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One-class genera of positive quaternary quadratic forms
by
G, L, Warson {London)

Dedioated to 0. L. Siegel on his ?5th bivihday

L. Introduction. We shall use the letters f, F, g, k, p, v to denote
quadreatio forms, always with integer coefficients. (Other small letters
denote integers, p being prime, unless otherwise stated.) Sueh forms can
be avranged in clagses and genera, each genug a union of classes; o{f),
the dass-number of f, denotes the number of classes in the genus of f.
T have been interested for gome years in positive-definite f with ¢(f) = 1,
which I have investigated by o method based on the results of [1]. Thereby
I proved in [2] that ¢(f) = 1 for all positive-definite n-ary f with » = 1L
Thig wupgests the problem of finding all the (genera of primitive) positive
peary forms f with ¢(f) = 1 and given # < 10. I shall here give a partial
solution of thig problem for # = 4; the cage # = 1 is trivial, n = 2 geems
hopeless, for n == 3 seo [3], and 5 << < 10, which I hope to do later,
is in some ways easier than n = 4, '

The matrix A(f) and digeriminant d(f) of a form f = fla,, ..., @,}
are defined by
(1.1) A(f}y = (0202, 085); 51, .. m
(—=1)"det.d(f) it 2w,

-1 Fdeb A(f) it 24m.

Tt ig well known, soo, ¢. g., [4, 3, and 21, (52)] that thiz makes d an integor
always, Frrthor, if 2o, & is o binary discriminant, that is € =0 or
1 {mod 4). There may or may not be primes p such that p~*d is also
o binsry digeriminant, that is, .
(L.3) pAd(fy  and  pTR(f) =0 or 1 (mod 4);
a(f) is » fundamental binary discriminant if and only if d(f) =0 ox
1 (mod 4) and (1.3) is false for every p.

Tn the special case » == 4, econsider the possibility
(1.4) f’;;’ gol@yy Ba) +Dou (@5, @)y, PTA{po)dps),
Wwhere ~ denotey equivalence over the ring of p-adie integers. Triv-
ially, (1.4) implies (1.3}, for each p; we shall consider forms. for
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which
(L.5) (1.4) holds for each p satisfying (1.3)

(for forms ¢, ¢, which may depend on f and on p).

This restriction malkes the problemn manageable because ag we shall
see 2 positive-definite f with # = 4 and ¢(f) = 1, satisfying (1.3), rapresents
every positive integer. It may however deetn that the restriction (1.5)
i artificial and so that the result based on it ix of lttle interest. To explain

- briefly why this is not 8o, let I denote w 4-ary positive form with clusy-
number 1, and f an I with the property (1.5). Then [L] shows thai evory
F is equivalent over the rational field to a multiple of some f; also that
all the F so sorresponding to a given f can be Tound by caleulation. The
caleulation is unfortunately long, inevitably so since the nunber of
possibilities for ¥ is large for some f. I have found some Improvenients
on the results of [1]; which I am thinking of publishing and wlich would
ghorten the calculations.

We shall see that (1.5) holds (for # = 4) if and enly if f i strongly
primitive (8P) and square-free (SF), these terms defined as in [1].

2. Statement of results. We ghall first prove, without el caleulation,
2 somewhat Imperfect reguit:

TemorREM 1. Let f be a positive-definile quarternary gquadratio form,
with nteger coefficients, amd lot (1.5) ‘above hold. Then either of N1 or
a(f) < 11532, : :

Then we shall continue the argument, with more powerful methods
and more calculation (some of which will be left to the reader), and prove:

TeEOREM 2. With the hypotheses of Theovem 1, e(f) =1 4f and only
if f is equivalent to one of the 27 forms Visted n Table 1. bolow; these forms
are pairwise inequivalent. g

(In the table, a, is the cosfficient of @,x,, 4 is the discriminant of the
quarternary form and d,, d, those of its leading 2-ary, S-ary sections.

3. Notation and preliminaries for Theorem 1. We shall nso the symbol
~ to denote equivalence over the rational integers, and o~ for p-ndic
equivalence, as-above. Temporarily, ].et?:denoto equivalenco over the
real field; then f ~f means f ~f" and f ~f" for every p. The genus
of fis the set {f’: f ~j"}, the class is {f': f ~ F4 Teivially f ~ " boplios
f ~f'; and, for fixed f, e¢(f) = 1 if and only if the converse holds. Jf &
s an integer, f = k means that f represents & properly over the rational
integers; that is, flw,, ..., @,) = & i soluble in integers @, with g. ¢. d. 1,
f 2 k (f represents k properly over the p-adic integers) may be taken to
mean that for every ¢ the congruence f = & (mod pY) is soluble in integers
not all eongruent to 0 modulo p.
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Table 1
Sorial fyys Gy O d Qs By, @ dy | fyas gy egs @ d
o, 11 Bas Fun iy Ay g Ogg 3 |f1as Gy Gags Ogy
17 1,1, 1 -3 1, 1,1 ~2 101 11 4
1,1, 1,1 5
0,40 0,1 8
0,1, 1,2 12
1,1, 1,2 13
0% L3 20
L1, 1,3 21
812 1, 1, 1 -3 0, 0, 1 —3 0,0, 1,1 9
0,0, 0,1 12
1,1, 1, 2 17
0,0, 1,2 21
0,0 1, 4 45
13, 14 1, 1,1 —3 1,1, 2 —b , 1, —1, 2 25
» L2 1 28
15, 18 1,1, 1 —3 0, 0, 2 —6 [ 0,0, 22| ' 36
0,0, 1,2 45
17, 18 1,0, 1 i 0, 0, 1 wq L1 1,2 20
] ]‘J 1! 2 24
19, 20 1, 0, 1 -t 1, 1, 2 -6 | 0,1, ~1, 2 33
1, I, 1,2 36
a1, 82 Lo 1 —d 0, 1, 2 —7 | 1,0 02 49
1,1, I,3 69
23 1, 0,1 i 1, 1, 1 —10: 1,1, 1,3 100
24, 28 1, 1, 2 -7 0, 2 2 -0 0,1, 2 2 60
0,1, 238 100
20 L1 g = 0, 1,2 | —13] 1,1, 24 169
e 1 0, 2 -8 1, 0,8 —22]°0, 2, 0,0 | 484

