Diophantine approximation on random sets

Sascha Troscheit

(sascha@troscheit.eu)

Joint with Simon Baker

18 May 2023 Thermodynamic Formalism: Non-additive Aspects and **Related Topics**

Funded by the European Union

Part 1: Khintchine's theorem

Given a function $\Psi:\mathbb{N}\to [0,\infty)$, we define

 $J(\Psi) = \{x \in \mathbb{R} : \|x - \frac{p}{q}\| \le \Psi(q) \text{ for i.m. } (p,q) \in \mathbb{Z} imes \mathbb{N}\}$

An application of the Borel-Cantelli lemma shows that

$$\mathcal{L}(J(\Psi))=0 \quad ext{if} \quad \sum_{q\in \mathbb{N}} q\cdot \Psi(q)<\infty.$$

Khintchine proved a partial converse.

Theorem (Khintchine, 1926) Assume that $\Psi : \mathbb{N} \to [0, \infty)$ is decreasing and $\sum_{q \in \mathbb{N}} q \cdot \Psi(q) = \infty.$ Then, \mathcal{L} -almost every $x \in \mathbb{R}$ is in $J(\Psi)$. The monotonicity assumption cannot be removed (Duffin & Schaeffer, 1941) motivating the (now proven) Duffin–Schaeffer conjecture:

Theorem (Koukoulopoulos & Maynard, 2020)

Let $\Psi : \mathbb{N} \to [0,\infty)$. Then,

$$\mathcal L$$
-a.e. $x\in\mathbb{R}$ is in $J(\Psi)\Longleftrightarrow\sum_{q\in\mathbb{N}}\Psi(q)\phi(q)=\infty,$

where $\phi(q)$ is the Euler totient function.

Monotonicity condition shows subtleties in the geometry of rational numbers. Different Ψ explore these.

This approach motivates "fractal Diophantine approximations".

101 on fractal sets.

Let \mathcal{A} be a finite alphabet, $\mathcal{A}^* = \bigcup_{n=1}^{\infty} \mathcal{A}^n$ be all finite words over \mathcal{A} , and $\mathcal{A}^{\mathbb{N}}$ be all infinite words. Let $\Phi = \{\phi_a\}_{a \in \mathcal{A}}$ be a (finite) collection of strict contractions on \mathbb{R}^d indexed by \mathcal{A} . We write $\phi_{\mathbb{W}} = \phi_{\mathbb{W}_1} \circ \phi_{\mathbb{W}_2} \circ \cdots \circ \phi_{\mathbb{W}_n}$ for $\mathbb{W} = \mathbb{W}_1 \dots \mathbb{W}_n \in \mathcal{A}^n$.

There exists a unique, non-empty, compact set $X = X(\Phi) \subset \mathbb{R}^d$ that satisfies

$$X=\bigcup_{w\in\mathcal{A}}\phi_w(X).$$

The invariant set X is also called the attractor of X. In fact, for any fixed $x \in \mathbb{R}^d$,

$$d_H\left(igcup_{{\mathbb W}\in {\mathcal A}^n}\phi_{{\mathbb W}}(x),X
ight) o 0 \ \ {
m as} \ \ n o\infty.$$

We emulate Diophantine approximation by replacing the role of rational numbers with those in the dynamical/iterative structure. Let $\Psi : \mathcal{A}^* \to [0, \infty)$ and $z \in \mathbb{R}^d$. We define

$$W_{\Phi}(z, \Psi) = \{x \in \mathbb{R}^d : \|x - \varphi_{\mathtt{w}}\| \leq \Psi(\mathtt{w}) \text{ for i.m. } \mathtt{w} \in \mathcal{A}^*\}.$$

We ask:

Motivating Question

Are there similar dichotomies with divergence conditions for the natural volume, e.g. does the following hold:

$$\sum_{n \in \mathbb{N}} \sum_{w \in \mathcal{A}^n} \Psi(w)^{\dim_H X} = \infty \Longrightarrow \mathcal{H}^{\dim_H}(W_{\Phi}(z, \Psi)) = \mathcal{H}^{\dim_H X}(X)?$$

Diophantine approximation on fractal sets

The implication holds, e.g. when φ_i are similarities or conformal mappings under separation conditions.

