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General setting for this talk

Σ := {1, . . . , k}Z

(Σ,T ) is either a topologically mixing subshift of finite type or a
full shift.

M(Σ,T )= the space of all T -invariant Borel probability
measures on Σ.This space is a nonempty convex set and is
compact with respect to the weak-∗ topology.
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Variational principle

Let f : Σ→ R be a continuous function over (Σ,T ). The pressure
P : C (Σ)→ R defined by

P(f ) := sup
µ∈M(Σ,T )

{
hµ(T ) +

∫
fdµ

}
. (1.1)

If the supremum is attained, then such measures will be called
equilibrium state. When f ≡ 0, the pressure P(0) is equal to the
topological entropy htop(Σ,T ), which measures the complexity of the
system (Σ,T ). By (1.1),

htop(T ) := htop(Σ,T ) = sup
µ∈M(Σ,T )

hµ(T ). (1.2)
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Birkhoff Theorem

We denote Snf (x) :=
∑n−1

k=0 f (T
k(x)) and call this a Birkhoff sum

and we call
lim
n→∞

1
n
Snf (x)

a Birkhoff average.
If µ is an ergodic invariant probability measure, then the Birkhoff
average converges to

∫
fdµ for µ-almost all points, but there are

plenty of ergodic invariant measures, for which the limit exists but
converges to a different quantity. Furthermore, there are plenty of
points which are not generic points for any ergodic measure or even
for which the Birkhoff average does not exist.
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Level set

Therefore, one may ask about the size of the set of points

Ef (α) =

{
x ∈ Σ :

1
n
Snf (x)→ α as n→∞

}
,

which we call α-level set,

for a given value α from the set

L =

{
α ∈ R : ∃x ∈ Σ and lim

n→∞

1
n
Snf (x) = α

}
,

which we call Birkhoff spectrum. That size is usually calculated in
terms of topological entropy. Let Z ⊂ Σ, we denote by htop(T|Z )
topological entropy of T restricted to Z or, simply, the topological
entropy of Z .
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Multifractal formalism of Birkhoff averages

Ef (α) ̸= ∅ ⇔ α ∈ Ω :=

{∫
fdµ : µ ∈M(Σ,T )

}
.

Moreover, ∀α ∈ Ω, htop(T|Ef (α)) = infq∈R{P(qf )− αq}

Legendre transform formula

htop(T|Ef (α)) = sup{hµ(T ) : µ ∈M(Σ,T ) with
∫
fdµ = α},

restricted variational principle

This type of question was considered by Barreira and Saussol (’01).
There is actually quite a large literature on multifractal analysis (or
multifractal formalism) which addresses various questions related to
this one. Pesin, Weiss, Olsen, Barreira, Saussol, Feng, Fan,
Schmeling, Climenhaga, Kucherenko, Wolf and ...
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Potentials

Assume that φn is a continuous positive-valued function over (Σ,T ).

We say that Φ := {log φn}∞n=1 is
a subadditive potential if

0 < φn+m(x) ¬ φn(x)φm(T
n(x)) ∀x ∈ Σ,m, n ∈ N.

an almost additive potential if ∃C ­ 1,∀x ∈ Σ,m, n ∈ N, we
have

C−1φn(x)φm(T
n)(x) ¬ φn+m(x) ¬ Cφn(x)φm(T

n(x)) .

an additive potential if

φn+m(x) = φn(x)φm(T
n(x)) ∀x ∈ Σ,m, n ∈ N.
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Matrix(linear) cocycles

The natural example of subadditive potentials is matrix cocycles.

More precisely, given a continuous map A : Σ→ GL(d ,R) taking
values into the space d × d invertible matrices. We consider the
products

An(x) = A(T n−1(x)) . . .A(T (x))A(x).

The pair (A,T ) is called a linear cocycle. It induces a skew-product
dynamics F on Σ× Rd by (x , v) 7→ Σ× Rd , whose n-th iterate is
therefore

(x , v) 7→ (T n(x),An(x)v).
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An example of linear cocycles: one step cocycles

A simple class of linear cocycles is one-step cocycles which is defined
as follows.

Σ = {1, ..., k}Z is a symbolic space.