Tor eaeh p o~ 2 lot N, be a fixed quadratic non-regidue modulo P;
o ho precizo wo may detine N, = int{a: az —1, (a|p) == —1} (Legendre
gymbol), Then for p = 2 let y, be the binary form &} — N, ap; and ot 1y
be 6f - wqwy --af. Thon it iz well known. that for bimfury o with: pfd(p)
either ¢ o Uiy OF F 0 - The two cases are distinguished by the value
of (d{)1p) (which we may take to be 1, —1 for d(g) =1, —3 (mod 8)
in case p == 2). Tt is also elementary that @,m, 2 I for every integer &,
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Y 2 k for every k 0 (modp), and w,(x, ;) =0 (modp) only if

@, =@, = 0 (mod p).

We now consider the following possibilities for a quarternarvy f:

(8.1) frgrmlmz-{«wa% or Wy @yt @),
pbat (2 pTab)

(3.2) Jry ooyt axh — | or
by (p = wm Dt ay 4B,

! > Dy 0y - PHBy, T8y ”1"1“":’-’19(“'3; #y),

(3.3)
Ppliby, @) F DBy,  OF (@, Ba) b Dy (@, )

" Lemma 1. (1.5) holds if and only &f for sach prime p one of (3.1)~(3.8)
holds. ‘

Proof. We shall consider algo, and exclude, the fthree possibilities:

(i) f";’ 60 +- ey -+ Poxy wy + p° sy

(L) [ @l @0} FpB (0, 25 pTE(9), p1A(R),

(iii) every binary section of f has diseriminant == 0 (mod. p).

It ix easy, see [4, B4, Theorem 32, and 59, Theorem 357 to see that ono
£ (3.0)-(ii1) must hold.

It is immediate from the case # =4 of the definitions in [1} that f
is 8P if and only if (iii) i¢ false for every p; also that if this is so then f
is 81 if and only if neither of (i}, (ii) holds for any p. The statement ot
the end of §1 will therefore be a corollary of the lemma. (The example
w0 ~ o)+ 2mm,, DY @ —>o,+%,, will show why we cannot have
b =a (mod 4) in case (3.2),.}

It is clear that (i) implies (1.3) but contradicts (1.4), and so also
(1.5). (ii) alsc implies (1. 3), since A{@)d(h) =0 ox 1 (mod 4); bat it inplies
P2la(f) and so contradicts (1.4). Assuming (iii), we have clearly p®|d(f);
but it p =2, we have 2|ey for i 54, s0 2]4(f), 16]|d{f). Be we have
(1.3), and (1.5) gives (1.4), implying p3td{f): So (1.5) fails it any of (1)-{iil)
holds for any §2 The. converse is. eagy smd $o the lomma iz proved., Wao
deduee:

LeMma 2. If f satisfies (LB) and & 4s an indeger, then o & 45 fulse
if ond only if p*|k and the fourth case of (3.3) holds (smplying (p~*d(f)!p)
=1, or d(f} = 4 (mod 32) if p ——2)

Proof. Using Lemma 1 and the pmcedjno‘ remarks about binary
forms we see at once (putting @, = ; = 0) that f 2 I ip true in cases
(8.1), (8.2), and the first two sub-cages of (3.3) (for aﬂl k), and in the other
two sub-cases it is true for k % 0 (mod p). Now putting o, = wg == 0,
f > kis true for allk = 0 (mod p) if (3.3); holds, and for Pk in cage {3.3),.
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Supposing therefore p*| % and (3.3),, we note that if ¢, +py, = 0 (med p?)
then @y, @y = 0, 0 (mod p), which gives y, (@, #,) =0, &, =g, = 0(modp).
This gives f P I and cowmpletes the proof. Next, we need:

Lmma 3. Let § be a positive-defindle gquadratic form, with ¢(f) = 1,
and & o positive integer such that f% k for every p. Then f o k.