The behaviour above appears for suitable classes of Ψ in a variety of settings. It is closely linked to the general shrinking target problem. Recent progress: Allen and Bárány; Baker; Persson and Reeve; Levesly, Salp, and Velani; Baker and Koivusalo;....

Studying the classes of Ψ for which such a statement holds provides information on how "spread out" the points in X are.

Similarity dimension, affinity dimension, etc.: The similarity dimension, affinity dimension, are the zero of a suitable pressure

$$\mathcal{P}(s) = \lim_{n o \infty} \log \sum_{\mathtt{w} \, \mathcal{A}^n} \sup_{x \in X} \| \phi_{\mathtt{w}}'(x) \|^s$$

[Replacing summand by the "singular value function" for affinities.]

The zero of the pressure s_0 is the "best guess" to the dimension of the attractor X. Let $\Phi_t = \{\phi_i(x) = \lambda_i \cdot O_i x + t_i\}_{i \in \mathcal{A}}$ be a finite

collection of similarities/affinities on \mathbb{R}^d , where $\mathbf{t} = (t_i)_{i \in \mathcal{A}}$ is a collection of translation vectors. Write $X_{\mathbf{t}}$ for the invariant set.

Theorem [Falconer '88, Solomyak '98, ...]

Let s_0 satisfy $P(s_0) = 0$. Then, for Lebesgue almost all $\mathbf{t} \in \mathbb{R}^{d \cdot \# \cdot A}$,

 $\dim_H X_{\mathbf{t}} = \min\left\{s_0, d\right\}.$

Further, if $s_0 > d$, the attractor satisfies $\mathcal{L}(X_t) > 0$ for Lebesgue almost all t.

Some pictures

Sierpinski triangle for similarities with Lipschitz constants 1/2 and 11/20, and similarity dimensions $\log 3 / \log 2 = 1.584...$ and $\log 3 / \log(20/11) = 1.837...$, respectively.

Some pictures

Sierpinski triangle with Lipschitz constant 3/5 and similarity dimension $\log 3/\log(5/3) = 2.150...$

Let $B \subset \mathbb{N}$. Recall the upper density

$$\overline{d}(B) = \limsup_{n \to \infty} \frac{\#\{1 \le j \le n : j \in B\}}{n}$$

and write $\mathit{G} = igcup_{\gamma \in (0,1)} \mathit{G}_{\gamma}$, where

$$\mathcal{G}_{\gamma} = \left\{ g: \mathbb{N}
ightarrow [0,\infty) \ : \ \sum_{n \in B} g(n) = \infty, orall B \subseteq \mathbb{N} \ ext{ with } \overline{d}(B) > \gamma
ight\}.$$

Heuristically, $g \in G$ is not summable on any positive density set.

A Diophantine fractal example

Assume additionally that the contractions are equicontractive.

Proposition (Baker, 2019)

Suppose $\log \# \mathcal{A} / \log(1/\lambda) > d$. Then, for Lebesgue almost every $\mathbf{t} \in \mathbb{R}^{\# \mathcal{A} d}$, for any $g \in G$ and $z \in X_{\mathbf{t}}$, the set

$$\left\{ x \in \mathbb{R}^d : |x - \phi_{\mathtt{W}}(z)| \le \left(\frac{g(|\mathtt{W}|)}{(\#\mathcal{A})^{|\mathtt{W}|}} \right)^{1/d} \text{ for i.m. } \mathtt{W} \in \mathcal{A} \right\}$$

has positive Lebesgue measure.

Using different test functions g (such as 1/n) gives information on the concentration of these typical attractors.

The positive Lebesgue measure of X_t is a consequence of the proposition for g a constant function.

Randomness to smooth things out

Observation: Randomisation "smooths" out intractable parts.

Jordan, Pollicott, and Simon (2007): self-affine attractors with random perturbations.

Peres, Simon, and Solomyak (2006): random self-similar constructions at every level (skew product).

Our Aim: Strengthen deterministic results through randomness. **Object:** Stochastically self-similar and self-affine sets.

