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Self-similar IF'S CPLIFS
S ={S1,S52,S53} F =A{f1,f2, f3}



The Main Result

Theorem (Raith, Simon, P.)

For [pREkinE BmERSERBIAEA] CPLIFS 7

(1) dimg A = dimg A = min {1,s"}.

. the packing
dimension of the parameters of the exceptional CPLIFS is less than
the dimension of the parameter space.



Introduction



The [attractor A of the IFS F = {fx},—, is the unique non-empty

compact set satisfying

(2) A= fuld).

k=1

Let I be the smallest non empty compact interval such that

- forall i € [m] :={1,...,m}. Then
[e¢]
(3) N = ﬂ | U Liy i,

where [;, ;. = fi, 0o f; (1).



The natural dimension
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F = A{fetr=r = f1(0),
fr has [(k) breaking points
{br1,- - bra }-

The type of F is

L= (l(1),...,l1(m))
L= i)+ im).



Packing dimension typicality

Fix a type £ = (I(1),...,I(m)) and a vector of contractions
pe ((—1,1\{0)*"™. Let B be a property that makes sense for
every CPLIFS, and consider the exceptional set

(4) Ef =: {(b,r) e REF™ . F(070) does not have property qs} .

W say that OB RGIEEAEERBIEA i for 2l type ¢ and
for all contraction vector p we have

(5) dimpEé’<L+m.



The generated self-similar [FS

b21 b2i711 b31



We fix the vector of slopes p.

Lemma 1.1
There is a

only on p such that

F which depends
F,(b,7) =1t.

Theorem 1.2 (Hochman?)

(6)  dimp {t € RY : S’ does not satisfy the ESC } = M — 1.

!Michael Hochman. On self-similar sets with overlaps and inverse theorems for entropy in
R?, 2015



Corollary 1.3

For a dimp-typical CPLIFS F, the generated self-similar IFS Sx
satisfies the ESC.

Theorem 1.4 (Raith, Simon, P.)

Let F be a CPLIFS with generated self-similar system S and
attractor A. If Sz satisfies the ESC, then

(7) dimg A = dimg A = min {1,s"}.



Theorem 1.5 (Raith, Simon, P.)
Fix 2 tpe ¢ and - .

L,.+1-almost every (b,T) € B¢ x R™ we have
(8) s >1 = L£,(A®7)) >0,

where A®T) denotes the attractor of FP:b.7).



Markov diagrams



Let Iy := fi({) and Z = U}, 1. We define the
as

(9) T:Tw— P(P())

(10) T(y):=Hxel: filz) =yh}is,

For k € [m],j € [{(k) + 1], we define fy; : Ji; — I; as the uniqge
linear function that satisfies fi(z) = fi;(x),Vz € Ji ;.



We refer to the linear functions
Vk e [m],Vje[l(k)+1]: f,;]1
as the branches of T'.

We define the set of critical points as

€= vt 20 U CEGERER

{z e I|E|k1,k2 e [m], 371 € [I(k1)],3jo € [U(k2)] : fk_lljl(ac) = fk_zljz(x)}



The associated multi-valued mapping
fs |

f2

h

bi1 b3.1 ba 1 b3.2




We call the partition of Z into closed intervals defined by the set of

critical points /C the _ of F. We call its

That is, above monotonicity intervals T" is always linear, and
branches can only take the same value at the boundary.
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Let 7 € Z;,. We write Z — D
for the [SUEEESSOrS of ~.

7y € 2y, 2' e T(Z) :
D=ZynZ

Further, we write Z —;. ; D if
3Zy€ Z0: D = Zyn [ (2).

The set of successors of Z is
w(Z) :={D|Z — D} .



Following Hofbauer and Raith, we say that (D, —) is the

APk DB OF MU FESBEEE 12 1 D i the smallst se

containing 2, such that D = w(D) .

We can similarly define the Markov diagram of F with respect to
any finite partition Z| of Z.



One can imagine the Markov diagram as a (potentially infinitely
big) directed graph, with vertex set D.

Between C', D € D, we have a directed edge
C — D if and only if D € w(C'). We call the Markov diagram

lirreducible if there exists a directed path between

Since the functions of a CPLIFS are always continuous on R,



Associated matrix

We define the matrix F(s) := Fp(s) indexed by the elements of D
as

I ifC - D

(A1) [F(s)]op = {Zm oD

0, otherwise.

This matrix is often associated to self-similar graph directed
iterated function systems. When the diagram is finite, our system is
actually a self-similar GDIFS.