Proof., By hypothesia we have, audely, that f represents k over the
real field. From this and the p-adic hypothesis, there oxists f with [ o~Ff
and ' = k. Thon e(f) =1 gives f' ~f, and so f > k. For the existence
of 7 with the required proportied see ¢.g. [4, 80, Theorem 51]. The argument
does nob depend on {L.5), nor on n == 4, and it is essentially that of [3,
101, Lennna 6], Using Lemma 2, we have immediately:

CoroLLARY 1o Lonwa 3. If the positive-definite quarternary form f
satisfies (1.5) and ¢(f) = 1 then f = k for every positive square-froe inieger k,
and P 4 implics @(f) = 4 {mod 32).

4. Proof of Theorem 1. We shall agsume o(f) = 1 and deduce the
hound for d(f) without using anything else except the Corollary to Lemma,
3. Wo bogin by nolicing that f = 1 and f > 2, whence frivially, by an
integral unimodular transformation, we may suppose ay; =1 and ¢, < 2.
'Wo write -

(4.1) Fo = Jul@y, @) = [l @, 0,0),  dy = dul(f) = (f)-

‘We notice that by what we have done we may trivially SUppose fa
to be one of the four forms
(4.2) Wy +ad,  alded,  ofbame4-203, o -h2a
We have this and a little more if 'we further suppose, as we clearly
may, thab
(4.8) ldy(f)] = int {|dy(f)|: f* ~f, fo = one of (£.2)}.

Weo next define

(d.4) To = fol@y, oy, g) == @y, oy 2y O) dy = dy(f) = 4a(f3).

By o transformation which does not affect what we have done, wo may
goppose that .

(4“5) Ida(f)‘ = i.Tl‘f{\ da(f,”: f’ Nﬁ .fl(mil‘l Wy, 0, 0) ==.fa}-

Tn the four cages dy = —3, ~4, —7, —8, see (42), (4.3), write
torporarily & =2, 3, 3, 5, and verify that fy P ;3 but f= & by the Oorol-

ary to Leynma 3, Xt follows that f must have a ternary seetion ¢ with

0y, 9, 0) = fp ond g = k, from which we deduce [d(g)) < F|dsl, see
[3, 88, (2.7)]; ov ¢f. (4.7) below. From this inequality and {4.5),

(4.6) dy wo By by =T, —8 = ] < 6,12, 21, 40

regpoctively.
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Without upselting (4.3} or (4.5), indeod without altering f, or the
class of fy, we can normalize agy, oy, and consequently ay and fi, by
procesding asin [3, 98, Lewmma 27. It is best to take the four cases
geparately.

(i) If d, = —3 we may rostrict a;,, ay o be 0,0, if 3|d,, 1, 1 if
dy =1 (mod 3), and we cannot have dy == —1 (mod 3), Thon dy == fy(ay,,
— ) - ag dy reduces to dy = — 3y 07 — By -1

(ii) Tf dy = —4 then we may suppose 0« @y < @y 5 L, dy o o datgy 4
+ @yt ay. So dy = —1 (mod 4) is impossible, and dy dotiermines ay,,
Byg ARA @ag.

{lii) It dy = =7, we take @y, 455 to bo 0, 051, 03 0, L; or 2, 0, giving
dy = —Tan+0,1, 2, or 4. dy = —1, —2, —4 (mod 7) are all impossible.

{iv) If dy = —8, suppose 0 < @y, < 1, 0 < ay << 2. Then the residue
of d; module 8 clearly diztinguishes the six cases, and we cannot have
dy = —1 or —3 (mod &), Further, we have 8y —1) < |dy] =3 8.

We now have a finite set of possibilities for f,, for each of which we
may write (with rational ;)

(£.7) I o="Fal@s-tv1my, 0y + ey, 2y-+ry0,) -1y 25,

We obtain a bound for d(f), for each fy, by choosing a positive intoger
k such that f = & but fy k. Olearly this is possible only if s, << &; buf
- then since (4.7) gives d(f) = —dn,d(fy) = 4r,|ds| we have d(f) = dk|dy].
We thall e¢hoose % with the desired properties by first chooging « primoe p
sach that f; ig not a p-adie zero form; then any positive square-free %
with f, .;;: k will do. We take the cages dy = —3, —4, —7, —8 geparately,
and in each of these cases we note that d determines f5y ay shown
above. '

i) For dy = —3and dy = —2, —3, —5, —6, (by 4.6) and d, =5 —1
(mod 3), choose p =2,3,5,8, % =14, 6, 5, 10, Here, and in many of
the cases below, [3, 99, Lemma 4] would help to prove fg? . Now we
have d(f) < 112, 72, 100, 240. All these bounds are amply }{.g;(md enough
for Theorem 1, but we note that the fivst and lagt could be Improved to
32, 96 if we could take % = 4. If we cannot do 80, then by tlo corollury
to Lemma 3 we have d(f) = 4 (mod 32). In the first cago thi gives -d(f)
< 32 or == 68, since 4(f) = 36 or 100 would contradict {L.5).