A stochastically self-similar/affine set F_{ω} , ($\omega \in \Omega$) satisfies invariance in distribution:

$$F_{\omega} \equiv_d \bigcup_{i=1}^N \phi_{\omega,i}(F_{\omega',i})$$

Stochastic self-similarity - Intuition

$$F_{z} = (r_{0,2} F_{t} + t_{0}) \cup (r_{1,2} F_{1} + t_{0})$$

$$F_{z} = (r_{0,2} F_{t} + t_{0}) \cup (r_{1,2} F_{1} + t_{0})$$

$$F_{z} = (r_{0,2} F_{t} + t_{0}) \cup (r_{1,2} F_{1} + t_{0})$$

$$F_{z} = F_{0,0}$$

		to its so its so its its so its its so its so its its so its so its so its so its so its so i	ta ta ta ta ta ta ta ta ta ta ta
	512 350 11 12 12 51 13 11 52 12 13 11 52 12 13 11 52 12 13 11 52	28 a 28 34 14 32 46 59 35 14 35 64 26 14 35 64	
. 0.2 0.4 0.6 0.8			

Let M_d denote the set of invertible $d \times d$ matrices with ||A|| < 1for all $A \in M_d$. Write $S_d \subset M_d$ for those which are similarities (scalar multiple of orthogonal matrices). For all $i \in A$ we let $\Omega_i \subset M_d$ be a subset with measure η_i supported on Ω_i .

We define a product measure on $\Omega = \prod_{\mathbf{w} \in \mathcal{A}^*} \Omega_{\ell(\mathbf{w})}$ by $\eta = \prod_{\mathbf{w} \in \mathcal{A}^*} \mu_{\ell(\mathbf{w})}$ where $\ell(\mathbf{w})$ is the last letter of $\mathbf{w} \in \mathcal{A}^*$. A particular realisation $\omega \in \Omega$ is a collection of randomly chosen matrices, indexed by $\mathbf{w} \in \mathcal{A}^*$. We write $A_{\omega,\mathbf{w}}(x) = \omega_{\mathbf{w}} \cdot x$ to highlight the matrix/linear component associated with address \mathbf{w} and realisation ω .

Note that for distinct $v, w \in \mathcal{A}^*$, the matrices $A_{v,\omega}$ and $A_{w,\omega}$ are independent though only identical in distribution if $\ell(w) = \ell(v)$.

Random framework, continued

Let t_i for $i \in A$ be a finite choice of distinct translations in \mathbb{R}^d . For every $w \in A^*$ we define the random maps

$$f_{\omega, \mathtt{w}}(x) = A_{\omega, \mathtt{w}}(x) + t_{\ell(\mathtt{w})}$$

and

$$\phi_{\omega,\mathsf{w}}(\mathsf{x}) = f_{\omega,\mathsf{w}_1} \circ \cdots \circ f_{\omega_{|\mathsf{w}|}}.$$

Given a realisation $\omega \in \Omega$, and an infinite word $w \in \mathcal{A}^{\mathbb{N}}$, we define its projection $\Pi_{\omega}(w) : \mathcal{A}^{\mathbb{N}} \to \mathbb{R}^{d}$ by

$$\Pi_{\omega}(\mathbf{w}) = \lim_{n \to \infty} \phi_{\omega, \mathbf{w}|_n}(0) = \lim_{n \to \infty} f_{\omega, w_1} \circ \cdots \circ f_{\omega w_n}(0)$$

and the random attractor by

$$F_\omega = igcup_{{\mathtt w} \in {\mathcal A}^N} {\sf \Pi}_\omega({\mathtt w}).$$

Random framework, continued

By definition, we have

$$F_{\omega} \equiv_d \bigcup_{i \in \mathcal{A}} f_{\omega',i}(F_{\omega''_i})$$

where $\omega, \omega', \omega''_1, \ldots, \omega''_{\#\mathcal{A}}$ are independent realisations in (ω, η) . Given $\Psi : \mathcal{A}^* \to [0, \infty)$, $v \in \mathcal{A}^{\mathbb{N}}$, and $\omega \in \Omega$ we want to investigate

$$W_\omega({\mathtt v},\Psi)=\left\{x\in {\mathbb R}^d: |x-\Pi_\omega({\mathtt w}\,{\mathtt v})|\leq \Psi({\mathtt w}) ext{ for infinitely many } {\mathtt w}\in {\mathcal A}^*
ight\}$$

Doing this directly is difficult. Instead we consider an auxiliary family to deduce results about $W_{\omega(v,\Psi)}$.

