Invariant measures for Iterated Function Systems with inverses

Yuki Takahashi

Department of Mathematics, Saitama University

May 18, 2023

Outline of the talk

- Part I: Iterated Function Systems (IFS)
- Part II: Invariant measures for IFS
- Part III: Transversality argument
- Part IV: Iterated Function Systems with inverses
- Part V: Furstenberg measure

Part I: Iterated Function Systems (IFS)

Iterated Function Systems (IFS)

- Let $\mathcal{F} = \{f_i\}_{i \in \Lambda}$ be a finite collection of contractive self-maps of \mathbb{R} .
- There exists a unique nonempty compact set \boldsymbol{K} such that

$$K = \bigcup_{i \in \Lambda} f_i(K).$$

• K is called the *attractor* of \mathcal{F} .

Example

Let

$$f_0(x) = \frac{1}{3}x, \ f_1(x) = \frac{1}{3}x + \frac{2}{3}.$$

Then the attractor is the middle-1/3 Cantor set.

Cantor set

Example (Middle-1/3 Cantor set)

Figure: $K := \bigcap_{n=0}^{\infty} K_n$ is the *middle*-1/3 Cantor set.

• We have $K = f_0(K) \cup f_1(K)$, where $f_0(x) = \frac{1}{3}x$ and $f_1(x) = \frac{1}{3}x + \frac{2}{3}$.

Open set condition

We say that an IFS F = {f_i}_{i∈Λ} satisfies the open set condition if there exists a nonempty open set O ⊂ ℝ such that

$$\begin{split} (i): \ &\bigcup_{i\in\Lambda} f_i(O)\subset O;\\ (ii): \ &\{f_i(O)\}_{i\in\Lambda} \text{ are pairwise disjoint.} \end{split}$$

Example

Let

$$f_0(x) = \frac{1}{3}x, \ f_1(x) = \frac{1}{3}x + \frac{2}{3}.$$

Then the IFS $\mathcal{F} = \{f_0, f_1\}$ satisfies the open set condition.

:) For O = (0,1), we have $f_1(O) = (0,1/3)$ and $f_2(O) = (2/3,1)$.

Open set condition

Example

Let $0<\lambda<1/3\text{, and let}$

$$f_0(x) = \frac{1}{3}x, \ f_1(x) = \frac{1}{3}x + \frac{2}{3} \text{ and } f_2(x) = \frac{1}{3}x + \lambda.$$

Then the IFS $\mathcal{F} = \{f_0, f_1, f_2\}$ may *not* satisfy the open set condition.

Coding

Example (Coding)

• Let $\mathcal{F} = \{f_0, f_1\}$ be an IFS, where

$$f_0(x) = \frac{1}{3}x, \ f_1(x) = \frac{1}{3}x + \frac{2}{3}.$$

• Fix $x_0 \in \mathbb{R}$. The IFS \mathcal{F} induces a natural projection map $\Pi : \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ called *coding* by

$$\Pi(\omega) = \lim_{n \to \infty} f_{\omega_1} \circ \cdots \circ f_{\omega_n}(x_0).$$

Example (Continued)

• We have, for example,

$$\Pi(0000\cdots) = 0, \ \Pi(10000\cdots) = 2/3, \ \Pi(010101\cdots) = 1/4, \ \text{etc.}$$

Part II: Invariant measures for IFS

Invariant measures

• Let $\mathcal{F} = \{f_i\}_{i \in \Lambda}$ be an IFS and $p = (p_i)_{i \in \Lambda}$ be a probability vector. Then there exists a unique Borel probability measure ν such that

$$\nu = \sum_{i \in \Lambda} p_i f_i \nu.$$

• The measure ν is called the *invariant measure* associated to the IFS \mathcal{F} and the weight p.

Example (Self-similar measure)

• Let

$$f_0(x) = \frac{1}{3}x, \ f_1(x) = \frac{1}{3}x + \frac{2}{3} \ \text{ and } \ p = (\frac{1}{2}, \frac{1}{2}).$$

• Then the associated self-similar measure ν satisfies

$$\nu = \frac{1}{2}f_1\nu + \frac{1}{2}f_2\nu.$$

• The support of ν is the middle-1/3 Cantor set.