‘ (ii) For dy = —4, we see that if dy = —2 or -3 then J(0, wy, @4, 0)

hag discriminant —3, contradicting (4.3). 8o by {4.6) and dy % -1 (mod 4)
we have dy = —4, —6, —7, —8, —10, =11, or --12. We shall later soo
- that dy %= —8, —11 or —12; but here we consider all seven cogen, taking
P =23,7, 2,211, 3, and k =7, 3, 21, 14, 6, 22, 6. The 1'0511.1bing1”)oundé
are small enongh.
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(i) Wor dy = ~7, |dy] < 10 contradicts (4.3), as in {(ii}), we have
seon that (dy|7) # 1, and so with (4.6) we have d, = —10, —12, —13,
ldy 1T, 19, —20, or —21. We take p = 5, 3, 13, 7, 17, 19, 5, 3, and
k=10, 6, 13, 21, 17, 38, b, 6. Then crudely d(f) < 4-38-21 < 3000.

(iv) With dy «= -8 wo have |dy| < 40, 3£ 1, 8 (mod 8), and we find
on looking ot obvious sectiony of 7y that |dy] < 12 or = 13 or 14 contradicts
{(£.3). The caleulations muy conveniently be set ount in tabular form.

Table 2

dy | 1216 16 18 20 21 22 23 24 26 28 20 30 31 32 34 36 37 3% 30 40
M 2 0 2 2 85 7 2 23 213 720 581 2 2 2387 213% 5
I 510 714 5 7 10 115 10 26 21 29 5 93 14 14 7 37 10 13 10

Clearly d(f} =l 4-93-31 = 11532, so Theorem 1 is proved.

5. Preliminaries for Theorem 2. In (3.2), for odd p, we may take
= lor Ny b =LlorN,, (N,|p) = —Lasin§ 3. Then (p~'d|p) = (ab|p)
determines b in terms of @, 4; and @, or (a}p), is a p-adic invariant of f.
To see this, note that the congruence floy, ..., @) = a (mod p) has more
solutions than f == eV, (mod p) [4, 51, Theorem 29]. In the case = 2,
d =28 (mod 18), wo may take ¢ =1 or —8, b = 41 or 3, and we have
Bab o= d (mod 64), T p =2 and 4 = 12 {mod 16), we may in (3.2), take
@ == L and b == —agor 4 —g. In either case this makes e o 2-adic invar-

has more solutions than § == -2 (mod 2°+°). .

In cage (3.3) we notice that the congruence f = 0 (mod p) has more
than p® golutionsg in the Lirgt two sub-cases, fewer in the third and fourth.

From these. remarks it js easy to determine whether or not fr;a f
for given, f, f, p. To determine whether or not f o= f" (obviously not
unless d(f) == d(f)), wo need only cousider p|d(f). We prove:

Luasenr A, e Theorem % a8 rue for forms fwith &(f) <5 64&; and the forms
Iy oy By vepresend 27 different gemero coeh having the property (1.5).

Proof. The second assoriion iy easily verified, ay explained above.
For fhe tirst, we refor to the list of reduced forms with 4 = 64in [5, 74-76].
Rejocting those that do not satisty (1.6), and arranging the othery i genera
we above, we obtain a complete ikt of one-class gencra with d < 64, which
we cornpare with Table 1, The ealeulations are guite simple.

We now introdnee sone further notation. TE ¢ is a form in fewer

variables than 7, 1 = ¢, I 2 ¢ mean that I represents ¢ properly over

the .|,'niii(')m\.1, p-adic integers regpectively. For unary ¢ = kay, we write
a4 before = F, > k. This notation will be needed with # =7, g, h, and

4~ Acta Arlthmetlea XXIV.5.
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@ =g, by k, f as in Theorems 1, 2, and g, b 3-avy and 2-ary regpocltively
and k& a positive integer.

Tor f satistying (1.5), and positive-definite, we dofine ¢ gif) as
the product of the distinet primes p for which {1.4), or (3.3}, holds. Then
by (1.5) we have
b1y HH = QE_D ¢ square-free, D) pumu to ¢, D a fundamental hinwry

diseriminant,

We alto define the adjoint form adjf by (L.1) and
(5.2) o Aadjfy = adjAf),

the right member being the adjoint matrix of A(f). Ih is well known
(see e.g., [4, 25]) that

(5.8) adjf> k<efog for some g with d{g) =~ —k.

It is also kmown that ¢(adif) = ¢(f). This can be got from [1, Theoremn 1]
by taking wm = d = d(f), whence e(adjf) < ¢(f), with equality bocanse
of the obvions adj(adjf) = d*f. We theretore neod:

LA 5. For given f sotisfiying (1.5), and given p, suppose first that
p %5 then adjf 2 I is false if and only if (3.3), holds and p*| k.

Newt suppose p{h. Then adjf > T i85 true in cose (B.1), falve in cose
(3.3). And in the three cases p > & p == 2 and BlA(f), p = 2 ond 3td(f)
of (3.2) the necossary amd sufficient condition for wdjf 2 ."ej is
(5.4) {~akip)=1, —Ld(mod8), k= -—a(modd).