Let μ be a slowly decaying measure defined on $\mathcal{A}^{\mathbb{N}}$ such that

$$\mu([w_1,\ldots,w_{n+1})/\mu([w_1,\ldots,w_n]) \geq c$$

for all n and μ almost all $w \in \mathcal{A}^{\mathbb{N}}$.

 $100_4/121_4$

Random framework, continued

Let $L_{\mu,n}$ be all the finite words w such that $\mu([w]) \sim c^n$. We investigate

$$U_{\omega}(\mathbf{v},\mu,g) = \Big\{ x \in \mathbb{R}^d : |x - \Pi_{\omega}(\mathbf{w} \, \mathbf{v})| \le (\mu([\mathbf{w}])g(n))^{1/d}$$

for some $\mathbf{w} \in L_{\mu,n}$ for i.m. $n \Big\}.$

We will also write

$$\lambda(\eta,\mu) = \sum_{i\in\mathcal{A}} \mu([i]) \cdot \lambda'(\eta_i),$$

where

$$\lambda'(\eta_i) = -\int_{\Omega_i} \log(|\operatorname{\mathsf{Det}}(A)|) d\eta_i(A)$$

for the Lyapunov exponent of the random system with respect to μ .

Assumptions: Need Cramér's theorem on large deviations

$$\log \int_{\Omega_i} \exp(s \log |\operatorname{Det}(A)|) d\eta_i(A) < \infty.$$

We say that our RIFS is **non-singular** if there exists C > 0 such that for all $i \in A, x \in \bigcup_{\omega \in \Omega} \prod_{\omega} (A^{\mathbb{N}})$ and B(y, r),

$$\eta_i(A \in \Omega_i : A \cdot x \in B(y, r)) \leq Cr^d.$$

We say that our RIFS is **distantly non-singular** if there exists C > 0 such that for all $i \in \mathcal{A}, x \in \bigcup_{\omega \in \Omega} \prod_{\omega} (\mathcal{A}^{\mathbb{N}})$ and $y \in \mathbb{R}^d \setminus B(0, \min_{i \neq j} |t_i - t_j|/8)$,

$$\eta_i(A \in \Omega_i : A \cdot x \in B(y, r)) \leq Cr^d.$$

Peres, Solomyak, and Simon considered absolute continuity for random similarities in $\mathbb{R}.$

In our notation: $A_{\omega,w} = Y_{|w|} c_{\ell(w)}$, where c_i only depends on the last letter of $w \in \mathcal{A}^*$ and Y is a random variable depending only on the length of the word $w \in \mathcal{A}^*$.

Theorem (Peres, Simon, Solomyak 2006)

Let Y be an absolutely continuous random variable with distribution ν satisfying, for some C > 0,

$$\frac{d\nu}{dx} \le C\frac{1}{x}$$

Let μ be an ergodic shift invariant measure on $\mathcal{A}^{\mathbb{N}}$. Assume further that $h(\mu)/\lambda(\eta,\mu) > 1$. Then, F_{ω} has positive Lebesgue measure.

Result

Theorem (Baker-T., 2022)

Let $({\{\Omega_i\}}_{i\in\mathcal{A}}, {\{\eta_i\}}_{i\in\mathcal{A}}, {\{t_i\}}_{i\in\mathcal{A}})$ be a RIFS and assume one of:

- A. Assume $\Omega_i \subset S_d$ for all $i \in A$ and the RIFS is distantly non-singular.
- B. Assume $\Omega_i \subset M_d$ for all $i \in A$ and the RIFS is non-singular.

Suppose μ is a slowly decaying shift invariant ergodic probability measure with $h(\mu)/\lambda(\eta,\mu) > d$. Then the following hold:

- 1. For any $v \in \mathcal{A}^{\mathbb{N}}$, for η almost every $\omega \in \Omega$, for any $g \in G$, the set $U_{\omega}(v, \mu, g)$ has positive Lebesgue measure.
- For any v ∈ A^N, for η almost every ω ∈ Ω, for any Ψ : A* → [0,∞) the set W_ω(v, Ψ) has positive Lebesgue measure if there exists g ∈ G such that Ψ(w) ≈ (m([w])g(n))^{1/d}.

