Invariant measures for Iterated Function Systems with inverses

Yuki Takahashi
Department of Mathematics, Saitama University

May 18, 2023

Outline of the talk

- Part I: Iterated Function Systems (IFS)
- Part II: Invariant measures for IFS
- Part III: Transversality argument
- Part IV: Iterated Function Systems with inverses
- Part V: Furstenberg measure

Part I: Iterated Function Systems (IFS)

Iterated Function Systems (IFS)

- Let $\mathcal{F}=\left\{f_{i}\right\}_{i \in \Lambda}$ be a finite collection of contractive self-maps of \mathbb{R}.
- There exists a unique nonempty compact set K such that

$$
K=\bigcup_{i \in \Lambda} f_{i}(K)
$$

- K is called the attractor of \mathcal{F}.

Example

Let

$$
f_{0}(x)=\frac{1}{3} x, f_{1}(x)=\frac{1}{3} x+\frac{2}{3} .
$$

Then the attractor is the middle-1/3 Cantor set.

Cantor set

Example (Middle-1/3 Cantor set)

Figure: $K:=\bigcap_{n=0}^{\infty} K_{n}$ is the middle-1/3 Cantor set.

- We have $K=f_{0}(K) \cup f_{1}(K)$, where $f_{0}(x)=\frac{1}{3} x$ and $f_{1}(x)=\frac{1}{3} x+\frac{2}{3}$.

Open set condition

- We say that an IFS $\mathcal{F}=\left\{f_{i}\right\}_{i \in \Lambda}$ satisfies the open set condition if there exists a nonempty open set $O \subset \mathbb{R}$ such that

$$
\begin{aligned}
(i) & : \bigcup_{i \in \Lambda} f_{i}(O) \subset O \\
(i i) & :\left\{f_{i}(O)\right\}_{i \in \Lambda} \text { are pairwise disjoint. }
\end{aligned}
$$

Example

Let

$$
f_{0}(x)=\frac{1}{3} x, f_{1}(x)=\frac{1}{3} x+\frac{2}{3} .
$$

Then the IFS $\mathcal{F}=\left\{f_{0}, f_{1}\right\}$ satisfies the open set condition.
$\because)$ For $O=(0,1)$, we have $f_{1}(O)=(0,1 / 3)$ and $f_{2}(O)=(2 / 3,1)$.

Open set condition

Example

Let $0<\lambda<1 / 3$, and let

$$
f_{0}(x)=\frac{1}{3} x, f_{1}(x)=\frac{1}{3} x+\frac{2}{3} \quad \text { and } \quad f_{2}(x)=\frac{1}{3} x+\lambda
$$

Then the IFS $\mathcal{F}=\left\{f_{0}, f_{1}, f_{2}\right\}$ may not satisfy the open set condition.

Coding

Example (Coding)

- Let $\mathcal{F}=\left\{f_{0}, f_{1}\right\}$ be an IFS, where

$$
f_{0}(x)=\frac{1}{3} x, f_{1}(x)=\frac{1}{3} x+\frac{2}{3} .
$$

- Fix $x_{0} \in \mathbb{R}$. The IFS \mathcal{F} induces a natural projection map $\Pi:\{0,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ called coding by

$$
\Pi(\omega)=\lim _{n \rightarrow \infty} f_{\omega_{1}} \circ \cdots \circ f_{\omega_{n}}\left(x_{0}\right)
$$

Example (Continued)

- We have, for example,

$$
\Pi(0000 \cdots)=0, \Pi(10000 \cdots)=2 / 3, \Pi(010101 \cdots)=1 / 4, \quad \text { etc. }
$$

Part II: Invariant measures for IFS

Invariant measures

- Let $\mathcal{F}=\left\{f_{i}\right\}_{i \in \Lambda}$ be an IFS and $p=\left(p_{i}\right)_{i \in \Lambda}$ be a probability vector. Then there exists a unique Borel probability measure ν such that

$$
\nu=\sum_{i \in \Lambda} p_{i} f_{i} \nu
$$

- The measure ν is called the invariant measure associated to the IFS \mathcal{F} and the weight p.

