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Introduction
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Above: Λ Ă Rd, t ě 0,
The Hausdorff dimension of Λ
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Introduction

Self-similar IFS
S = {S1, S2, S3}

S1

S2

S3

CPLIFS
F = {f1, f2, f3}

f1

f2

f3

4 / 33



CPLIFS

1 Introduction

2 CPLIFS

3 Self-similar IFS

4 Self-similar Graph Directed IFS (GIFS)

5 Idea of the proof

6 Further results

5 / 33



CPLIFS

Let F “ tfku
m
k“1 be a finite list of strict contractions on R. We call it

Iterated Function system (IFS). The attractor ΛF of the IFS F is the
unique non-empty compact set
(2) ΛF

“

m
ď

k“1
fkpΛF

q.

Let IF be the smallest non-empty compact interval such that
fipI

Fq Ă IF for all i P rms :“ t1, . . . ,mu.

(3) ΛF “
8
Ş

n“1

Ť

pi1,...,inqPrmsn

IF
i1...in

,

where IF
i1...in

:“ fi1...inpIFq are the cylinder intervals, and we use
the common shorthand notation fi1...in :“ fi1 ˝ ¨ ¨ ¨ ˝ fin.
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CPLIFS

s

Φ F
(s)

ΦF(s) = lim sup
n→∞

1
n log

∑
i1...in

|IFi1...in|s

sF
1

logm
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CPLIFS

(4) ΦFpsq :“ lim sup
nÑ8

1
n

log
ÿ

i1...in

|IF
i1...in

|
s.

It is easy to see that we can obtain ΦFpsq above as a special case of the
non-additive upper capacity topological pressure introduced by
Barreira1 in s ÞÑ ΦFpsq is strictly decreasing, continuous, ΦFp0q “ logm
and ΦFpsq tends to ´8 as s Ñ 8. So, the zero of ΦFpsq is well defined

(5) sF :“ pΦFq´1p0q .

(6) dimBΛF ď min t1, sFu .

1Luis M Barreira. A non-additive thermodynamic formalism and applications to dimension theory
of hyperbolic dynamical systems.
Ergodic Theory and Dynamical Systems, 16(5):871–928, 1996 8 / 33



CPLIFS

The natural projection
The points of the attractor Λ are coded by the elements of the symbolic
space Σ

Σ :“ ti “ pi1, i2, . . . q : ik P rmsu ,

where as we mentioned above we write rms :“ t1, . . . ,mu by the natural
coding (or natural projection) Π : Σ Ñ Λ

(7) ΠFpiq :“ lim
nÑ8

fi1...inpxq “
8
Ş

n“1
IF
i1...in

,

where x P Λ is arbitrary. Clearly, ΠFpΣq “ Λ.
Let ρk be the maximum (in absolute value) of the slopes of fk and ρ
be the maximum of ρk (the greatest slope in the system). 9 / 33



CPLIFS

We say that F is small if both (a) and (b) below hold
(a)

m
ř

k“1
ρk ă 1, and

(b) if all functions of F are injective then ρ ă 1
2 ,

otherwise, ρ ă 1
3 .

The main result: for packing dimension typical small CPLIFS F

(8) dimH ΛF “ dimB ΛF “ sF .
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CPLIFS

Parameters

f1

f2

f3

b11

F

b21 b22 b31

τ1

τ2

τ3

The meaning of
"packing dimension typical" :

We fix all slopes! The
parematers are the vertical
translations and the breaking
points. "Packing dimension
typical" means: the packing
dimension of the parameters
of the exceptional CPLIFS is
less than the dimension of the
parameter space.
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CPLIFS

The generated self-similar IFS by a CPLIFS

f1

f2

f3

b11

F

b21 b22 b31

τ1

τ2

τ3

SF

S1,1

t1,1

S1,2

t1,2

S 3,2

S2,1

t2,1
S
2,2

t2,2

f1

f2

f3
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CPLIFS

(a) We verify: If the contraction ratios are small then the attrcator
does not contain any breaking points, at least typically.

(b) In this case, there is an N such that there are no breaking points in
any level N cylinder intervals.

(c) We consider the N -th iterate of the generated self-similar IFS SF :
(9) SN

F :“ tSk1,i1 ˝ ¨ ¨ ¨ ˝ SkN ,iN u .

(d) We take an appropriate subsystem of SN
F .

(e) We create a graph directed self-similar IFS from the functions of
this subsystem of SN

F .
(f) The dimension of an appropriate ergodic measure for this graph

directed IFS is the dimension of the attractor of our original
CPLIFS.
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CPLIFS

b

Λb̂
i

Λb̂
j

Λb̂
k

Λb̃
i

Λb̃
j

Λb̃
k

b̂ b̃

Stripei

Strip
e j

Stripek

ZiZjZk

(a) In this simplified example
the total number of
breaking points is 1.