Corollary

Let $({\{\Omega_i\}}_{i\in\mathcal{A}}, {\{\eta_i\}}_{i\in\mathcal{A}}, {\{t_i\}}_{i\in\mathcal{A}})$ be a RIFS and assume one of:

- A. Assume $\Omega_i \subset S_d$ for all $i \in A$ and that the RIFS is distantly non-singular.
- B. Assume $\Omega_i \subset M_d$ for all $i \in \mathcal{A}$ and the RIFS is non-singular.

Let $(p_i)_{i \in \mathcal{A}}$ be a probability vector satisfying $\frac{-\sum p_i \log p_i}{\sum p_i \lambda'(\eta_i)} > d$. Then for all $v \in \mathcal{A}^{\mathbb{N}}$, for η -almost every $\omega \in \Omega$ the set

$$\left\{ x \in \mathbb{R}^d : |x - \Pi_\omega(\mathtt{w}\,\mathtt{v})| \le \left(\frac{\prod_{k=1}^{|\,\mathtt{w}\,|} p_{w_k}}{|\,\mathtt{w}\,|} \right)^{1/d} \text{ for i.m. } \mathtt{w} \in \mathcal{A}^* \right\}$$

has positive Lebesgue measure.

The compactness of F_{ω} implies that $U_{\omega}(\mathbf{v}, \mu, g) \subseteq F_{\omega}$ whenever g is bounded. This gives

Corollary

- Let $({\{\Omega_i\}}_{i\in\mathcal{A}}, {\{\eta_i\}}_{i\in\mathcal{A}}, {t_i\}}_{i\in\mathcal{A}})$ be a RIFS and assume one of:
 - A. Assume $\Omega_i \subset S_d$ for all $i \in A$ and that the RIFS is distantly non-singular.
 - B. Assume $\Omega_i \subset M_d$ for all $i \in A$ and the RIFS is non-singular.

If there exists a slowly decaying shift invariant ergodic probability measure μ satisfying $h(\mu)/\lambda(\eta,\mu) > d$, then for η -almost every $\omega \in \Omega$ the set F_{ω} has positive Lebesgue measure.

Self-similar. For each $i \in A$ let $0 \le r_i^- < r_i^+ < 1$ and set

$$\Omega_i = \left\{ \lambda \cdot \mathcal{O} : \lambda \in [r_i^-, r_i^+], \ \mathcal{O} \in \mathcal{O}(d) \right\},\$$

where $\mathcal{O}(d)$ is the set of orthogonal $d \times d$ matrices. For each $i \in \mathcal{A}$ let η_i be the product measure of the Haar measure and the Lebesgue measure, restricted and normalised to $[r_i^-, r_i^+]$.

Letting $r^+ > 0$ and # A be sufficiently large, the uniform Bernoulli measure μ satisfies $h(\mu)/\lambda(\eta, \mu) > d$ and our Theorem and its Corollaries apply.

Self-affine. Letting $Z_i \subset M_d$ be compact with

$$\Omega_i = \left\{ \lambda \cdot OB : \lambda \in [r_i^-, r_i^+], \ O \in \mathcal{O}(d), \ B \in Z_i \right\},\$$

and assuming $\{t_i\}$ are large enough such that

$$B(0,\delta)\cap igcup_{\omega\in\Omega} {\sf \Pi}_\omega({\mathcal A}^{\mathbb N})=arnothing$$

we can apply our results under the non-singular condition.

Observations

In the stochastic self-similar / self-affine setting the "correct" Lyapunov exponent should be

$$\log \int_{\Omega_i} |\operatorname{Det}(A)| d\eta_i(A)$$

rather than

$$\int_{\Omega_i} \log |\operatorname{Det}(A)| d\eta_i(A).$$

Our use of large deviations suggests our results are "sharp": We suspect it is because of needing "level specific" information, as opposed to "eventually averaging".

Thank you for your attention