		1		
1/2			1/2	
1/4	1/4		1/4	1/4
1 <u>/</u> 8				

Example (Continued)

• The measure ν agrees with the probability distribution of the following random walk:

• Let $\Pi : \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ be the coding map, let μ be the Bernoulli measure on $\{0,1\}^{\mathbb{N}}$ associated with the probability vector p = (1/2, 1/2). Then we have

$$\nu = \Pi \mu$$

Entropy and the Lyapunov exponent

• Let $\mathcal{F} = \{f_0, f_1\}$ be an affine IFS and $p = (p_0, p_1)$ be a probability vector.

$$h(p) = -(p_0 \log p_0 + p_1 \log p_1)$$

is called the entropy, and

$$\chi(\mathcal{F}, p) = -(p_0 \log r_0 + p_1 \log r_1)$$

is called the Lyapunov exponent, where r_i is the contracting ratio of f_i .

Example

Let

$$f_0(x) = \frac{1}{3}x, \ f_1(x) = \frac{1}{3}x + \frac{2}{3} \text{ and } p = (\frac{1}{2}, \frac{1}{2}).$$

Then $h(p) = \log 2$ and $\chi = \log 3$.

Dimension of self-similar measures (heuristic argument)

- Assume that there is no "overlap".
- For "typical" $\omega \in \{0,1\}^{\mathbb{N}}$, we have

$$\log\left(f_{\omega_1} \circ f_{\omega_2} \cdots \circ f_{\omega_n}(I)\right) \approx \log\left((r_0^{p_0} r_1^{p_1})^n |I|\right) \approx -n\chi$$

and

$$\log\left(p_{\omega_1}p_{\omega_2}\cdots p_{\omega_n}\right)\approx \log\left((p_0^{p_0}p_1^{p_1})^n\right)=-nh(p).$$

Yuki Takahashi (Saitama University)

Dimension of self-similar measures (continued)

• Therefore, the dimension $\dim \nu$ should satisfy

$$(-n\chi)^{\dim\nu} = -nh(p),$$

which implies

$$\dim \nu = \frac{-nh(p)}{-n\chi} = \frac{h(p)}{\chi}.$$

Dimension of self-similar measures

• Let $\mathcal{F} = \{f_i\}_{i \in \Lambda}$ be an IFS and let $p = (p_i)_{i \in \Lambda}$ be a probability vector. Let ν be the associated self-similar measure.

• We have

$$\dim \nu \le \min\left\{1, \frac{h(p)}{\chi}\right\}.$$

• If ${\mathcal F}$ satisfies the open set condtion, then

$$\dim \nu = \frac{h(p)}{\chi}.$$

Part III: Bernoulli convolution and the transversality argument

Bernoulli convolution

Definition (Bernoulli convolution)

Let $1/2 < \lambda < 1$, p = (1/2, 1/2) and

$$f_{-1}^{(\lambda)}(x) = \lambda x - 1, \quad f_1^{(\lambda)}(x) = \lambda x + 1.$$

The associated self-similar measure ν_{λ} is called the *Bernoulli convolution*.

• We are interested in a one-parameter family of self-similar measure (e.g. Bernoulli convolution).

Bernoulli convolution

Theorem ('95, Solomyak)

For a.e. $\lambda \in (1/2, 1)$, ν_{λ} is absolutely continuous.

Theorem ('14, Shmerkin)

There exists a Hausdorff dimension zero set $E \subset [1/2, 1]$ such that for all $\lambda \in [1/2, 1] \setminus E$, the measure ν_{λ} is absolutely continuous.

Theorem ('19, Varju)

If $\lambda = 1 - 10^{-50}$ then ν_{λ} is absolutely continuous.

Bernoulli convolution

Definition (Pisot number)

A *Pisot number* is a real algebraic integer greater than 1 such that all of its Galois conjugates are less than 1 in absolute value.