 Proof. First suppose »td == &(f), that ig, aggume (3.1). Then d(adjf)
= d?% by (5.3}, 80 adjf:: Ek for all %, by Lemma 2. In case p|¢, (L.4) gives
adjf ol e 2pe -+ Py, SO ptmd] f and p~'adjf is of the same shape (3.3)

a8 f, exeept that sub-cases (3.3)y, (8.3); are interchanged. Now wo use
Lemma 2 with p~*adjf for f. In the remaining case (3.2) we huve

—ak =1 or 1

adjfrummlcnz b

Wlth w == dabp, Bob, 4ab and b = bp, Bb, b in the threo sub-cases, Lt
follows easily, using =@, 2 k for every k, that adjf 2 Bt and only it
adjf =k (mod ') is soluble, where m' == p, 8, ov 4. Modulo w', wo may
1ep1mce b by 0, m}ﬁd . E[‘he .Eilb1a and Lhiu‘l CAREH AIC NOW msy, sl

giving the result.

We now consider sufficient canditions for f 2 b, B binary. The Lollowing
is needed only when & iz one of the forms (4.2).

LEMMA 6. For f satisfying (1.5) and prime p, let h be o binary form
such that either (1) pid(h) or (ii) pld_’(h) and h is elther @l -4 pad (p = 2)
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or @i--a} (p = 2). Then in case (i) we have f 2 I umless [(1.4) holds with
d(h)d(py) not & p-adic square. In case (ii), f ‘_") b unless (3.2) holds with
d(hyd(f) a p-adic square and (a|p) = —1 @f P>2 6=~ —b=~11if

Proof. Writing any of (1.4) and (3.1)~(3.3) as ff;)-’kl—“hg, we trans-
form by = by, ) into Py, v,), 4 == 1, 2. If we can do this with S
sach that Iy (g, gu) +Fa (4, yz) ~ f, then we have a p-adic representation,
of A by f, which eannct be nnpmpm sinee 2 d(h) it not a bm.mry (ligeri-
minant.

First mp]mtm [ 2, zt-n(l Wlhh()u'[? loss of genevality take b o De
one of le-»-mzw pywy, @y — Nyad =y, 93 -Lpad. Writing « for the coeffi-
clenti of a3, we have f = b lJ. we can choose IMy =y and Fy = ugy?, or
vice versa. Fov pfu thiy 1\ easily seen to be possible unless (1.4) holds, in
which case 'we either have nothing to prove or may take F, = 0. So take
% == P; the construction goes through except in case (3.2), and then failg
only if By == asl —pbad 21, p are both false. It so, {a|p) = —1 and
(~b|p) == —~1, whence (p~*d(R)d(f)lp) =1 follows.

If g = 24d(h), (1.4) is easy, as above. In the other two cases, (3.1)
and (3.2), by = @y, and we may take Iy = ¢y v, Ty = oy,, 210

So suppose p o= 2|d(h), and if h; =20, take F) =y -ulyl, If
Ty =y e @@y 0, take By = 93 Suiyd. In either case - can he
any integer. Choosing ¥, to be ¢y, with h, 3 ¢ we have f 2 hif we can
choose ¢ 50 that ¢ —u® or ¢+ 3u? Is congrient to 2 (mod 16), or to 1 (mod 8),
for d(h) = —8, —4. This is quite easy in cases (3.1), (3.3). In case {3.2)
woe have f = R if the congruence

(0.8)  —w’aei--2bal= 2 (mod 16)  or  —wu®dazl—bal =1 (mod 8)

ig soluble in integers w, @, ®,. A simple calculation now completes the
proof.

6. The “if’ of Theorem 2. By Lemma 4, the assertion of Thoeorem 2
that each of the & has clasg-number I need only be proved for the I,
with @ s« d{F) > 64 Tt is easy to dispose of the case d = 69, proving
o{Ly) == 1, by the method of [B], 8o suppose d 25 72, and note that this
frupliog d ‘‘‘‘ < g% g = 10, 10, 13, 22, see ontries nos. 23, 25, 26, 27 in Table 1.
In ench case, donote ﬁ (zru., g, g, O) DY ¢, and note that

(6.1) ' algy) = —q, olg) =1;
for e(g;) == 1 see [3, Theorem 1].

Now suppose we are given a form f with f o
I~ We Lirkl note that

(6-_2) So=yg¢, and

If’,; we have to prove

a(f) =@ = f ~Fy;
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here f; is fm, 2y, 2y, 0), a8 belove. This is quite easily proved by argumenty
like those nsed in § 4 to normalize ay, dyq; we normalize g, & == 1, 2, 3,
in the same way. Using (6.1) and (6.2) and taking d{f) = ¢% = d (Iﬂ)
for granted, sinee it is implied by f =« f;, 'we see thal

(6.3) fo oz gy = f ~ T,

We notice, see [3, 100, Temma 5] that if d(fy) = d(g,) (= —g) is
square-free, then f, 2 gy can bo fulge only if p |d(g,) and one ni Jas g T p-adio
zero form, the other not. If so it easily follows, for sohe plg, that one
of f, I, is of the shape {3.3)y, the othor (8.3),, which contradicty fox I,
Bo d(fy) = —¢ implies f == ¢;, which with (6.3} gives
(6.4) d(fa) = —q =f ~ ¥,