Let C < D. We write &:(n) for the set of n-length directed paths
in the subgraph (C,—) .

Assume that (C, —) is irreducible. Each path in (C, —) of infinite
length represents a point in the invariant set A¢ < A. We define
the natural pressure of these sets as

. 1 .
(12) Pe(s) = limsup logzk: L[,

where the sum is taken over all k = (ky,...k,) for which
1, (K1, g1)s ooy (Bny gin)) € Ec(n).



As an operator, (Fp(s))" is always bounded in the {*-norm. Thus
we can define

o(Fe(s)) = lim [|(Fe(s))"[120".

Lemma 2.1
Let Cc D. If(C is lirreducible , then
(13) Pe(s) < log o(Fe(s))-

) is lirreducible’and finite, then

(14) Dc(s) = log o(Fe(s)).



Proof of Theorem 1.4



Proof of Theorem 1.4

We need to approximate the Markov diagram of the CPLIFS
with finite subdiagrams .

Since F(s) is always irreducible, according to Seneta’s results?, it
can be done if our CPLIFS has the following property.

2Eugene Seneta. Non-negative matrices and Markov chains.
Springer Science & Business Media, 2006



We say that the CPLIFS F is [limit-irreducible| if there exists a )V

finite refinement of Z; such that for all s € (0, dimy A] the matrix

We call this finite partition ) a limit-irreducible partition and

(D(Y),—) a limit-irreducible Markov diagram of F. F(),s) is
the matrix associated to this diagram.



Proof of Theorem 1.4 cont.

Proposition 3.1

Let F be a limit-irreducible CPLIFS, and let (D, —) be its
limit-irreducible Markov diagram. For any € > 0 there exists a
C < D finite subset such that

(15) o(F(s)) — e < o(Fe(s)) < o(F(s)),

where F(s) is the matrix associated to (D, —).



Proof of Theorem 1.4 cont.

As dimy A < s7 always holds, we only need to prove the other
direction.

Choose an arbitrary ¢ € (0,s”). By Lemma 2.1
0 < ®(t) < logo(F(t)).
According to Proposition 3.1

3C < D finite : 0 < log o(Fe(t)) = De(t).



Proof of Theorem 1.4 cont.

Theorem 3.2 (Simon, P.3)

Let F be a self-similar graph directed IFS with attractor A and
generated self-similar IFS S. If S satisfies the ESC, then

dimpg A = min{1, s”} .

It follows, that dimyg A¢ = min{sc, 1}, where s¢ is the unique root
of (I)c(S).

3R Daniel Prokaj and Kéroly Simon. Piecewise linear iterated function systems on the line
of overlapping construction.
Nonlinearity, 35(1):245, 2021



Proof of Theorem 1.4 cont.

s7 > 1 implies dimyAc = 1, for a suitable finite and irreducible
subdiagram (C, —).

s7 < 1 implies s¢ < 1 for all C < D.

(16) 0 < Pe(t) = t < se=dimyAe < dimpy A,

and it holds for any ¢ € (0,s”). Thus s” < dimy A.



Limit-irreducibility



Altough limit-irreducibility is required in the proof, we do not need
to assume that our CPLIFS have this property, as it is already
granted by the ESC.

Lemma 4.1 (F. Hofbauer?)

Let F = {fi}i—, be a CPLIFS with Markov diagram (D, —) and
associated matrix F(s). If F(s) can be written in the form

R - | O

such that o(F(s)) > o(S), then [JE is limit-irreducible.

4Franz Hofbauer. Piecewise invertible dynamical systems.
Probability theory and related fields, 72(3):359-386, 1986



Lemma 4.1 always applies for systems without overlaps, where all
the entries of F(s) are smaller than 1.

We have to investigate what happens in the overlapping cases, as
multiple edges in (D, —) might yield bigger than 1 entries in the
associated matrix.



Two types of overlaps

VA A

Light overlap Cross overlap



Light overlaps
i)

fk_;jz <A) |
il (A)]

By choosing a finite
refinement of Z; that has
sufficiently small entries, we
can easily avoid having
multiple edges in the diagram.



Cross overlaps

The case of cross overlaps is more complicated, as they induce
nested sequences of intervals for any finite refinement of Z;.

The :
Thus, o(S) won't grow too big if we use the branch with the largest
expansion ratio among the crossing branches instead of the others.



Cross overlaps

Dominating > 3




Thank you for your attention!
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