T : Σ→ Σ is a shift map, i.e. T (xl)l = (xl+1)l
Given a finite set of matrices {A1, . . . ,Ak} ⊂ GL(d ,R)

We define the function A : Σ→ GL(d ,R) by

A(x) = Ax0 .

In this case, we say that(T ,A) is a one step cocycle.
We denote by L, and Ln the set of words, and the set of words with
the length n, respectively. Let (A,T ) be a one-step cocycle. For any
n ∈ N and I = i0i1 . . . in−1 ∈ Ln, we define

AI = Ain−1 . . .Ai0 .
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Lyapunov exponents

Let A : X → GL(d ,R) be a matrix cocycle over (Σ,T ). By
Kingman’s subadditive ergodic theorem, for any µ ∈M(Σ,T ) and µ
almost every x ∈ X such that log+ ∥A∥ ∈ L1(µ), the following limit,
called the top Lyapunov exponent at x , exists:

χ(x ,A) := lim
n→∞

1
n
log ∥An(x)∥,

where ∥A∥ the Euclidean operator norm of a matrix A (i.e. the
largest singular value of A), that is submultiplicative i.e.,

0 < ∥An+m(x)∥ ¬ ∥Am(T nx)∥∥An(x)∥ ∀x ∈ Σ,m, n ∈ N.

Let us denote χ(µ,A) =
∫
χ(.,A)dµ. If the measure µ is ergodic

then χ(x ,A) = χ(µ,A) for µ-almost every x ∈ Σ.
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Let A : X → GL(d ,R) be a matrix cocycle over (Σ,T ). By
Kingman’s subadditive ergodic theorem, for any µ ∈M(Σ,T ) and µ
almost every x ∈ X such that log+ ∥A∥ ∈ L1(µ), the following limit,
called the top Lyapunov exponent at x , exists:
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n→∞

1
n
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Level sets of the top Lyapunov exponent

Level set

E (α) = {x ∈ Σ : lim
n→∞

1
n
log ∥An(x)∥ = α}.

Lyapunov spectrum

L = {α : ∃x ∈ Σ such that lim
n→∞

1
n
log ∥An(x)∥ = α}.

Ω = {χ(µ,A);µ ∈M(Σ,T )}.
htop(E (α)) := htop(T|E(α)).
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All Lyapunov exponents

Let (A,T ) be matrix cocycle. Let µ be an T -invariant measure. By
Oseledets’ theorem, there might exist several Lyapunov exponents.
We denote by χ1(x ,A) ­ χ2(x ,A) ­ . . . ­ χd(x ,A) the Lyapunov
exponents, counted with multiplicity, of the cocycle (A,T ). Also, we
denote χi(µ,A) :=

∫
χi(x ,A)dµ. Therefore, one may ask the size of

the α⃗-level set.

For α⃗ := (α1, . . . , αd) ∈ Rd ,

E (α⃗) =

{
x ∈ Σ :

1
n
log σi(An(x))→ αi as n→∞

}
,

L⃗ =

{
α⃗ ∈ Rd : ∃x ∈ Σ such that lim

n→∞

1
n
log σi(An(x)) = αi

}
.

Ω⃗ := {(χ1(µ,A), χ2(µ,A), ..., χd(µ,A)) : µ ∈M(Σ,T )}.
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Dominated cocycles-Bochi and Gourmelon(’09)

We say that a matrix cocycle A : X → GL(d ,R) over a
homeomorphism map (X ,T ) is dominated with index i if there exist
constants C > 1, 0 < τ < 1 such that

σi+1(An(x))

σi(An(x))
¬ Cτ n, ∀n ∈ N, x ∈ X .

We say that the matrix cocycle A is dominated if it is dominated
with index i for all i ∈ {1, . . . , d − 1}.

Let A be a compact set in GL(d ,R). We say that A is dominated of
index i iff there exist C > 0 and 0 < τ < 1 such that for any finite
sequence A1, . . . ,AN in A we have

σi+1 (A1 · · ·AN)

σi (A1 · · ·AN)
< CτN .

