
Relative pressure functions and their
equilibrium states

Yuki Yayama

May 15, 2023

Universidad del Bı́o-Bı́o

Relative pressure functions and their equilibrium states – p.1/17



Question

(X,σX): one sided subshift on finitely many symbols

We say that a sequence of continuous functions F = {log fn}∞n=1 on a subshift X is

subadditive if fn+m(x) ≤ fn(x)fm(σnx) for every x ∈ X, n,m ∈ N.

[Question] Given a subadditive sequence of continuous functions F = {log fn}∞n=1 on

a subshift X, what are necessary and sufficient conditions for the existence of a

continuous function h on X such that

lim
n→∞

1

n

∫

log fndµ =

∫

hdµ (1)

for every invariant Borel probability measure µ on X?

Remark: If such an h exists, the thermodynamic formalism for sequences F is reduced

to the thermodynamic formalism for continuous functions.

Structure of the talk:
1. Background (motivation)

2. Results
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Motivation

Relative pressure functions have representations by subadditive sequences.

1. To study the subadditive sequences associated to relative pressure functions is

related to a study on the existence of compensation functions for factor maps between

subshifts.

(Answering Question 1 for the subadditive sequences associated to relative pressure

functions gives us a characterization of the existence of a compensation function)

2. We can apply the results to study factors of weak invariant Gibbs measures
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Factor maps between subshifts on finitely many symbols

(X,σX): one sided subshift

M(X,σX): the set of σX -invariant Borel probability measures

hµ(σX): measure theoretic entropy of σX with respect to µ ∈ M(X,σX).

[Definition] Let (X,σX) and (Y, σY ) be (one-sided) subshifts on finite alphabets. A

continuous function π : X → Y is a factor map if it is surjective and satisfies

π ◦ σX = σY ◦ π. A function F ∈ C(X) is a compensation function for (σX , σY , π) if

sup
µ∈M(X,σX )

{hµ(σX) +

∫

(F + φ ◦ π)dµ} = sup
m∈M(Y,σY )

{hm(σY ) +

∫

φdm} (2)

for all φ ∈ C(Y ). Furthermore, G ◦ π is a saturated compensation function if F = G ◦ π for

some G ∈ C(Y ).

Boyle and Tuncel (1984), Walters (1986)

Shin(2001): A saturated compensation function does not always exist.

Antonioli(2016): existence of a compensation function for a factor map π : X → Y

where X is an irreducible shift of finite type

Relative pressure functions and their equilibrium states – p.4/17



Relation between relative pressure functions and compen-

sation functions

Let (X,σX), (Y, σY ) be subshifts and π : X → Y be a factor map. Let f ∈ C(X), n ∈ N

and δ > 0. For each y ∈ Y , define

Pn(σX , π, f, δ)(y) = sup{
∑

x∈E

e(Snf)(x) : E is an (n, δ) separated subset of π−1({y})},

P (σX , π, f, δ)(y) = lim sup
n→∞

1

n
logPn(σX , π, f, δ)(y),

P (σX , π, f)(y) = lim
δ→0

P (σX , π, f, δ)(y).

The function P (σX , π, f) : Y → R is the relative pressure function of f ∈ C(X) with

respect to (σX , σY , π). In general it is merely Borel measurable.

Ledrappier and Walters, 1977, Relativised Variational Principle

Theorem. Let (X,σX) and (Y, σY ) be subshifts and π : X → Y be a factor map. Let

f ∈ C(X). Then for m ∈ M(Y, σY ),

∫

P (σX , π, f)dm = sup{hµ(σX)− hm(σY ) +

∫

fdµ : µ ∈ M(X,σX), πµ = m}.

Relative pressure functions and their equilibrium states – p.5/17



Relation between relative pressure functions and compen-

sation functions

[Lemma1] Given a function f ∈ C(X), consider the relative pressure function

P (σX , π, f). Then there exists a function h ∈ C(Y ) such that

∫

P (σX , π, f)dm =

∫

hdm,

for every m ∈ M(Y, σY ) if and only if f − h ◦ π ∈ C(X) is a compensation function for π

Special case: Set f = 0. Let G ∈ C(Y ). Then

∫

P (σX , π, 0)dm =

∫

Gdm,

for every m ∈ M(Y, σY ). if and only if −G ◦ π ∈ C(X) is a saturated compensation

function for π.

Shin (2006) characterized the existence of a saturated compensation function for π by

studying some properties of P (σX , π, 0).
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Factor maps between subshifts on finitely many symbols

Our question: What are necessary and sufficient conditions for the existence of a

continuous function h on Y such that

∫

P (σX , π, f)dm =

∫

hdm

for every invariant Borel probability measure m on Y ?

