JEDNOSTKA NAUKOWA KATEGORII A+

Blocking sets and power residues modulo integers with bounded number of prime factors

Bhawesh Mishra, Paolo Santonastaso Acta Arithmetica MSC: Primary 51E21; Secondary 05B25, 11A15 DOI: 10.4064/aa250104-8-7 Opublikowany online: 28 October 2025

Streszczenie

Let $q$ be an odd prime and $k$ be a natural number. We show that a finite set $S$ of integers that does not contain any perfect $q$th power, contains a $q$th power residue modulo almost every natural number $N$ with at most $k$ prime factors if and only if $S$ corresponds to a $k$-blocking set of $\mathrm{PG}(\mathbb F_{q}^{n})$. Here, $n$ is the number of distinct primes that divide the $q$-free parts of elements of $S$. Consequently, this geometric connection enables us to utilize methods from Galois geometry to derive lower bounds for the cardinalities of such sets $S$ and to completely characterize such $S$ of the smallest and second smallest cardinalities. Furthermore, the property of a finite set of integers of containing a $q$th power residue modulo almost every integer $N$ with at most $k$ prime factors is invariant under the action of the projective general linear group $\mathrm{PGL}(n,q)$.

Autorzy

  • Bhawesh MishraDepartment of Mathematical Sciences
    The University of Memphis
    Memphis, TN 38152, USA
    e-mail
  • Paolo SantonastasoDipartimento di Matematica e Fisica
    Università degli Studi della Campania “Luigi Vanvitelli”
    81100 Caserta, Italy
    and
    Dipartimento di Meccanica, Matematica e Management
    Politecnico di Bari
    70125 Bari, Italy
    e-mail
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek