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The Main Result

Theorem (Raith, Simon, P.)
For packing dimension typical CPLIFS F

(1) dimH Λ � dimB Λ � min
 
1, sF( .

The meaning of "packing dimension typical" : the packing
dimension of the parameters of the exceptional CPLIFS is less than
the dimension of the parameter space.



Introduction

Markov diagrams

Proof of Theorem 1.4

Limit-irreducibility



The attractor Λ of the IFS F � tfku
m
k�1 is the unique non-empty

compact set satisfying
(2) Λ �

m�
k�1

fkpΛq.

Let I be the smallest non-empty compact interval such that
fipIq � I for all i P rms :� t1, . . . , mu. Then

(3) Λ �
8£

n�1

¤
pi1,...,inqPrmsn

Ii1...in
,

where Ii1...in
� fi1 � � � � � fin

pIq.



The natural dimension

s

Φ(s)

Φ(s) = lim sup
n→∞

1
n log

∑
i1...in

|Ii1...in|s

sF
1

logm
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F � tfku
m
k�1, τk :� fkp0q,

fk has lpkq breaking points 
bk,1, . . . , bk,lpkq

(
.

The type of F is
ℓℓℓ � plp1q, . . . , lpmqq

L :� lp1q � � � � � lpmq .



Packing dimension typicality
Fix a type ℓℓℓ � plp1q, . . . , lpmqq and a vector of contractions
ρρρ P pp�1, 1qzt0uqL�m. Let P be a property that makes sense for
every CPLIFS, and consider the exceptional set

(4) Eρρρ
ℓℓℓ �:

!
pb, τττq P RL�m : F pb,τττ ,ρρρq does not have property P

)
.

We say that property P holds dimP-typically if for all type ℓℓℓ and
for all contraction vector ρρρ we have
(5) dimP Eρρρ

ℓℓℓ   L � m .



The generated self-similar IFS
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We fix the vector of slopes ρρρ.
Lemma 1.1
There is a non-singular linear transformation F which depends
only on ρρρ such that

Fρρρpb, τττq � ttt.

Theorem 1.2 (Hochman1)

(6) dimP
 
ttt P RM : Sttt does not satisfy the ESC

(
� M � 1.

1Michael Hochman. On self-similar sets with overlaps and inverse theorems for entropy in
Rd, 2015



Corollary 1.3
For a dimP-typical CPLIFS F , the generated self-similar IFS SF
satisfies the ESC.

Theorem 1.4 (Raith, Simon, P.)
Let F be a CPLIFS with generated self-similar system SF and
attractor Λ. If SF satisfies the ESC, then

(7) dimH Λ � dimB Λ � min
 
1, sF( .



Theorem 1.5 (Raith, Simon, P.)
Fix a type ℓℓℓ and a slope vector ρρρ with positive entries . For
Lm�L-almost every pb, τττq P Bℓℓℓ � Rm we have

(8) sF ¡ 1 ùñ L1pΛpb,τττqq ¡ 0,

where Λpb,τττq denotes the attractor of F pρρρ,b,τττq.
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Let Ik :� fkpIq and I � Ym
k�1Ik. We define the

expanding multi-valued mapping associated to F as

(9) T : I ÞÑ PpPpIqq

(10) T pyq :� ttx P I : fkpxq � yuum
k�1.

For k P rms, j P rlpkq � 1s, we define fk,j : Jk,j ÞÑ Ik as the uniqe
linear function that satisfies fkpxq � fk,jpxq, @x P Jk,j.



We refer to the linear functions

@k P rms, @j P rlpkq � 1s : f�1
k,j

as the branches of T .

We define the set of critical points as

K :� Ym
k�1tfkp0q, fkp1qu

¤
Ym

k�1 Y
lpkq
j�1 fkpbk,jq

¤
 
x P I

��Dk1, k2 P rms, Dj1 P rlpk1qs, Dj2 P rlpk2qs : f�1
k1,j1

pxq � f�1
k2,j2

pxq
(



The associated multi-valued mapping
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We call the partition of I into closed intervals defined by the set of
critical points K the monotonicity partition Z0 of F . We call its
elements monotonicity intervals .

That is, above monotonicity intervals T is always linear, and
branches can only take the same value at the boundary.
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Let Z P Z0. We write Z Ñ D
for the successors of Z.

DZ0 P Z0, Z 1 P T pZq :
D � Z0 X Z 1

Further, we write Z Ñk,j D if

DZ0 P Z0 : D � Z0 X f�1
k,j pZq.

The set of successors of Z is
wpZq :� tD|Z Ñ Du .



Following Hofbauer and Raith, we say that pD,Ñq is the
Markov Diagram of F with respect to Z0 if D is the smallest set
containing Z0 such that D � wpDq .

We can similarly define the Markov diagram of F with respect to
any finite partition Z 1

0 of I.



One can imagine the Markov diagram as a (potentially infinitely
big) directed graph, with vertex set D.

Between C, D P D, we have a directed edge
C Ñ D if and only if D P wpCq. We call the Markov diagram
irreducible if there exists a directed path between
any two intervals C, D P D.

Since the functions of a CPLIFS are always continuous on R,
we can always assume that pD,Ñq is irreducible.