Example (Self-similar measure)

- Let

$$
f_{0}(x)=\frac{1}{3} x, f_{1}(x)=\frac{1}{3} x+\frac{2}{3} \text { and } p=\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

- Then the associated self-similar measure ν satisfies

$$
\nu=\frac{1}{2} f_{1} \nu+\frac{1}{2} f_{2} \nu .
$$

- The support of ν is the middle- $1 / 3$ Cantor set.

Example (Continued)

- The measure ν agrees with the probability distribution of the following random walk:

- Let $\Pi:\{0,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ be the coding map, let μ be the Bernoulli measure on $\{0,1\}^{\mathbb{N}}$ associated with the probability vector $p=(1 / 2,1 / 2)$. Then we have

$$
\nu=\Pi \mu .
$$

Entropy and the Lyapunov exponent

- Let $\mathcal{F}=\left\{f_{0}, f_{1}\right\}$ be an affine IFS and $p=\left(p_{0}, p_{1}\right)$ be a probability vector.

$$
h(p)=-\left(p_{0} \log p_{0}+p_{1} \log p_{1}\right)
$$

is called the entropy, and

$$
\chi(\mathcal{F}, p)=-\left(p_{0} \log r_{0}+p_{1} \log r_{1}\right)
$$

is called the Lyapunov exponent, where r_{i} is the contracting ratio of f_{i}.

Example

Let

$$
f_{0}(x)=\frac{1}{3} x, f_{1}(x)=\frac{1}{3} x+\frac{2}{3} \text { and } p=\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

Then $h(p)=\log 2$ and $\chi=\log 3$.

Dimension of self-similar measures (heuristic argument)

- Assume that there is no "overlap".
- For "typical" $\omega \in\{0,1\}^{\mathbb{N}}$, we have

$$
\log \left(f_{\omega_{1}} \circ f_{\omega_{2}} \cdots \circ f_{\omega_{n}}(I)\right) \approx \log \left(\left(r_{0}^{p_{0}} r_{1}^{p_{1}}\right)^{n}|I|\right) \approx-n \chi
$$

and

$$
\log \left(p_{\omega_{1}} p_{\omega_{2}} \cdots p_{\omega_{n}}\right) \approx \log \left(\left(p_{0}^{p_{0}} p_{1}^{p_{1}}\right)^{n}\right)=-n h(p) .
$$

Dimension of self-similar measures (continued)

- Therefore, the dimension $\operatorname{dim} \nu$ should satisfy

$$
(-n \chi)^{\operatorname{dim} \nu}=-n h(p),
$$

which implies

$$
\operatorname{dim} \nu=\frac{-n h(p)}{-n \chi}=\frac{h(p)}{\chi} .
$$

Dimension of self-similar measures

- Let $\mathcal{F}=\left\{f_{i}\right\}_{i \in \Lambda}$ be an IFS and let $p=\left(p_{i}\right)_{i \in \Lambda}$ be a probability vector. Let ν be the associated self-similar measure.
- We have

$$
\operatorname{dim} \nu \leq \min \left\{1, \frac{h(p)}{\chi}\right\}
$$

- If \mathcal{F} satisfies the open set condtion, then

$$
\operatorname{dim} \nu=\frac{h(p)}{\chi}
$$

Part III: Bernoulli convolution and the transversality argument

Bernoulli convolution

Definition (Bernoulli convolution)

Let $1 / 2<\lambda<1, p=(1 / 2,1 / 2)$ and

$$
f_{-1}^{(\lambda)}(x)=\lambda x-1, \quad f_{1}^{(\lambda)}(x)=\lambda x+1
$$

The associated self-similar measure ν_{λ} is called the Bernoulli convolution.

- We are interested in a one-parameter family of self-similar measure (e.g. Bernoulli convolution).

Bernoulli convolution

Theorem ('95, Solomyak)

For a.e. $\lambda \in(1 / 2,1), \nu_{\lambda}$ is absolutely continuous.

Theorem ('14, Shmerkin)

There exists a Hausdorff dimension zero set $E \subset[1 / 2,1]$ such that for all $\lambda \in[1 / 2,1] \backslash E$, the measure ν_{λ} is absolutely continuous.

```
Theorem ('19, Varju)
If }\lambda=1-1\mp@subsup{0}{}{-50}\mathrm{ then }\mp@subsup{\nu}{\lambda}{}\mathrm{ is absolutely continuous.
```


Bernoulli convolution

Definition (Pisot number)

A Pisot number is a real algebraic integer greater than 1 such that all of its Galois conjugates are less than 1 in absolute value.