(b) i, j,k P rmsn.
(c) Λrb Ă

!

b “ rb
)

Ş Ť

iPrmsn

Stripei

(d) rb P Λrb ùñ rb P
Ť

iPrmsn

Zi.
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CPLIFS

Small CPLIFS
Let F “ tfku

m
k“1 be a CPLIFS on the line. Let ρk be the maximal slope

of fk and ρ be the maximum of ρk:
(10) ρk :“ max

␣

|f 1
kpxq| : x P IF( , ρ :“ max tρku

m
k“1 .

We say that F is small if both
(a)

m
ř

k“1
ρk ă 1, and

(b) if all functions of F are injective then ρ ă 1
2 ,

otherwise, ρ ă 1
3 .

From now on we always assume that F is small
and there are no breaking points on the attractor .
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Self-similar IFS

Exponential Separation Condition (ESC) I
The distance of two similarity mappings g1pxq “ r1x ` τ1 and
g2pxq “ r2x ` τ2 , r1, r2 P p´1, 1qz t0u, on R.

(11) dist pg1, g2q :“
"

|τ1 ´ τ2|, if r1 “ r2;
8, otherwise.

Definition 3.1
Given a self-similar IFS S “ tSkpxqu

M
k“1 on R. We say that F satisfies

the Exponential Separation Condition (ESC) if there exists a c ą 0 and
a strictly increasing sequence of natural numbers tnℓu

8

ℓ“1 such that

(12) dist pSi, Sjq ě cnℓ for all ℓ and for all i, j P t1, . . . ,Mu
nℓ , i ‰ j.17 / 33



Self-similar IFS

Exponential Separation Condition (ESC) II
Consider a family of self-similar IFSs on the line with fixed contraction
ratios r1, . . . , rM and the parameters are the vertical translations
t “ pt1, . . . , tMq. St :“ tSkpxq “ rkx ` tku

M
k“1 .

(a) dimP
␣

ttt P RM : Sttt does not satisfy the ESC
(

ď M ´ 1.
(b) Assume that St satisfies the ESC. Then

(i) For all n, the n-th iterate pStq
n also satisfies the ESC.

(ii) All subsystem of pStq
n also satisfies ESC.

Recall that the N -th iterate is:

SN
F :“ tSi1 ˝ ¨ ¨ ¨ ˝ SiN u

pi1,...,iN qPrM sN .
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Self-similar Graph Directed IFS (GIFS)

1 Introduction

2 CPLIFS

3 Self-similar IFS

4 Self-similar Graph Directed IFS (GIFS)

5 Idea of the proof

6 Further results

19 / 33



Self-similar Graph Directed IFS (GIFS)

Definition 4.1
We say that a CPLIFS F is regular if

(a) F is small and
(b) the attractor ΛF does not contain any breaking points.

We have indicated that packing-dimension typical small CPLIFS is
regular and from now on we always assume that the CPLIFS
F “ tfiu

m
i“1 under consideration is regular. Fix N so big that

ď

uPrmsn

IF
u contains no breaking points,

where IF
u “ fu1 ˝ ¨ ¨ ¨ ˝ fuN

pIFq for u “ pu1, . . . , uNq P rmsN .
20 / 33



Self-similar Graph Directed IFS (GIFS)

ΛF
“

ď

vPrmsN

ΛF
v “

ď

vPrmsN

ď

uPrmsN

fvpΛF
u q,

where ΛF
u “ fupΛFq. Clearly, ΛF

u Ă IF
u . Recall that

ď

uPrmsn

IF
u contains no breaking points.

Hence for every pair pv,uq we can find an a “ pa1, . . . , aNq “ ψpv,uq

such that Sai
P SF and for the similarity mapping Sa “ Sa1 ˝ ¨ ¨ ¨ ˝ San

fv|Iu “ Sa|Iu.

(13) ΛF
“

ď

vPrmsn

ΛF
v and ΛF

v “
Ť

u
Sψpv,uqpΛF

u q .
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Self-similar Graph Directed IFS (GIFS)

A trivial motivational example

I1 I2

I1

I2

(0, 0)

slope =
1
6

f1(x
)

slo
pe

=
1
2

slo
pe

=
7
12

f2(x
) slope =

1
12

1
3

2
3

1

1
3

2
3

1
Λ Ă pI1

Ť

I2q.
Λj :“ fjpΛq “ Λ

Ş

Ij.
Λ “ Λ1

Ť

Λ2. Let fi,j :“ fi|Ij
.

Then Λ1 “ f1,1pΛ1q Y f1,2pΛ2q ,
Λ2 “ f2,1pΛ1q Y f2,2pΛ2q .

Apsq :“
ˆ `1

6
˘s `1

2
˘s

` 7
12
˘s ` 1

12
˘s

˙

.

ρpApαqq “ 1 for α “ 0.577295 . . . ,
so, dimH Λ “ 0.577295 . . .22 / 33



Self-similar Graph Directed IFS (GIFS)

I1

I2 I3I 1
I 2

I 3

f1,1

f1,2

G = (V , E) is a strongly connected directed graph . ∀e ∈ E
given a similarity fe : R → R with ratio re ∈ (0, 1).
Then ∃ {Λi}i∈V unique non empty compact sets with

Λi =
3⋃

j=1

⋃
e∈Ei,j

fe(Λj), where Ei,j is the set of edges from j to i.

