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Subshifts, measures, and entropy

A subshift is defined by

Finite set A (called the alphabet)
The (left) shift action σ on AZ

X ⊂ AZ invariant under σ and closed in product topology
Any subshift can be described via a set F of forbidden words as the
set of all sequences NOT containing any word from F

Example 1: A = {0, 1}, F = ∅, X = {0, 1}Z (full shift)

Example 2: A = {0, 1, 2, 3}, F = {02, 12, 03, 13, 20, 21, 30, 31},
X = {0, 1}Z ∪ {2, 3}Z

Example 3: A = {0, 1}, F = {wwww : w ∈ {0, 1}∗}, X set of
quartic-free sequences

Subshifts need not contain periodic points! (Example 3)

Definition: X is a shift of finite type/SFT if F finite

Examples 1,2 are SFTs, Example 3 is not
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Subshifts, measures, and entropy

Given X , w ∈ An, define [w ] = {x ∈ AZ : x(1) . . . x(n) = w}

Definition: L(X ) = {w : [w ] ∩ X 6= ∅}, Ln(X ) = L(X ) ∩ An

Definition: The topological entropy of X is limn
ln |Ln(X )|

n

Example 1: X = {0, 1}Z, |Ln(X )| = 2n

h(X ) = lim ln(2n)
n = lim n ln 2

n = ln 2

Example 2: X = {0, 1}Z ∪ {2, 3}Z, |Ln(X )| = 2n+1

h(X ) = lim ln(2n+1)
n = lim (n+1) ln 2

n = ln 2
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Subshifts, measures, and entropy

For any (Borel probability) measure µ, the measure-theoretic
entropy of µ is

h(µ) = lim
n

∑
w∈An

(−µ([w ]) lnµ([w ]))

Variational Principle: For every X , h(X ) = sup
µ(X )=1

h(µ)

Supremum is always achieved; ∃µ for which µ(X ) = 1, h(µ) = h(X )
Such µ called measure of maximal entropy/MME



Subshifts, measures, and entropy

For any (Borel probability) measure µ, the measure-theoretic
entropy of µ is

h(µ) = lim
n

∑
w∈An

(−µ([w ]) lnµ([w ]))

Variational Principle: For every X , h(X ) = sup
µ(X )=1

h(µ)

Supremum is always achieved; ∃µ for which µ(X ) = 1, h(µ) = h(X )
Such µ called measure of maximal entropy/MME



Subshifts, measures, and entropy

For any (Borel probability) measure µ, the measure-theoretic
entropy of µ is

h(µ) = lim
n

∑
w∈An

(−µ([w ]) lnµ([w ]))

Variational Principle: For every X , h(X ) = sup
µ(X )=1

h(µ)

Supremum is always achieved; ∃µ for which µ(X ) = 1, h(µ) = h(X )

Such µ called measure of maximal entropy/MME



Subshifts, measures, and entropy

For any (Borel probability) measure µ, the measure-theoretic
entropy of µ is

h(µ) = lim
n

∑
w∈An

(−µ([w ]) lnµ([w ]))

Variational Principle: For every X , h(X ) = sup
µ(X )=1

h(µ)

Supremum is always achieved; ∃µ for which µ(X ) = 1, h(µ) = h(X )
Such µ called measure of maximal entropy/MME



Subshifts, measures, and entropy

Historically studied question: when is there a unique MME?

When it exists, often this µ is ‘natural measure’ for studying X

For SFTs, irreducibility/transitivity implies unique MME

Example 1: X = {0, 1}Z (transitive) has unique MME µ the (0.5, 0.5)
i.i.d./Bernoulli measure

Example 2: X = {0, 1}Z ∪ {2, 3}Z (non-transitive) has multiple
MMEs, one supported on {0, 1}Z and one on {2, 3}Z
Example 3: X quartic-free shifts... ???

For non-SFTs, question much more difficult.

Most results use variants on specification (Bowen,
Climenhaga-Thompson, P.)

We’ll take a different approach here
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Nearness to full shift

The simplest historical example with unique MME is the full shift AZ

Irreducible SFTs, simple class with unique MME, are ‘close to full
shift’ in the sense that they are induced by a finite forbidden list F
In what sense could a non-SFT be ‘close to a full shift’?

Cardinality doesn’t help; F countable

But forbidden long words should have less effect than short ones

Idea: look at Fn = |F ∩ An|
It can’t approach 0, but ‘slow growth’ with n may be enough



Nearness to full shift

The simplest historical example with unique MME is the full shift AZ

Irreducible SFTs, simple class with unique MME, are ‘close to full
shift’ in the sense that they are induced by a finite forbidden list F

In what sense could a non-SFT be ‘close to a full shift’?

Cardinality doesn’t help; F countable

But forbidden long words should have less effect than short ones

Idea: look at Fn = |F ∩ An|
It can’t approach 0, but ‘slow growth’ with n may be enough



Nearness to full shift

The simplest historical example with unique MME is the full shift AZ

Irreducible SFTs, simple class with unique MME, are ‘close to full
shift’ in the sense that they are induced by a finite forbidden list F
In what sense could a non-SFT be ‘close to a full shift’?

Cardinality doesn’t help; F countable

But forbidden long words should have less effect than short ones

Idea: look at Fn = |F ∩ An|
It can’t approach 0, but ‘slow growth’ with n may be enough



Nearness to full shift

The simplest historical example with unique MME is the full shift AZ

Irreducible SFTs, simple class with unique MME, are ‘close to full
shift’ in the sense that they are induced by a finite forbidden list F
In what sense could a non-SFT be ‘close to a full shift’?