Example (Pisot number)

(i)
$$\frac{1+\sqrt{5}}{2}$$
; minimal polynomial: $x^2 - x - 1$.
(ii) $2 + \sqrt{5}$; minimal polynomial: $x^2 - 4x - 1$.
(iii) $\alpha > 1$ such that $\alpha^3 - \alpha - 1 = 0$; minimal polynomial: $x^3 - x - 1$.

Theorem (Erdös, 1939)

Bernoulli convolution ν_{λ} is singular if λ is the inverse of a Pisot number.

Yuki Takahashi (Saitama University)

Iterated Function Systems with inverses

Transversality condition

- Let $\Pi_{\lambda}: \{-1,1\}^{\mathbb{N}} \to \mathbb{R}$ be the natural projection map.
- We have

Transversality condition

Definition (Transversality condition)

We say that ν_{λ} satisfies the *transversality condition* on $I \subset [1/2, 1)$ if for all ω and τ in $\{0, 1\}^{\mathbb{N}}$ with $\omega_1 \neq \tau_1$, the two curves

```
\{\Pi_{\lambda}(\omega) \mid \lambda \in I\} and \{\Pi_{\lambda}(\tau) \mid \lambda \in I\}
```

are transversal.

Absolute continuity of measures

- Let ν be a measure on \mathbb{R} .
- Define the *lower density* of the measure ν by

$$\underline{D}(\nu, x) = \liminf_{r \downarrow 0} \frac{\nu[x - r, x + r]}{2r}.$$

• It is known that

$$\underline{D}(\nu, x) < \infty$$
 for ν -a.e. $\implies \nu \ll \mathcal{L}$

• Therefore,

$$\int \underline{D}(\nu, x) \, d\nu < \infty \implies \nu \ll \mathcal{L}.$$

Bernoulli convolution: absolute continuity

- Let ν_{λ} be the Bernoulli convolution and let $I \subset [1/2, 1)$.
- We have

$$\mathcal{I} := \int_{I} \int \underline{D}(\nu_{\lambda}, x) \, d\nu_{\lambda} d\lambda < \infty \implies \nu_{\lambda} \ll \mathcal{L} \text{ for a.e. } \lambda \in I.$$

• By Fatou's lemma, we obtain

$$\mathcal{I} \leq \liminf_{r \downarrow 0} \int_{I} \int_{\mathbb{R}} \frac{\nu_{\lambda}[x-r,x+r]}{2r} \, d\nu_{\lambda} d\lambda.$$

Bernoulli convolution: absolute continuity

• By changing the variable and exchanging the order of integration, we have

$$\mathcal{I} \leq \liminf_{r \downarrow 0} (2r)^{-1} \iint_{\Omega^2} \mathcal{L} \left\{ \lambda \in I : |\Pi_{\lambda}(\omega) - \Pi_{\lambda}(\tau)| \leq r \right\} \, d\mu(\omega) d\mu(\tau)$$

• By the transversality condition, we conclude $\mathcal{I} < \infty$.

General case

- $\mathcal{F}_t = \{f_i^t\}_{i \in \Lambda}$: one-parameter family of IFS.
- $p = (p_i)_{i \in \Lambda}$: probability vector.

Theorem ('01, Simon & Solomyak & Urbanski)

Assume that the transversality condition is satisfied. Then

(i) For a.e. t,

$$\dim \nu_t = \min\left\{1, \frac{h}{\chi_t}\right\},\,$$

where h = h(p) is the entropy and χ_t is the Lyapunov exponent.

(ii) The measure ν_t is absolutely continuous for a.e. t in

$$\left\{t:\frac{h}{\chi_t}>1\right\}.$$

Part IV: Iterated Function Systems with inverses

Self-similar measures (review)

• Let $\mathcal{F} = \{f_i\}_{i \in \Lambda}$ be an affine IFS and $p = (p_i)_{i \in \Lambda}$ be a probability vector. Then there exists a unique Borel probability measure ν such that

$$\nu = \sum_{i \in \Lambda} p_i f_i \nu.$$

• The measure ν is called the *self-similar measure* associated to the IFS \mathcal{F} and the weight p.