We say that A is dominated iff it is dominated of index i for each i .
A one step cocycle A generated by A is dominated if A is dominated.
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Entropy spectrum of the Lyapunov exponents(two dimensional case)

Theorem (Barreira and Gelfert, CMP(’06))
Let Λ be a repeller of a C 1+α map f : R2 → R2 such that:

dx f has bounded distortion on Λ;

dx f is dominated,

Then for each q ∈ R2 and each
α⃗ ∈ ▽P(⟨q, (log σ1(dx f ), log σ2(dx f )⟩),

htop(E (α⃗)) = inf
q∈R2
{P(⟨q, (log σ1(dx f ), log σ2(dx f ))⟩)− ⟨q, α⃗⟩}.
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Legendre transform

q q

P(qΦ)

P(qΦ)

htop(E (α)) = hµq(T ) = P(qΦ) + αq

P(qΦ)

Figure: P(qΦ) is a convex function for q ∈ R. The blue line is tangent to
P(qΦ) at q with slope −α = P ′(qΦ).
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A crucial technique in their work

Barreira and Gelfert considered a C 1 local diffeomorphism
f : R2 → R2, and a compact f -invariant set Λ ⊂ R2. They showed
that if there is a dominated splitting TΛR2 := E (x)⊕ F (x), then
there exists C ­ 1 such that for every x ∈ Λ and n,m ∈ N we have

C−1σi (dx f
n)σi (df nx f

m) ¬ σi
(
dx f

n+m
)
¬ σi (dx f n)σi (df nx f m) .
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Almost additivity of all singular values

Theorem (M(’22), JSP)
Let X be a compact metric space, and let A : X → GL(d ,R) be a
matrix cocycle over a homeomorphism (X ,T ). Assume that the
cocycle A is dominated with index 1. Then, there exists κ > 0 such
that for every m, n > 0 and for every x ∈ X we have

||Am+n(x)|| ­ κ||Am(x)|| · ||An(Tm(x))||.
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Entropy spectrum of all almost additive potentials

Theorem (Feng and Huang(’10), CMP)
Let (Σ,T ) be a topologically mixing SFT, and Φi := {log φi

n}n∈N
(i = 1, . . . , d) be an almost additive potentials on Σ. Then

htop(E (α⃗)) = inf
q∈Rd

{
P(

d∑
i=1

qi log Φi)− ⟨q, α⃗⟩
}

= sup{hµ(T ) : µ ∈M(Σ,T ), (χ(µ,Φ1), . . . , χ(µ,Φd)) = α⃗}

for any α⃗ ∈ Ω⃗.

Reza Mohammadpour (Uppsala university) Restricted variational principle May 15, 2023 19 / 36



Generic matrix cocycles

Theorem (Feng (’09), Isr. J. Math.)
Assume that (A1, . . . ,Ak) ∈ GL(d ,R)k generates a one-step cocycle
A : Σ→ GL(d ,R). Suppose that A : Σ→ GL(d ,R) is irreducible.
Then,

htop(E (α)) = inf
q∈R
{P(q log ∥A∥)− αq},

for α ∈ L.

Theorem (M(’22), JSP)
Assume that T : Σ→ Σ is a topologically mixing subshift of finite
type. Suppose that A : Σ→ GL(d ,R) is a typical cocycle. Then,

htop(E (α)) = sup{hµ(T ) : µ ∈M(Σ,T ), χ(µ,A) = α}
= inf

q∈R
{P(q log ∥A∥)− α.q} ∀α ∈ Ω̊.
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Typical cocycles-Bonatti and Viana (’04), Avila and Viana(’07)

We say that a one-step cocycle A : Σ→ GL(d ,R)
is pinching if there is I ∈ L such that the matrix AI is simple,
where the logarithms θi = log σi (AI ) of the singular values
σi(AI ) of AI satisfy the following inequality

θi > θi+1.

is twisting if for any 1 ¬ k ¬ d − 1, any F ∈ Gr (k) , and any
finite G1, . . . ,Gn ∈ Gr (d − k) , there exists J ∈ L such that
AJ (F ) ∩ Gi = {0}.

We say that the cocycle A is typical if it is pinching and twisting.