Cardinality doesn’t help; F countable

But forbidden long words should have less effect than short ones

Idea: look at Fn = |F ∩ An|
It can’t approach 0, but ‘slow growth’ with n may be enough



Nearness to full shift

The simplest historical example with unique MME is the full shift AZ

Irreducible SFTs, simple class with unique MME, are ‘close to full
shift’ in the sense that they are induced by a finite forbidden list F
In what sense could a non-SFT be ‘close to a full shift’?

Cardinality doesn’t help; F countable

But forbidden long words should have less effect than short ones

Idea: look at Fn = |F ∩ An|
It can’t approach 0, but ‘slow growth’ with n may be enough



Nearness to full shift

The simplest historical example with unique MME is the full shift AZ

Irreducible SFTs, simple class with unique MME, are ‘close to full
shift’ in the sense that they are induced by a finite forbidden list F
In what sense could a non-SFT be ‘close to a full shift’?

Cardinality doesn’t help; F countable

But forbidden long words should have less effect than short ones

Idea: look at Fn = |F ∩ An|

It can’t approach 0, but ‘slow growth’ with n may be enough



Nearness to full shift

The simplest historical example with unique MME is the full shift AZ

Irreducible SFTs, simple class with unique MME, are ‘close to full
shift’ in the sense that they are induced by a finite forbidden list F
In what sense could a non-SFT be ‘close to a full shift’?

Cardinality doesn’t help; F countable

But forbidden long words should have less effect than short ones

Idea: look at Fn = |F ∩ An|
It can’t approach 0, but ‘slow growth’ with n may be enough



Nearness to full shift

Fn number of forbidden n-letter words

Note: tail behavior (i.e., limiting behavior of Fn) cannot be enough,
since there are SFTs (Fn eventually 0) with multiple MMEs

Need slow growth + some control for small n

Wonderful theorem of Miller uses such a hypothesis to prove X 6= ∅
Theorem: (Miller) If |A| = k, c ∈ (1/k, 1),

∑∞
n=1 Fnc

n ≤ kc − 1,
then X 6= ∅
This controls both tail behavior (Fn can’t grow faster than (1/c)n)
and small n (sum has explicit bound from above)

NOTE: this is proved for one-sided subshifts only (i.e. X ⊂ AN)

I’ll briefly summarize Miller’s very nice argument (board)

Idea was to use such hypothesis to prove unique MME
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Nearness to full shift: unique MME

Theorem: (P.)
∞∑
n=1

n2Fn(3/|A|)n/3 < 1

36
⇒ X has unique MME µ

with the K -property.

This condition controls both tail behavior (Fn can’t grow faster than
(|A|/3)n/3) and small n behavior (sum has explicit bound)

Note: this doesn’t imply any transitivity/mixing/specification on X

If A = {0, . . . , k}, m ∈ N, and F = {0m−1i , i0m−1 : 0 < i ≤ k},
then Fn = 2k for n = m and 0 else

Clearly will satisfy hypotheses if k is large

But in such X , 0∞ is always isolated point; [0m] = {0∞}
Shows that unique MME not always fully supported (µ([0m]) = 0)
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Application: β-shifts

Definition of β-shifts (board)

We get F with Fn < k for all n, and Fn = 0 if bn+1 = k − 1

Recall: we need
∞∑
n=1

n2Fn(3/|A|)n/3 < 1

36

When β is very close to k , b begins with many (say M) (k − 1)s

Then sum is
∞∑

n=M

n2k(3/k)n/3, small enough when M large

In fact, we can also apply our results to some of the much more
complicated α-β shifts (coding x 7→ α + βx (mod 1))
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Application: power-free shifts

Definition: for any A and k , the kth power-free shift on A is defined
by F = {wk : w ∈ A∗}

Fmk = |A|m, Fn = 0 for other n

Recall: we need
∞∑
n=1

n2Fn(3/|A|)n/3 < 1

36

Can rewrite as
∞∑

m=1

(km)2|A|m(3/|A|)km/3

Small enough for k = 4 and (very) large |A|, i.e. quartic-free shift has
unique MME for large |A|

Often unique MME is limit of some sort of average over periodic
points; this shift has none!
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Ideas behind the proof

Proof relies on a sort of ‘measure-theoretic specification’ result

The following conditions imply unique MME (with good properties):

Bounded supermultiplicativity: ∃C s.t. ∀n, |Ln(X )| < Cenh(X )

Existence of an infinite set of good words G which is
concatenable (v ,w ∈ G ⇒ vw ∈ L(X )) and
large for ergodic MMEs: for every ergodic MME µ, ∃ε > 0 and a
syndetic set S so that ∀n ∈ S , µ(G ∩ An) > ε

We prove more generally that these hypotheses imply uniqueness of
MME/K-property

Proof works even if G only has specification, i.e. can have gap of
length R indep. of v ,w
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Ideas behind the proof

Given a ‘small’ forbidden list F , what is the ‘good’ set G?

Define a word as heavy if it is subword of forbidden word with length
at least 1/3 that of the forbidden word

A word is in G if it does not begin or end with a heavy word

G is concatenable

v ,w ∈ G =⇒ vw contains at most 2/3 of a forbidden word
A two-sided version of Miller’s argument shows that vw can be
extended to an infinite sequence with no forbidden words

G is ‘large for ergodic MMEs’: there are relatively few heavy words

Number of heavy words of length n/3 could be at least Fn

This is where Fn < |A|n/3 useful

X bounded supermultiplicative: technical argument based on Miller’s
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A word is in G if it does not begin or end with a heavy word

G is concatenable

v ,w ∈ G =⇒ vw contains at most 2/3 of a forbidden word

A two-sided version of Miller’s argument shows that vw can be
extended to an infinite sequence with no forbidden words
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Thanks for listening!