Since one.of (3.3);, (3.3), holds for each p|d(f) = ¢% we seo that
adjf = gqf', f' = f. So, using (5.3), we can transform f into an eqoivalent
form so as fo have d(f,}) = —gminf’, minf’ boing the minimun of f

Now if we know that f ~ F, implies minf = 1, we must have minf’ =
and we can make use of (6.4). So

(6.5) if o Iy = minf == 1, then ¢{Ffy) = 1.
We assume for the moment that
(6.6) f=F, and d(fy) = —2¢ = minfy = 1 = minf =~ 1,

and note that this is true with - ¢ in place of ~2g. (Note that ¢, = 1

ajnd- use d(fs) = —q = fi ~ ¢, proved above.) Then wo can use adjf ~ ¢f
again to see that we may suppose d(f;) == —g or —2q: and this givey
minf =1, so we can use (6.5). This gives ug that

(6.7) if fo=F; = minf< 2 thene(F) =

We now use the well known inequality 4 (minf)« d(f) to give,

for f~ 2{minf)® < g, whence minf =2, 2, 2, 3 in the four cases

g =10, 10 13, 22, Clearly this completes the proot for the first threo

- cases; and the argument leading to (6.7) shows that Lor ¢ = 28 it will suffico
to prove that '

(68} f o F27 E]Jl’ld_ d(\fll) .'::'.;: j— (;G . Ti'Ili.l']. f‘} 3; 2'.

The proof of (6.6) will now be omitted, since it is like that of (G, 8) anil
not too difficult. Now we need only prove (6.8).

We know that by an integral unimodular transtormation We Ny
take @y, Gag, 44y o be the successive minima of f5, whose product 1
= 3 d(f3). So if (6.8) is falge we may suppose d(fs) = --66 and My == Gy
=ty == 3,0 m-,ﬂ <. 3 for 1 <4 <g < 3. If each of the ay 15 AL we may
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trivially take the signs to be all the same, and then in either case we have
the contradiction 114d(f;) = 66. If each |ayl is 0 or 3, we have the
contradiction 27166, So we may suppose a,, = 2; but then fi(1, —1, 0)
= 4, f > 4, and this contradicts f ~ Foy ~~ 9, +29,. The 41 of the theorem
i8 now proved.

By Lemma 4, it remaing only to prove the ‘only if* for f with d(f)} > 64.

7. Use of ternary sections. In this section we assume (1.6) and. ¢(f) = 1,
normalize as in § 4, and seek tio improve the bound for d(f) found in that
gection, by econsidering the possibilities for a ternary ¢ with f = ¢. One
of those possibilities ig g == f; == (&, %2, @3, 0). We note that d(f) deter-
mines ¢(f) by (5.1) and #o0 by the definition of ¢(f) we have

(7.1) =g =qldy), qld(fs).
We notice also that (with g ternary and b binary)
(7.2)  fog=hk ptd(fHdh),

Tor the hypotheses of (7.2) give f~h (Tyy By) -+ (5, #,) with ptd(p)
but ple(l, 0), whence (d{g)] p) =1 (or d(¢) =1(mod8) if p =2),
whenes the result.

‘We shall show noext that

whence

and pld{g) = d(f)dih) 15 a p-adic square.

(7.3) . fog=g" and q(f) =1 =f=4¢g"

Mo prove thiy, write f = g more explicitly as

(7.4)  fla, ... s Yot T Ya) +ry Y-

Here the », are rational, d(f) = —4r,d(g), and the new variables y;,

i) ~F Yy, ey Ya) = glULFFIY

‘velated to the @; by an integral uninodular transformation, are introduced

for convenience later. We choose a positive integer m such that (for
positive f', f7) @(f) = da(f") and J =" (modm) (identically) imply
I =" (whenco f~f ﬁmd e(f) =1 give f ~f). So {7.3) is proved if
we can find £ so that () = d(f), f'* = f (mod m), ‘md F' (Y1, Yoy Yar 0)
~ ¢'. Now if we choose ¢'', for a suitable m, > 0, to satisty g == g (mod my)
and ¢'* ~ g, then f" = ¢ (Y, -4 -+ 704 gives what is wanted.
Ror the choices of m, ¢’ teo |4, 69, Corollary, and 80, Theorsm 51].
Putting fy, ¢ tor g, ¢' in (7.3), we have

-1

(

whicll is o contradiction if [d(h)| < {dzi We ean obtain this contradiction
in many of the cages of § 4 by constructing g with ¢ = hand d(g) = dy,
and verifying, see [3, 100, Lemma b] that g ~= f;. Taking b = #y+ o2, +

.9) faego b and  e(f) =1 =f>h,
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+a5, f o h iz possible only when d, = -3, and so we find that with
o(fy =1
dy = —d, —T, =8 = dy # —11; —17, —21; ~15, —23, 29, —38.
Similarly, with b = @i 4-ad, 2} 42,0, 4 20,
dy = =T, =8, s dy o —Ldy —19; 81, 34,
dy == —8 e dy 7 30,

We note that 24dy = 2fq = f P 4o Bo, in the ease dy = -8, wo on
Improve the inequality |dy| << 5-8 to |dy] <5 4-8 for odd dy, giving d, 4 - 37,
—39, by using f, > 4.