Bonatti–Viana and Avila–Viana showed that the set of typical
cocycles is open and dense.
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Falconer’s singular value function

We define Falconer’s singular value function ϕs(A) as follows. Let
k ∈ {0, . . . , d − 1} and k ¬ s < k + 1. Then,

ϕs(A) = σ1(A) · · · σk(A)σk+1(A)s−k ,
and if s ­ d , then ϕs(A) = (det(A)) s

d .
For s := (s1, · · · , sd) ∈ Rd , we define the generalized singular value
function ψs1,...,sd (A) : Rd×d → [0,∞) as

ψs1,...,sd (A) := σ1(A)s1 · · ·σd(A)sd =
(

d−1∏
m=1

∥A∧m∥sm−sm+1

)∥∥∥A∧d∥∥∥sd .
When s ∈ [0, d ], the singular value function ϕs(A(·)) coincides with
the generalized singular value function ψs1,...,sd (A(·)) where

(s1, . . . , sd) = (1, . . . , 1︸ ︷︷ ︸
m times

, s −m, 0, . . . , 0),

with m = ⌊s⌋. We denote ψs(A) := ψs1,...,sd (A).
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Main result1

Theorem (M(’22))
Assume that (A1, . . . ,Ak) ∈ GL(d ,R)k generates a one-step cocycle
A : Σ→ GL(d ,R). Let A : Σ→ GL(d ,R) be a typical cocycle. Then

htop(E (α⃗)) = inf
q∈Rd
{P (logψq(A))− ⟨q, α⃗⟩}

for all α⃗ ∈ ˚⃗L.
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Main result2

Theorem (M(’23))
Assume that (A1, . . . ,Ak) ∈ GL(d ,R)k generates a one-step cocycle
A : Σ→ GL(d ,R). Let A : Σ→ GL(d ,R) be a typical cocycle.
Suppose that

sup

{
hµ(T ) : µ ∈M(Σ,T ), χi(µ,A) = αi

}
=

inf
q∈Rd

{
P(logψq(A))− ⟨q, α⃗⟩

}
,

for α⃗ ∈ ri(Ω⃗), where ri(Ω⃗) denotes the relative interior of Ω⃗.

⇒ htop(E (α⃗)) = sup

{
hµ(T ) : µ ∈M(Σ,T ), χi(µ,A) = αi

}
.

Affirmative answer to Breuillard and Sert’s question.
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QM

We say that a one-step cocycle A : Σ→ GL(d ,R) is simultaneously
quasi-multiplicative if there exist C > 0 and k ∈ N such that for all
I , J ∈ L, there is K = K (I , J) ∈ Lk such that IKJ ∈ L and for each
i ∈ {1, . . . , d − 1}, we have

∥A∧iIKJ∥ ­ C∥A∧iI ∥∥A∧iJ ∥.

Theorem (Park(’20), CMP)
Typical cocycles are simultaneously quasi-multiplicative.

More information about QM,
R. Mohammadpour and K. Park, Uniform quasi-multiplicativity of
locally constant cocycles and applications. ArXiv:2209.08999.
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Topological pressure

For any q ∈ Rd , note that ψq(A) is neither submultiplicative nor
supermultiplicative. For one-step cocycles, the limsup topological
pressure of logψq(A) can be defined by

P∗(logψq(A)) := lim sup
n→∞

1
n
log sn(q), ∀q ∈ Rd ,

where sn(q) :=
∑

I∈Ln ψ
q(AI ). When the limit exists, we denote the

topological pressure by P(logψq(A)).
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Topological pressure

For any q = (q1, . . . , qd) ∈ Rd , we can write

ψq(AIKJ) =
d∏

i=1

∥A∧iIKJ∥ti︸ ︷︷ ︸
(1)

,

where ti = qi − qi+1, and qd+1 = 0 for 1 ¬ i ¬ d .
If ti < 0, then by the sub-multiplicativity property, there is C0 > 0
such that

∥A∧iIKJ∥ti ­ C ti
0 ∥A∧iI ∥ti∥A∧iJ ∥ti . (1.3)

If ti ­ 0, then by the simultaneous quasi-multiplicativity of A, we
have

∥A∧iIKJ∥ti ­ C ti∥A∧iI ∥ti∥A∧iJ ∥ti . (1.4)

Reza Mohammadpour (Uppsala university) Restricted variational principle May 15, 2023 27 / 36



Topological pressure

By (1.3) and (1.4),

(1) ­ C1
d∏

i=1

∥A∧iI ∥ti
d∏

i=1

∥A∧iJ ∥ti ,

where C1 := C1(C
ti
0 ,C

ti ). Therefore,

ψq(AIKJ) ­ C1ψ
q(AI )ψ

q(AJ).