Example (Pisot number)

(i) $\frac{1+\sqrt{5}}{2}$; minimal polynomial: $x^{2}-x-1$.
(ii) $2+\sqrt{5}$; minimal polynomial: $x^{2}-4 x-1$.
(iii) $\alpha>1$ such that $\alpha^{3}-\alpha-1=0$; minimal polynomial: $x^{3}-x-1$.

Theorem (Erdös, 1939)

Bernoulli convolution ν_{λ} is singular if λ is the inverse of a Pisot number.

Transversality condition

- Let $\Pi_{\lambda}:\{-1,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ be the natural projection map.
- We have

$$
\Pi_{\lambda}(\omega)=\sum_{n=0}^{\infty} \omega_{n} \lambda^{n}
$$

Transversality condition

Definition (Transversality condition)

We say that ν_{λ} satisfies the transversality condition on $I \subset[1 / 2,1)$ if for all ω and τ in $\{0,1\}^{\mathbb{N}}$ with $\omega_{1} \neq \tau_{1}$, the two curves

$$
\left\{\Pi_{\lambda}(\omega) \mid \lambda \in I\right\} \text { and }\left\{\Pi_{\lambda}(\tau) \mid \lambda \in I\right\}
$$

are transversal.

Absolute continuity of measures

- Let ν be a measure on \mathbb{R}.
- Define the lower density of the measure ν by

$$
\underline{D}(\nu, x)=\liminf _{r \downarrow 0} \frac{\nu[x-r, x+r]}{2 r} .
$$

- It is known that

$$
\underline{D}(\nu, x)<\infty \text { for } \nu \text {-a.e. } \Longrightarrow \nu \ll \mathcal{L} .
$$

- Therefore,

$$
\int \underline{D}(\nu, x) d \nu<\infty \Longrightarrow \nu \ll \mathcal{L}
$$

Bernoulli convolution: absolute continuity

- Let ν_{λ} be the Bernoulli convolution and let $I \subset[1 / 2,1)$.
- We have

$$
\mathcal{I}:=\int_{I} \int \underline{D}\left(\nu_{\lambda}, x\right) d \nu_{\lambda} d \lambda<\infty \Longrightarrow \nu_{\lambda} \ll \mathcal{L} \text { for a.e. } \lambda \in I .
$$

- By Fatou's lemma, we obtain

$$
\mathcal{I} \leq \liminf _{r \downarrow 0} \int_{I} \int_{\mathbb{R}} \frac{\nu_{\lambda}[x-r, x+r]}{2 r} d \nu_{\lambda} d \lambda .
$$

Bernoulli convolution: absolute continuity

- By changing the variable and exchanging the order of integration, we have

$$
\mathcal{I} \leq \liminf _{r \downarrow 0}(2 r)^{-1} \iint_{\Omega^{2}} \mathcal{L}\left\{\lambda \in I:\left|\Pi_{\lambda}(\omega)-\Pi_{\lambda}(\tau)\right| \leq r\right\} d \mu(\omega) d \mu(\tau)
$$

- By the transversality condition, we conclude $\mathcal{I}<\infty$.

General case

- $\mathcal{F}_{t}=\left\{f_{i}^{t}\right\}_{i \in \Lambda}$: one-parameter family of IFS.
- $p=\left(p_{i}\right)_{i \in \Lambda}$: probability vector.

Theorem ('01, Simon \& Solomyak \& Urbanski)

Assume that the transversality condition is satisfied. Then
(i) For a.e. t,

$$
\operatorname{dim} \nu_{t}=\min \left\{1, \frac{h}{\chi_{t}}\right\}
$$

where $h=h(p)$ is the entropy and χ_{t} is the Lyapunov exponent.
(ii) The measure ν_{t} is absolutely continuous for a.e. t in

$$
\left\{t: \frac{h}{\chi_{t}}>1\right\} .
$$

Part IV: Iterated Function Systems with inverses

Self-similar measures (review)

- Let $\mathcal{F}=\left\{f_{i}\right\}_{i \in \Lambda}$ be an affine IFS and $p=\left(p_{i}\right)_{i \in \Lambda}$ be a probability vector. Then there exists a unique Borel probability measure ν such that

$$
\nu=\sum_{i \in \Lambda} p_{i} f_{i} \nu
$$

- The measure ν is called the self-similar measure associated to the IFS \mathcal{F} and the weight p.