We next show that (for «(f) == 1)

gHa 41d(g)
(7.6) f=gand 9P for = vesp. df) <3 dag, |d(n)].
l.f] * fy 4ty [ (g}

To prove this, note that in (7.4) we lave obviously fle,...,us,) ¥
11nle,:iss the point (@, ..., @,) eorresponds 6o & point (y,, ..., ¥,) with Ya ()l,‘
Taking w, = 0 and @,, #,, @, a permutation of 1, 0, 0, if iy = O i.;'l. GaVOry
case we have clearly g ~ f,, and if not we have ¥y 35 MK (G gy Gog rr,.,,\i.
The third case of (7.6) follows from this (and the first two nro ;i;nill:‘u-
but simpler) on noting that ay, = 1, dyy = 1 or %, andl @y = 1 ‘i]l'lpulé.“;
that f represents one of the first two of (4.2}, piving @,y = 1'.‘ R
By using (7.3) we gee that in the second part of the hypothesis of
(7.6) we could replace g by any ¢’ ~ g. So in (7 B} we conld 1'0}51:11*.(5 g ~Ty
Ey acig) > 1; fe could al_so rel-ﬂa‘ce g P fa by ¢{g) > L. For in nrnf‘nt‘la{liziﬁg
irif:l,) 1 yﬂgliffa,,_ we saw In effect that d(g) = al.(fa) and g(my, iy, 0) = f,
.Orudely, (7.6) gives us that d(f) < dagk it & o |dy] and there axists

g Wl'ﬂl F=g and dlg) = —%; assuning ¢(f) = 1 and using (5.3) and
G(adJ_f ) =¢(f), we can eliminate g and seek a k, 4 |dy), sodisfying the
conditions of Lemma &, implying adjf > k, for every p. If we ]{.1'1‘.(‘)‘:-.\'1' 1ha
value of (f) and use the obvious fact thu,{?: Jo = [ fy) | sabisfion tha conditions
of Lemrna 5, it is usuatly possible to find o small l/;: g |dy] that also Q:Miiﬂ‘l"ilulﬂ
:heae condﬂ?ions. For oxample, it d,, dyy d(f) == 3, 8, ii8 Wi 'u;::w
Gi;ki 71 Z 4 1:1}10{3\@2 1.17) == 1; then with ge == 1 (7.6) gives the vontradietion
<k _efemng back to § 4 and recalling that' d = 64 has been deals

, With, this gives ug that Theorem 2 i true in the case dyy dy == —8, 9.
The case dy, dy = —3, —3 can be dealt with in the surue wﬂy by tf&king

k = 10,6, 6 for d{f) = 65 PR .
. (Iﬁ’od’m). (f) = 65, 69, 72 and noting that (7.1) gives d(f) 68
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‘We next notice that if 8|d, then all the conditions of Lemma 5 hold
with & = }|d,| instead of |dy]. Now with f> g and d(g) = fds, so |d{g}
< 10, we find by a simple caleulation see [3, 97, Lemma 1] that ¢ = &
with |d(h}] < 7. The caleulation® in § 4 now show that d, can only be —8;

but now d(g} == —2 gives ¢ = b with [d(R)} = 3, 80 dy == —3 and thiy,
ag in §4, gives |dy) =< 8. So
(7.7} . o(f) = 1 = 8tdy.
It is useful in some cases to nofiee that the construetion of § 4 gives
L an | . .
(7.8) ] < 1421‘«;% = [ (£}

by a fairly obvious argument like that of [3, 97, Lenma 1]. This enablos
us to digpose of the troublesome case dy = —8, dy = —30. In this case
¢(fs) # 1, by [3, Theorem 1] and so we can use (7.6) to give () < 240,
and then {7.8) gives the contradiction |dyf < 30.

Wo shall find it uselul later to note that the theorem just gnoted
gives ¢(g) == 1 if d{g) = ~42 and g > # 4222, So it we huve f = g with
such a g (7.6) gives d(f) =336, In the case dy, dy, d(f) = —8, —18,
924 = 4.5 711 we can use such a ¢ in (7.6), becaunse (18-42]11) = 1,
and g0 wo Lave o contradietion. _

8. Representation of binary forms. Using the methods of § 7 and
the inequalities of § 4 it would he possible to finish the proof of Theorem
2 by o finite ealeulation. To make the caleulation manageable it is very
desirable to use:

Lwmma 7. Lot f be o positive 4-ary ond b o positive 2-ary quadiatic
forti, such that f > b for every p. Then o= f" = k for some [

Proof. See [6, 106, Theorem 40]; take n =y o == D

9. Use of hinary sections. e assunie all the hypotheses of Theorem 2,
and off) = 1L oand d(f) = 64, sew Lemnma 4. Then Lemma 7 gives, for
positive binary &, _

(0.1) Jgho forallp = f =k,

Ty the segwnent used for (7.6) wo xea, wsing (4.5), that
(9.2 Fo b fy o ] s Jdyf ma{A (L 0), A0, 1,
(9.3) T=hand fod b= d(f)<4d max {1, 03, (0, 1)}.