Then,
sn+k+m(q) ­ C1sn(q)sm(q).
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Upper bound

Theorem (M(’22))
Assume that a one-step cocycle A : Σ→ GL(d ,R) is simultaneously
quasi-multiplicative. Then,

htop (E (α⃗)) ¬ inf
t∈Rd
{P (logψt(A))− ⟨t, α⃗⟩}

for all α ∈ ˚⃗L.
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Dominated subsystem

Theorem (M(’22))
Assume that (A1, . . . ,Ak) ∈ GL(d ,R)k generates a one-step cocycle
A : Σ→ GL(d ,R). Assume that A : Σ→ GL(d ,R) is a typical
cocycle. Then, there exists K0 ∈ N such that for every n ∈ N and
I ∈ Ln there exist J2 = J2(I ) and J1 = J1(I ) with |Ji | ¬ K0 for
i = 1, 2 such that the tuple

(Ak)k∈LD
ℓ(I )
, where LDℓ(I ) := {J1IJ2 : I ∈ Ln} ,

is dominated.

For simplicity, we denote by ℓ := ℓ(I ) the length of each I ∈ LDℓ(I ),
where ℓ ∈ [n, n + 2K0].
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Topological pressure for dominated subsystems

We define the one-step cocycle B : (LDℓ )Z → GL(d ,R) over a full
shift ((LDℓ )Z, f ) defined by B(ω) := AJ1(I )IJ2(I ), where B depends only
on the zero-th symbol J1(I )IJ2(I ) of ω ∈ (LDℓ )Z, is dominated. It is
easy to see that (LDℓ )Z ⊂ Σ.

We define a pressure on the dominated subsystem LDℓ by setting

Pℓ,D(logϕ) := lim
k→∞

1
k
log

∑
I1,...,Ik∈LDℓ

ϕ(I1 . . . Ik),

where ϕ : L → R­0 is submultiplicative, i.e.,

ϕ(I)ϕ(J) ­ ϕ(IJ).

for all I , J ∈ L with IJ ∈ L.
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Relation between the dominated subsystems and the original system

lim
ℓ→∞

1
ℓ
Pℓ,D(ψ

q(B)) = P(logψq(A)),

For any µ′ ∈M((LDℓ(I ))Z, f ), there is µ ∈M(Σ,T ) such that

hµ′(f ) ¬ (n + 2K0)hµ(T ) +
n + 2K0

n
log(2K0 + 1),

and

lim
k→∞

1
k

∫
logψq(Bk(x))dµ′(x) ¬ (n+2K0) lim

k→∞

1
k

∫
logψq(Ak(x))dµ(x).
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Proof

s0(α⃗) := inf
q∈Rd
{P(logψq(A))− ⟨q, α⃗⟩},

sℓ(α⃗) := inf
q∈Rd
{Pℓ,D(ψq(B))⟩)− ⟨q, ℓα⃗⟩},

1
ℓ
sℓ(α⃗) =

n + 2K0
n + 2K0

1
ℓ
htop(E

ℓ,D(α⃗))

¬ n + 2K0
ℓ

htop(E (α⃗))

¬ n + 2K0
ℓ

s0(α⃗).

Therefore,
htop(E (α⃗)) = s0(α⃗),

when ℓ→∞.
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Variational principle

Theorem (M(’23))
Assume that (A1, . . . ,Ak) ∈ GL(d ,R)k generates a one-step cocycle
A : Σ→ GL(d ,R). Let A : Σ→ GL(d ,R) be a typical cocycle.
Then,

P(logψq(A)) = sup
µ∈M(Σ,T )

{
hµ(T ) + lim

n→∞

1
n

∫
logψq(An(x))dµ(x)

}

for any q ∈ Rd .
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LT

As an application of Legendre transform, we have

Theorem

Assume that S is a non-empty, convex set in Rd and let g : S → R
be a concave function. Set

W (x) = sup{g(a) + ⟨a, x⟩ : a ∈ S}, x ∈ Rd

and
G (a) = inf{W (x)− ⟨a, x⟩ : x ∈ Rd}, a ∈ S .

Then G (a) = g(a) for a ∈ ri(S).
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Thanks

Thanks for your attention!
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