Example

Let

$$
f_{0}(x)=\frac{1}{3} x, f_{1}(x)=\frac{1}{3} x+\frac{2}{3} \text { and } p=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Then the associated self-similar measure ν satisfies

$$
\nu=\frac{1}{2} f_{1} \nu+\frac{1}{2} f_{2} \nu,
$$

whose support is the middle-1/3 Cantor set.

Example (Continued)

- The measure ν agrees with the probability distribution of the following random walk:

- Let $\Pi:\{0,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ be the coding map, let μ be the Bernoulli measure on $\{0,1\}^{\mathbb{N}}$ associated with the probability vector $p=(1 / 2,1 / 2)$. Then we have

$$
\nu=\Pi \mu .
$$

Iterated function systems with inverses (example)

Example (IFS with inverse)

- Let $\Lambda=\left\{0,1,1^{-1}\right\}$, and let $p=\left(p_{i}\right)_{i \in \Lambda}$ be a probability vector. For $0<k, l<1$, define

$$
f_{0}(x)=k x, f_{1}(x)=\frac{(1+l) x+1-l}{(1-l) x+1+l}, f_{1-1}(x)=\frac{(1+l) x-(1-l)}{-(1-l) x+1+l} .
$$

- We have $f_{1^{-1}}=f_{1}^{-1}$. It is easy to see that we have $f_{0}(0)=0, f_{1}(-1)=-1, f_{1}(1)=1$ and

$$
f_{0}^{\prime}(k)=k, f_{1}^{\prime}(1)=l, f_{1}^{\prime}(-1)=1 / l .
$$

- It is well-known that there exists a unique Borel probability measure $\nu=\nu(k, l)$ that satisfies

$$
\nu=\sum_{i \in \Lambda} p_{i} f_{i} \nu
$$

Reminder

- $\Lambda=\left\{0,1,1^{-1}\right\}$
- $f_{0}(x)=k x, f_{1}(x)=\frac{(1+l) x+1-l}{(1-l) x+1+l}, f_{1-1}(x)=\frac{(1+l) x-(1-l)}{-(1-l) x+1+l}$.

Example (Continued)

- We say that $\omega=\omega_{1} \omega_{2} \cdots \in \Lambda^{\mathbb{N}}$ is reduced if $\omega_{i} \omega_{i+1} \neq 11^{-1}, 1^{-1} 1$.
- Fix $x_{0} \in[-1,1]$.

Key fact

For any reduced sequence $\omega \in \Lambda^{\mathbb{N}}$, the limit

$$
\lim _{n \rightarrow \infty} f_{\omega_{1}} \circ f_{\omega_{2}} \circ \cdots \circ f_{\omega_{n}}\left(x_{0}\right) .
$$

exists.

Reminder

- $\Lambda=\left\{0,1,1^{-1}\right\}$
- $f_{0}(x)=k x, f_{1}(x)=\frac{(1+l) x+1-l}{(1-l) x+1+l}, f_{1^{-1}}(x)=\frac{(1+l) x-(1-l)}{-(1-l) x+1+l}$.

Example (Continued)

- Therefore, one can define a natural projection map $\Pi:\left\{0,1,1^{-1}\right\} \rightarrow \mathbb{R}$ by

$$
\Pi(\omega)=\lim _{n \rightarrow \infty} f_{\omega_{1}} \circ \cdots \circ f_{\omega_{n}}\left(x_{0}\right) .
$$

- let μ be the Bernoulli measure on $\left\{0,1,1^{-1}\right\}^{\mathbb{N}}$ associated with the probability vector $p=\left(p_{0}, p_{1}, p_{1^{-1}}\right)$. Then we have

$$
\nu=\Pi \mu .
$$

Main result

- $\mathcal{F}_{t}=\left\{f_{i}^{t}\right\}_{i \in \Lambda}$: one-parameter family of IFS with inverse.
- $p=\left(p_{i}\right)_{i \in \Lambda}$: probability vector.
- $h_{R W}=h_{R W}(p)$: random walk entropy