Az an example of the use of these tormulae, consider the case dy = —3,
dy = B, in which (7.1) gives ¢ == 1 or 3, and we saw in § 4 that d(fr=100,
with gtriet ineguality since ¢ # 10. Weo seek to prove d(f) < 64, see Lemma
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4, and so may suppose ¢ = 1, sinee d = 20 if ¢ = 5. We now notice fhot
{9.2) gives the contradiction |dy) < 3 il f= #}-Laf; 80 we suppose not,
and then (9.1) shows that f > 22w} is false for some p. By Lemma 6 and
g =1, this p can only be 2, and we must have —4d o Z-adic square,
giving d = —4 (mod 32), With this and 64 < &< 100, d = 92. Now we

use (7.6) with d(g) = —10, and so with ay = 2 have bhe conlradiction
d < 80. The posmblhty of taking d(g) = -—~10 follows easily trom Lemma 5
and. (5-10123) =

Now consider the case dy = ~3, dy = —G6, d(f) = 240, d(f) = 06
unless d == 4 (mod-32), Again wsing f+ o Laf and (7.6) wo ocasily find
d < 64. We have now. disposed.of all sub-casey of the case dy - -3,
We may therefore suppose, for tho rest of the paper, Dy (4.3), that
f# {2, —38), where (2, d) denotes a 2-nry form with diserimivent d.

It follows that there must be a p with f J'I,D (2, ~3). Bupposing Livst
that this is true for p = 8, we must by Lemma 6 have dy % L (mod 3)
and d(f) = 6 (mod 9). Next suppoqmgf (2, —3) false for p £ 3, Lemma
6 gives p|g and, if ptd,, —3d the hqu(mc of a p-adic unit, This linpliey

o.g. that p cannot be 5 if dy = —7 or —8. From thege romarks it is clear
that ¢ = 3. _
Now suppose d, = —4, or f = (2, —4) in the notation just explained.

Of the possibilities for dy given in § 4, we excluded --11 and —8 in §7;
the others are —4, —6, —7, —10, —12. In the first and second of thoese
two cases we find d < 64 just as for dy = —3, dy = —2, —3. In the next
case dy = —7 wehaved < 588, ¢ = Lor 7, The case ¢ = 7 is eagily exeluded
(except for 4 = 49 < 64) by using (7.6). 8o take ¢ =1, and use d == 6
{mod 9), because f P (2, —3), and (d|7) = 0 or —1, by (7.2) with % -“fg
= {2, —4), Wea cut down, further the number of d o he excluded hy
noticing that f; cannot be bordered to give an f with d = 69 but nob
'equwalent to Fyy; we also note that ¢ = 1 makes d a fundamental binary
discriminant. (7.6) gives d < 8(d(g)| if f= g and d(g) # -7, 8o we can
exclude any d for which some & < d/8 satisties the ]1y]fm theses of Lenmima b,
and k 7 7. Such a % is easily found except for d == L05; note for example
that one of & = 6, 12, 18 will do unless some p > 3 divides d and satisfies
{2|p) ={(31p) - 1. I‘or d =100 we choosa d(g) = —18 and we need
g+ 1 to get a contradiction from (7.6). The form f 1o bo proved to have
e(f) =118 (2, ~7) (u,, m2)+(2 =15) (25, 2,), with an obvious tmnpur.:wv
notation; the coefficient of 4 is 1. We vevify that f ~ 7 bub f w~ f for f'
with coefficients (arranged as in Table 1) 2, ~-1L,2;1,1,2;1,-2, 0, 2.
In the cases d, = ~4, dy = —10, —12, we uotloe that (‘) 2) gives

a contradiction if f= (2, —8 So f# (2, —8), and oither fz 2%, ~=8)

+ 13 false for some odd pfg or £ (2, —8), giving d = —8§ (mod 6{1),' and
we capnot, have ¢ = 2. Further, in case d = —12, f, = @} - o -+ 3oy,
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whence clearly f 2 (2, —3) is fruo tor overy p > 2, so false for p = 2.
This gives 2|¢, d = 4 (mod 16). With these remarks it is easy to complete
the proof for dy == —4. So we suppose f D (2, —4). Thiy gives ¢ # 2 and
either f > (2, —4) lalse for some odd p|q or @ = 4 {mod 32).

The outstanding cases with d, = —7 are easily disposed of as above.
Tor example, when dy = —20 == 1 (mod 3), f 2 (2, —3) is true for any

difp = ‘3, 0 must be false Lor somo p|g, clearly not for p = 5, and so,
since ¢ ¥ 2, we munl have ¢ =10, d = 100, f> g with d{g) = —10.

Suppose therefore f P (2, «-T), dy = —8. We have ¢ == 2, 3, 7. Other
¢ except L ave not foo difficalt to deal with, since D = ¢*4 is not too
large. So suppose ¢ == L. With this and f= (2, —3), (2, —4), (2, —T)
we have ¢ =0 (mod 9), —4 (mod 32), 0(mod 7), 924 (mod 2016) and
(77| T) = — 1. Ho cither d = 924 or d > 8988. It is easy to see that
d < 3988, 80 4 = 924. Weo find 4 < 924 except for dy = —18; then the
remark at the end of § 7 completes the proot,
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