Associated matrix

We define the matrix Fpsq :� FDpsq indexed by the elements of D
as

(11) rFpsqsC,D :�
#°

pk,jq:CÑpk,jqD
|f

1

k,j

��s, if C Ñ D

0, otherwise.

This matrix is often associated to self-similar graph directed
iterated function systems. When the diagram is finite, our system is
actually a self-similar GDIFS.



Let C � D. We write ECpnq for the set of n-length directed paths
in the subgraph pC,Ñq .

Assume that pC,Ñq is irreducible. Each path in pC,Ñq of infinite
length represents a point in the invariant set ΛC � Λ. We define
the natural pressure of these sets as

(12) ΦCpsq :� lim sup
nÑ8

1
n

log
¸
k
|Ik|

s,

where the sum is taken over all k � pk1, . . . knq for which
Dj1, . . . jn : ppk1, j1q, . . . , pkn, jnqq P ECpnq.



As an operator, pFDpsqq
n is always bounded in the l8-norm. Thus

we can define

ϱpFCpsqq :� lim
nÑ8

∥pFCpsqq
n∥1{n

8 .

Lemma 2.1
Let C � D. If pC,Ñq is irreducible , then

(13) ΦCpsq ¤ log ϱpFCpsqq.

If pC,Ñq is irreducible and finite , then

(14) ΦCpsq � log ϱpFCpsqq.
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Proof of Theorem 1.4

We need to approximate the Markov diagram of the CPLIFS
with finite subdiagrams .

Since Fpsq is always irreducible, according to Seneta’s results2, it
can be done if our CPLIFS has the following property.

2Eugene Seneta. Non-negative matrices and Markov chains.
Springer Science & Business Media, 2006



We say that the CPLIFS F is limit-irreducible if there exists a Y
finite refinement of Z0 such that for all s P p0, dimH Λs the matrix
FpY , sq has right and left eigenvectors with nonnegative entries
for the eigenvalue ϱpFpY , sqq.

We call this finite partition Y a limit-irreducible partition and
pDpYq,Ñq a limit-irreducible Markov diagram of F . FpY , sq is
the matrix associated to this diagram.



Proof of Theorem 1.4 cont.

Proposition 3.1
Let F be a limit-irreducible CPLIFS, and let pD,Ñq be its
limit-irreducible Markov diagram. For any ε ¡ 0 there exists a
C � D finite subset such that

(15) ϱpFpsqq � ε ¤ ϱpFCpsqq ¤ ϱpFpsqq,

where Fpsq is the matrix associated to pD,Ñq.



Proof of Theorem 1.4 cont.

As dimH Λ ¤ sF always holds, we only need to prove the other
direction.

Choose an arbitrary t P p0, sFq. By Lemma 2.1

0   Φptq   log ϱpFptqq.

According to Proposition 3.1

DC � D finite : 0   log ϱpFCptqq � ΦCptq.



Proof of Theorem 1.4 cont.

Theorem 3.2 (Simon, P.3)
Let F be a self-similar graph directed IFS with attractor Λ and
generated self-similar IFS S. If S satisfies the ESC , then

dimH Λ � mint1, sFu .

It follows, that dimH ΛC � mintsC, 1u, where sC is the unique root
of ΦCpsq.

3R Dániel Prokaj and Károly Simon. Piecewise linear iterated function systems on the line
of overlapping construction.
Nonlinearity, 35(1):245, 2021



Proof of Theorem 1.4 cont.

sF ¡ 1 implies dimHΛC � 1, for a suitable finite and irreducible
subdiagram pC,Ñq.

sF ¤ 1 implies sC ¤ 1 for all C � D.

(16) 0   ΦCptq ùñ t   sC � dimH ΛC ¤ dimH Λ,

and it holds for any t P p0, sFq. Thus sF ¤ dimH Λ.
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Altough limit-irreducibility is required in the proof, we do not need
to assume that our CPLIFS have this property, as it is already
granted by the ESC.

Lemma 4.1 (F. Hofbauer4)
Let F � tfku

m
k�1 be a CPLIFS with Markov diagram pD,Ñq and

associated matrix Fpsq. If Fpsq can be written in the form

Fpsq �
�
P Q
R S

�

such that ϱpFpsqq ¡ ϱpSq , then F is limit-irreducible.

4Franz Hofbauer. Piecewise invertible dynamical systems.
Probability theory and related fields, 72(3):359–386, 1986



Lemma 4.1 always applies for systems without overlaps , where all
the entries of Fpsq are smaller than 1.

We have to investigate what happens in the overlapping cases, as
multiple edges in pD,Ñq might yield bigger than 1 entries in the
associated matrix.



Two types of overlaps
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Light overlaps
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By choosing a finite
refinement of Z0 that has
sufficiently small entries, we
can easily avoid having
multiple edges in the diagram.



Cross overlaps

The case of cross overlaps is more complicated, as they induce
nested sequences of intervals for any finite refinement of Z0.

The ESC implies that no crossing point can have a periodic orbit .
Thus, ϱpSq won’t grow too big if we use the branch with the largest
expansion ratio among the crossing branches instead of the others.



Cross overlaps
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Thank you for your attention!
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