Theorem ('22, T)

Assume that the transversality condition is satisfied. Then
(i) For a.e. $t \in I$,

$$
\operatorname{dim} \nu_{t}=\min \left\{1, \frac{h_{R W}}{\chi_{t}}\right\}
$$

(ii) The measure ν_{t} is absolutely continuous for a.e. t in

$$
\left\{t: \frac{h_{R W}}{\chi_{t}}>1\right\} .
$$

Entropy and random walk entropy

- Let $\Lambda=\{0,1\}$, and $p=\left(p_{0}, p_{1}\right)$ be a probability vector.

- For "typical" $\omega \in \Lambda^{\mathbb{N}}$, we have

$$
p_{\omega_{1}} \cdots p_{\omega_{n}} \approx e^{-n h(p)}
$$

Entropy and random walk entropy

- Let $\Lambda=\left\{0,1,1^{-1}\right\}$, and $p=\left(p_{0}, p_{1}, p_{1^{-1}}\right)$ be a probability vector.
- Let μ be a Bernoulli measure on $\Lambda^{\mathbb{N}}$ associated to p.

- For "typical" $\omega \in \Lambda^{\mathbb{N}}$, we have

$$
\begin{equation*}
\mu\left(\left\{v \in \Omega: \operatorname{red}\left(\left.v\right|_{n}\right)=\operatorname{red}\left(\left.\omega\right|_{n}\right)\right\}\right) \approx e^{-n h_{R W}} . \tag{1}
\end{equation*}
$$

Part V: Furstenberg measure

Action of $S L_{2}(\mathbb{R})$ matrices

- Let \mathbf{P} be the one-dimensional projective space.
- $A \in S L_{2}(\mathbb{R})$ acts naturally on \mathbf{P}.

Fustenberg measure

- Let $\mathcal{A}=\left\{A_{i}\right\}_{i \in \Lambda}$ be a finite collection of $S L_{2}(\mathbb{R})$ matrices, and let $p=\left(p_{i}\right)_{i \in \Lambda}$ be a probability vector.
- Assume that the semigroup generated by \mathcal{A} is unbounded and totally irreducible.
- It is known that there exists a unique probability measure ν on \mathbf{P} such that

$$
\nu=\sum_{i \in \Lambda} p_{i} A_{i} \nu
$$

- The measure ν is called a Fustenberg measure.

Furstenberg measure

Example (Furstenberg measure)

- . Let $\Lambda=\left\{0,1,1^{-1}\right\}$, and let $p=\left(p_{i}\right)_{i \in \Lambda}$ be a probability vector. For $0<k, l<1$, define

$$
A_{0}=\left(\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{ll}
1+l & 1-l \\
1-l & 1+l
\end{array}\right), A_{1}=\left(\begin{array}{cc}
1+l & -(1-l) \\
-(1-l) & 1+l
\end{array}\right) .
$$

- Let

$$
f_{0}(x)=k x, f_{1}(x)=\frac{(1+l) x+1-l}{(1-l) x+1+l}, f_{1^{-1}}(x)=\frac{(1+l) x-(1-l)}{-(1-l) x+1+l} .
$$

- Under the natural identification $\mathbf{P} \cong \mathbb{R} \cup\{\infty\}$, the associated Fustenberg measure agrees with the invariant measure ν that satisfies

$$
\nu=\sum_{i \in \Lambda} p_{i} f_{i} \nu
$$

Natural (and probably very difficult) problem

- We say that a collection of $S L_{2}(\mathbb{R})$ matrices \mathcal{A} is symmetric if $\mathcal{A}=\mathcal{A}^{-1}$. For example, the set $\mathcal{A}=\left(A, A^{-1}, B, B^{-1}\right)$ is symmetric.

Problem

Show the following for some symmetric $\mathcal{A}_{t}(t \in I)$:
(i) For a.e. $t \in I$,

$$
\operatorname{dim} \nu_{t}=\min \left\{1, \frac{h_{R W}}{\chi_{t}}\right\} .
$$

(ii) The measure ν_{t} is absolutely continuous for a.e. t in

$$
\left\{t: \frac{h_{R W}}{\chi_{t}}>1\right\} .
$$

Thank you! :)