Example

Let

$$f_0(x) = \frac{1}{3}x, \ f_1(x) = \frac{1}{3}x + \frac{2}{3} \ \text{ and } \ p = (\frac{1}{2}, \frac{1}{2}).$$

Then the associated self-similar measure ν satisfies

$$\nu = \frac{1}{2}f_1\nu + \frac{1}{2}f_2\nu,$$

whose support is the middle-1/3 Cantor set.

Example (Continued)

• The measure ν agrees with the probability distribution of the following random walk:

• Let $\Pi : \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ be the coding map, let μ be the Bernoulli measure on $\{0,1\}^{\mathbb{N}}$ associated with the probability vector p = (1/2, 1/2). Then we have

$$\nu = \Pi \mu$$

Iterated function systems with inverses (example)

Example (IFS with inverse)

• . Let $\Lambda = \{0, 1, 1^{-1}\}$, and let $p = (p_i)_{i \in \Lambda}$ be a probability vector. For 0 < k, l < 1, define

$$f_0(x) = kx, \ f_1(x) = \frac{(1+l)x+1-l}{(1-l)x+1+l}, \ f_{1^{-1}}(x) = \frac{(1+l)x-(1-l)}{-(1-l)x+1+l}$$

• We have $f_{1^{-1}} = f_1^{-1}$. It is easy to see that we have $f_0(0) = 0$, $f_1(-1) = -1$, $f_1(1) = 1$ and $f'_0(k) = k$, $f'_1(1) = l$, $f'_1(-1) = 1/l$.

• It is well-known that there exists a unique Borel probability measure $\nu = \nu(k,l)$ that satisfies

$$\nu = \sum_{i \in \Lambda} p_i f_i \nu.$$

Yuki Takahashi (Saitama University)

Reminder

•
$$\Lambda = \{0, 1, 1^{-1}\}$$

•
$$f_0(x) = kx, \ f_1(x) = \frac{(1+l)x+1-l}{(1-l)x+1+l}, \ f_{1^{-1}}(x) = \frac{(1+l)x-(1-l)}{-(1-l)x+1+l}.$$

$$-1$$
 $-\overline{k}$ 0 k 1

Example (Continued)

- We say that $\omega = \omega_1 \omega_2 \cdots \in \Lambda^{\mathbb{N}}$ is *reduced* if $\omega_i \omega_{i+1} \neq 11^{-1}, 1^{-1}1$.
- Fix $x_0 \in [-1, 1]$.

Key fact

For any reduced sequence $\omega \in \Lambda^{\mathbb{N}}$, the limit

$$\lim_{n \to \infty} f_{\omega_1} \circ f_{\omega_2} \circ \cdots \circ f_{\omega_n}(x_0).$$

exists.

Reminder

- $\Lambda = \{0, 1, 1^{-1}\}$
- $f_0(x) = kx, \ f_1(x) = \frac{(1+l)x+1-l}{(1-l)x+1+l}, \ f_{1^{-1}}(x) = \frac{(1+l)x-(1-l)}{-(1-l)x+1+l}.$

$$-1 \qquad -\overline{k \qquad 0 \qquad k \qquad 1}$$

Example (Continued)

• Therefore, one can define a natural projection map $\Pi:\{0,1,1^{-1}\}\to\mathbb{R}$ by

$$\Pi(\omega) = \lim_{n \to \infty} f_{\omega_1} \circ \cdots \circ f_{\omega_n}(x_0).$$

• let μ be the Bernoulli measure on $\{0,1,1^{-1}\}^{\mathbb{N}}$ associated with the probability vector $p=(p_0,p_1,p_{1^{-1}}).$ Then we have

$$\nu = \Pi \mu$$

Main result

- $\mathcal{F}_t = \{f_i^t\}_{i \in \Lambda}$: one-parameter family of IFS with inverse.
- $p = (p_i)_{i \in \Lambda}$: probability vector.
- $h_{RW} = h_{RW}(p)$: random walk entropy