Let Λ := Λ1

⋃
Λ2

⋃
Λ3. Then Λ is the attractor.

f3,1
f
(a)

3,3

f
(b)

3,3

f2,2

f2,3

A(s) :=




rs1,1 rs1,2 0

0 rs2,2 rs2,3

rs3,1 0
(
r
(a)
3,3

)s

+
(
r
(b)
3,3

)s




Define α by ρ(A(α)) = 1.

Always: dimH Λ ≤ α. If the interior of {fi,j(Ij)}(i,j)∈E are pairwise disjoint then dimH Λ = α.

1

23

f1,1

f1,2

f2,2
f2,3

f3,1

f
(a)
3,3

f
(b)
3,3

2. 2Kenneth J Falconer and KJ Falconer. Techniques in fractal geometry, volume 3.
Wiley Chichester, 1997 23 / 33
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Idea of the proof

The Lyapunov exponents for ergodic measures
Recall: S :“

!

Sipxq “ rix ` ti

)m

i“1
Let µ be an invariant ergodic

probability measure on the symbolic space Σ. The Lyapunov exponent
of µ is

(14) χpµq :“ ´
m
ř

k“1
µprksq log rk ,

where the cylinder is defined by
ri1, . . . , ins :“ tj “ pj1, j2, . . . q P Σ : j1 “ i1, . . . , jn “ inu. If µ “ pN for
a probability vector p “ pp1, . . . , pmq then the push forward measure

Π˚µ is called self-similar measure . In this case χpµq “ ´
m
ř

k“1
pk log rk .
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Idea of the proof

Theorem 5.1 (Jordan and Rapaport a (2020))

aThomas Jordan and Ariel Rapaport. Dimension of ergodic measures projected onto
self-similar sets with overlaps.
Proceedings of the London Mathematical Society, 2020

Let S be a self-similar IFS on the line as above. We assume that S
satisfies the so called Exponential Separation Condition (ESC) . If µ is
an ergodic invariant probability measure then

(15) dimHΠ˚µ “ min
!

1, hµ

χpµq

)

.

This theorem extends M. Hochman’s celebrated result from self-similar
measures to ergodic measures. 26 / 33



Idea of the proof

Using Jordan-Rapaport Theorem we obtain the following assertion which
was proved in the appendix of the paper3, and it plays a crusial role in
our proofs.
Theorem 5.2 (Prokaj, S. )
Let Λ be the attractor of the self-similar graph directed IFS F . Let SF
be the generated self-similar IFS.

(16) SF satisfies the ESC ùñ dimH Λ “
␣

1, sF(.

3R Dániel Prokaj and Károly Simon. Piecewise linear iterated function systems on the line of
overlapping construction.
Nonlinearity, 35(1):245, 2021
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Idea of the proof

The generated self-similar IFS by a CPLIFS

f1

f2

f3

b11

F

b21 b22 b31

τ1

τ2

τ3

SF

S1,1

t1,1

S1,2

t1,2

S 3,2

S2,1

t2,1
S
2,2

t2,2

f1

f2

f3
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Idea of the proof

Injective, non-overlapping and overlapping CPLIFS

I

b1,1 b1,2b2,1b3,1

I1

I2

I3

f1(x)

f2(x)

f3(x)

I

b1,1 b1,2b2,1b3,1

I1

I2

I3

f1(x)

f2(x)

f3(x)
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Idea of the proof

Hofbauer and Raith theory in the injective and
non-overlapping case

I
I1

I2

I3

f1(x)

f2(x)

f3(x)

I

I1 I2 I3

f−1
1 (x)

f−1
2 (x)

f−1
3 (x)
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Idea of the proof

f1

f2

f3

b1,1 b2,1b3,1 b3,2

f−1
1,1

f−1
1,2

f−1
2,1

f−1
2,2

f−1
3,1

f−1
3,2

f−1
3,3

Figure: A CPLIFS F “ tfkum
k“1 is on the left with its associated expansive multi-valued

mapping T on the right.
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Further results

Theorem 6.1 (Prokaj,Raith, S.)

Let F be a CPLIFS with generated self-similar system S and attractor
Λ. If S satisfies the ESC , then

(17) dimH Λ “ dimB Λ “ mint1, sFu .

Theorem 6.2 (Prokaj, Raith, S.)

Let F be a dimP-typical CPLIFS with attractor Λ . Then

(18) dimH Λ “ dimB Λ “ mint1, sFu .

Dániel Prokaj will talk more about this and another related theorem
after the break. 33 / 33


	Introduction
	CPLIFS 
	Self-similar IFS
	Self-similar Graph Directed IFS (GIFS)
	Idea of the proof
	Further results

