_{1}, \ldots, A_{k}\right) \in G L(d, \mathbb{R})^{k}$ generates a one-step cocycle $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$. Let $\mathcal{A}: \Sigma \rightarrow G L(d, \mathbb{R})$ be a typical cocycle.
Then,
$P\left(\log \psi^{q}(\mathcal{A})\right)=\sup _{\mu \in \mathcal{M}(\Sigma, T)}\left\{h_{\mu}(T)+\lim _{n \rightarrow \infty} \frac{1}{n} \int \log \psi^{q}\left(\mathcal{A}^{n}(x)\right) d \mu(x)\right\}$
for any $q \in \mathbb{R}^{d}$.

LT

As an application of Legendre transform, we have

Theorem

Assume that S is a non-empty, convex set in \mathbb{R}^{d} and let $g: S \rightarrow \mathbb{R}$ be a concave function. Set

$$
W(x)=\sup \{g(a)+\langle a, x\rangle: a \in S\}, \quad x \in \mathbb{R}^{d}
$$

and

$$
G(a)=\inf \left\{W(x)-\langle a, x\rangle: x \in \mathbb{R}^{d}\right\}, \quad a \in S .
$$

Then $G(a)=g(a)$ for $a \in r i(S)$.

Thanks

Thanks for your attention!