Theorem ('22, T)

Assume that the transversality condition is satisfied. Then

(i) For a.e. $t \in I$, $\dim \nu_t = \min\left\{1, \frac{h_{RW}}{\chi_t}\right\}.$

(ii) The measure u_t is absolutely continuous for a.e. t in

$$\left\{t:\frac{h_{RW}}{\chi_t}>1\right\}$$

Entropy and random walk entropy

• Let $\Lambda = \{0, 1\}$, and $p = (p_0, p_1)$ be a probability vector.

• For "typical" $\omega \in \Lambda^{\mathbb{N}}$, we have

$$p_{\omega_1}\cdots p_{\omega_n} \approx e^{-nh(p)}.$$

Entropy and random walk entropy

- Let $\Lambda = \{0, 1, 1^{-1}\}$, and $p = (p_0, p_1, p_{1^{-1}})$ be a probability vector.
- Let μ be a Bernoulli measure on $\Lambda^{\mathbb{N}}$ associated to p.

• For "typical" $\omega \in \Lambda^{\mathbb{N}}$, we have

$$\mu\left(\{v \in \Omega : \operatorname{red}(v|_n) = \operatorname{red}(\omega|_n)\}\right) \approx e^{-nh_{RW}}.$$
(1)

Part V: Furstenberg measure

Action of $SL_2(\mathbb{R})$ matrices

- Let P be the one-dimensional projective space.
- $A \in SL_2(\mathbb{R})$ acts naturally on **P**.

Fustenberg measure

- Let $\mathcal{A} = \{A_i\}_{i \in \Lambda}$ be a finite collection of $SL_2(\mathbb{R})$ matrices, and let $p = (p_i)_{i \in \Lambda}$ be a probability vector.
- Assume that the semigroup generated by $\mathcal A$ is unbounded and totally irreducible.
- It is known that there exists a unique probability measure ν on ${\bf P}$ such that

$$\nu = \sum_{i \in \Lambda} p_i A_i \nu.$$

• The measure ν is called a *Fustenberg measure*.

Furstenberg measure

Example (Furstenberg measure)

• . Let $\Lambda = \{0, 1, 1^{-1}\}$, and let $p = (p_i)_{i \in \Lambda}$ be a probability vector. For 0 < k, l < 1, define

$$A_0 = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}, \ A_1 = \begin{pmatrix} 1+l & 1-l \\ 1-l & 1+l \end{pmatrix}, \ A_1 = \begin{pmatrix} 1+l & -(1-l) \\ -(1-l) & 1+l \end{pmatrix}.$$

• Let

$$f_0(x) = kx, \ f_1(x) = \frac{(1+l)x+1-l}{(1-l)x+1+l}, \ f_{1^{-1}}(x) = \frac{(1+l)x-(1-l)}{-(1-l)x+1+l}.$$

• Under the natural identification $\mathbf{P} \cong \mathbb{R} \cup \{\infty\}$, the associated Fustenberg measure agrees with the invariant measure ν that satisfies

$$\nu = \sum_{i \in \Lambda} p_i f_i \nu.$$

Natural (and probably very difficult) problem

• We say that a collection of $SL_2(\mathbb{R})$ matrices \mathcal{A} is symmetric if $\mathcal{A} = \mathcal{A}^{-1}$. For example, the set $\mathcal{A} = (A, A^{-1}, B, B^{-1})$ is symmetric.

Problem

Show the following for some symmetric \mathcal{A}_t $(t \in I)$:

(i) For a.e.
$$t \in I$$
, $\dim
u_t = \min\left\{1, \frac{h_{RW}}{\chi_t}\right\}$

(ii) The measure ν_t is absolutely continuous for a.e. t in

$$\left\{t:\frac{h_{RW}}{\chi_t}>1\right\}.$$

Thank you! :)