(This will give us the existence of a certain type of compensation functions.)

Properties of P (σX , π, f), f ∈ C(X).

1. P (σX , π, f) can be represented by a subadditive sequence G = {log gn}∞n=1, where

gn is a continuous function on Y :

∫

P (σX , π, f)dm = lim
n→∞

1

n

∫

log gndµ

for every m ∈ M(Y, σY ).

NOTE: In general, G is not asymptotically additive, not quasi-multiplicative.
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Characterization of Asymptotically additive sequences

[Asymptotically additive sequence] Feng and Huang (2010) For every ǫ > 0 there exists

a continuous function gǫ such that

lim sup
n→∞

1

n
‖log fn − Sngǫ‖∞ < ǫ,

where Sngǫ denotes the Birkhoff sums of gǫ and ‖f‖∞ = sup{|f(x)| : x ∈ X}.

Results by Cuneo (2020)

Theorem. Let (X,σX) be a subshift and F = {log fn}∞n=1 be an asymptotically additive

sequence on X. Then there exists f ∈ C(X) such that

lim
n→∞

1

n
‖log fn − Snf‖∞ = 0, (3)

Hence if F is asymptotically additive, then there exists f ∈ C(X) such that

limn→∞(1/n)
∫

log fndµ =
∫

fdµ for every µ ∈ M(X,σX).

NOTE: (3) implies that F is asymptotically additive.
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Results: Subadditive sequences

M(X,σX): the set of σX -invariant Borel probability measures

Erg(X,σX): the set of ergodic members of M(X,σX)

[Proposition 1] Let (X,σX) be a subshift and F = {log fn}∞n=1 a subadditive sequence

on X. For h ∈ C(X), the following conditions are equivalent.

1.

lim
n→∞

1

n

∫

log fndµ =

∫

hdµ

for every µ ∈ M(X,σX).

2.

lim
n→∞

1

n

∫

log fndµ =

∫

hdµ

for every µ ∈ Erg(X,σX).

3.

lim
n→∞

1

n
log

(

fn(x)

e(Snh)(x)

)

= 0

µ-almost everywhere on X, for every µ ∈ Erg(X,σX).
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Subadditive sequences

Let (X,σX) be a subshift and F = {log fn} be a sequence of continuous functions on a

subshift X with tempered variation.

Bn(X): the set of allowable words of length n of X.

[C1] fn+m(x) ≤ fn(x)fm(σnx)eC for some C ≥ 0. (equivalently, {log fneC} is

subadditive)

[Condition A] There exist k,N ∈ N and a sequence {Mn}∞n=1 of positive real numbers

satisfying limn→∞(1/n) logMn = 0 such that for given any u ∈ Bn(X), n ≥ N , there

exist 0 ≤ q ≤ k and w ∈ Bq(X) such that z := (uw)∞ is a point in X satisfying

fj(n+q)(z) ≥ (Mn sup{fn(x) : x ∈ [u]})j

for every j ∈ N.

[Remark 1] Let (X,σX) be an irreducible shift of finite type with weak specification k.

Then for each u ∈ Bn(X) there exist 0 ≤ q ≤ k and w ∈ Bq(X) such that (uw)∞ ∈ X.

[Remark 2] There are subadditive sequences which are not asymptotically additive but

satisfy [Condition A].
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Subadditive sequences satisfying Condition A

[Theorem 1] Let (X,σX) be a subshift. Let F = {log fn}∞n=1 be a sequence on X

satisfying [C1] with tempered variation and Condition A .Then the following statements

are equivalent for h ∈ C(X).

1. F is asymptotically additive on X satisfying

lim
n→∞

1

n
‖log

( fn

e(Snh)

)

‖∞ = 0.

2.

lim
n→∞

1

n

∫

log fndµ =

∫

hdµ

for every µ ∈ M(X,σX).

3.

lim
n→∞

1

n
log

(

fn(x)

e(Snh)(x)

)

= 0

for every periodic point x ∈ X.

4.

lim
n→∞

1

n
log

(

fn(x)

e(Snh)(x)

)

= 0

for every x ∈ X.
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Relative pressure

Ideas: We want to apply Theorem 1 for the subadditive sequences associated to relative

pressure functions.

Let (X,σX) be a subshift with the weak specification property, (Y, σY ) be a subshift and

π : X → Y be a one-block factor map. For y = (yi)
∞

i=1, let En(y) be a set consisting of

exactly one point from each cylinder [x1 . . . xn] in X such that π(x1 . . . xn) = y1 . . . yn.

Applying results by Petersen and Shin (2005) and Feng (2011), we obtain:

For f ∈ C(X),

P (σX , π, f)(y) = lim sup
n→∞

1

n
log gn(y)

µ-almost everywhere for every invariant Borel probability measure µ on Y , where gn is

defined by

gn(y) = sup
En(y)

{
∑

x∈En(y)

e(Snf)(x)}.

We call G = {log gn}∞n=1 a (subadditive) sequence associated to the relative pressure

P (σX , π, f).
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Properties of relative pressure functions

(2) There exist p ∈ N and a positive sequence {Dn,m}(n,m)∈N×N such that given any

u ∈ Bn(X), v ∈ Bm(X), n,m ∈ N, there exists w ∈ Bk(X), 0 ≤ k ≤ p such that

uwv ∈ Bn+m+k,

sup{gn+m+k(x) : x ∈ [uwv]} ≥ Dn,m sup{gn(x) : x ∈ [u]} sup{gm(x) : x ∈ [v]},

where limn→∞(1/n) logDn,m = limm→∞(1/m) logDn,m = 0.

Not asymptotically additive, Not quasi-multiplicative

(3) the sequence G = {log gn}∞n=1 satisfies [Condition A] if (X,σX) is an irreducible

shift of finite type

Apply Theorem 1 and the work of Walters (1986) on the properties of compensation

functions.
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Some answers to Question

[Theorem 2] Let (X,σX) be an irreducible shift of finite type and (Y, σY ) be a subshift.

Let π : X → Y be a one-block factor map and f ∈ C(X). Then the following statements

are equivalent for h ∈ C(Y ).

1. P (σX , π, f − h ◦ π)(y) = 0 for every periodic point y ∈ Y , equivalently,

lim
n→∞

1

n
log

( gn(y)

e(Snh)(y)

)

= 0

for every periodic point y ∈ Y .

2. The function f − h ◦ π is a compensation function for π.

3.

lim
n→∞

1

n
log

( gn(y)

e(Snh)(y)

)

= 0

for every y ∈ Y .

4. The sequence G = {log gn}∞n=1 is asymptotically additive on Y satisfying

lim
n→∞

1

n
‖log

( gn

e(Snh)

)

‖∞ = 0.

5.
∫

P (σX , π, f)dm =
∫

hdm for all m ∈ M(Y, σY ).
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Existence of saturated compensation functions

The existence of a saturated compensation function is equivalent to one of the

statements of Theorem 3 with f = 0.

Remark: Shin ( 2006) gave a characterization on the existence of saturated

compensation functions for factor maps between two sided shifts of finite type studying

periodic points.
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Applications -Factors of invariant weak Gibbs measures for

continuous functions

Let (X,σX) and (Y, σY ) be subshifts on finitely many symbols and π : X → Y be a one

block factor map.

Question: If µ is a shift-invariant Gibbs measure for some continuous function f , is πµ
also a shift-invariant Gibbs measure for some continuous function g? What is the

property of g?

Conditions for πµ to be Gibbs and related topics are studied by Chazottes-Ugalde (2003,

2011), Yoo (2010), Pollicott-Kempton (2011), Kempton (2011), Verbitskiy (2011), Piraino

(2019), Hong (2020), etc.

We study

"Suppose µ is weak Gibbs for a continuous function. Then πµ is weak Gibbs for a

continuous function ⇐⇒ ?"
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Applications -Factors of invariant weak Gibbs measures for

continuous functions

[Corollary 2] Let (X,σX) be an irreducible shift of finite type, Y be a subshift and

π : X → Y be a one-block factor map. Suppose that µ is an invariant weak Gibbs

measure for some f ∈ C(X). Let G = {log gn}∞n=1 on Y be the sequence of continuous

functions associated to the relative pressure P (σX , π, f). Then

(1) The measure πµ is an invariant weak Gibbs measure for G = {log gn}∞n=1 on Y .

(2) The invariant measure πµ is a weak Gibbs measure for a continuous function on Y if

and only if one of the equivalent statements in Theorem 2 holds.

(3) If there is no sequence {Cn,m}n,m∈N satisfying

1

Cn,m
≤

gn+m(y)

gn(x)gm(σn
Y y)

≤ Cn,m, where lim
n→∞

1

n
logCn,m = lim

m→∞

1

m
logCn,m = 0,

then there exists no continuous function on Y for which πµ is an invariant weak Gibbs
measure on Y .
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