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Sieving by prime powers
by

I X, Garvacgimr (New Yorlk, N.Y.)

To Professor 0. L. Siegel
on his 75th birthday

In this note we give a simple proof for a result of H. L. Montgomery
on the large sieve and ity generalisation by J. Johnsen to prime-power
sieving modali, and some examples.

Montgomery’s result gives an upper bound for the number of positive
integers » =5 N which remain after f(p) residue claszes mod p have been
removed, for each prime p. The bound is (¥4 0{(Q%»)/#(@), where

(1) s =3 [[20

=@ wlg

here the dash indicates that the sum is over square-free g, and @ is a
parameter > 1, which is generally chosen a little less than N'%, in order
to minimise the upper bound. The resulting bound is about the same as
that given by Selberg’s method if f(p) i constant, but is smaller if f(p) — oo.

Montgomery’s prool depends on two inequalities for means of expo-
nential sums. The first is due to Bombieri and Davenport. For arbitrary
complex a,,, pub

8a) = Dagolna), Z= D laf
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Tor a simple proof of (2), see Bombieri’s paper [1].
The second inequality is due to Montgomery. Assume, for each prime
p, that a, = 0 if » is in any of the f(p) removed residue classes mod p.
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Then, for square-free ¢,

3
-
(3) (——) > 18 | T
== él! = r})
(e, 8)=1

Simaple proofs of this inequality have been found by Wirsing, Richert and
Huxley ([7], pp. 26-29).

Putting @, = 1 or 0 according as » remains or not, wo geb from (2)
and (3) that 7“5 Q) = (N 1 ({64 )A, from which Montgomoery®s siove
bound follows.

Montgomery remarks in [0] that the sicve assmmption gives no
apparent control over the smn on the left of (3) uuloss ¢ is square-troc.
However, if, instead of primes, we sieve by un arbiteary sot 2 of pairwise
relatively prime moduli 4 (for example, the sot of kth powers of primes,
tor some %), removing f(d) residue clagses mod &, for onch de &, a siwilar
argument leads to & similar wpper bound for the nuwber of integors < N

which remain, with
N 7@
=20 5~ [k
9m@  dlg

where the dash now indieates that ¢ runs over all products of distinet
elements of 2. Still, the hypothesis gives no coutrol over the other g.

In a recent puper [4], Johnsen has solved the problem of :IZi.n.{l‘i..ng
a suitable lower bound for the swin in (3) for non-square-free ¢ (Y. However,
instead of sieving by primes or a more general “independent” wob of
moduli, he gieves first by primes, then by squares of primaes, ete. e
gets the followia:lg generalization of Montgomery’s sieve resulti:

TuroREM. FHor each prime p, vemove oll -but ¢(p) different residue
classes mod p. In each of the remuining vesidue clusses mod n, remove all
but g(p?) different vesidue classes mod p¥, ete. Then the number of posilive
integers < N which remain is al most (N 4+ 0(Q%)/F (), with

(4) #i0)= > [] (nﬁ LA

* P H
& by @ b

where h(p") == g(p)lg(_p"‘) o g(p"), the mumber nf residue  olasses mod p’
remaining at the vih stage.
It the sleving stops at the lirat stage, so that g(p") -

then the swm.(4) reduces to (1), with f(p) = p—g(p).

= P for » -

*} In the context of the ring of polynominly in one varigblo over o fivito fiold,
rather than the ring of integers. -

: &
© >
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The proof of Johnsen's result reduces, as before, to the proof that

(5) Z

a1
{2, ) =1

where J (¢) is the gth term in {4), provided 4, = ¢ if # hag been removed.
Ii (5) holds genorally for a given g, then on replacing e, by a,e(np),

we gob
g @ By 2

Procecding by induction on the number of different prime factors of g,
let & = qr, with ¢ > 1,7 > 1, and (g, 7) = L. Then
=1 b=]

§“r ' {w >’r“1 S(a+b2> ﬁﬁ‘gbﬂ
2 =22 ;;?)f__J*F
(e, =1 (byr}esl

S(L)

s

gzl h=1
> [8{0) 2T ()T (1) == [S(0)2 (s).

{¢, 8)==1 (b, 7)=1
Thus it suflices to prove (3) for prime-powers. Ye have
(_,W) Z\S 6 p")2 —p" T’ 18(d, p*7h)

c=1
« 3 a,. Wor cach d,
nese(f)

$[2V = 1900y
x(E)lr/l (0127 (@),

]
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2 |83 (q).

ft=s ]
(¢t 1) =1

J(g)

e ]
nfa

with §(g, g) ==
pv
Sl p) = 3 8le, ),

80, by the Schwarz inequality,

(7) S, RS gp) D IS 9

cw(‘f,r(!;;l—‘.l)
sineo, by the hypothesis, there are af most g(p") nonzero terms in the
swrm. Blilarly,

(8) 18(0

n*

" 2 m ¢, P

o],

Combining (8), (7) and (8), the left side of (6) is

» -1 " 1') pﬂ”l ( 1’) 2
=0 ) 318t 2> T s

em]

J(p") [8(0)]*

This completes the proof of ().
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ExAMPLE L. The number of n << N in whose p-adic expansion f = a,--
dap+ a4 ... (with 0 < a, < p) no a, =0 octurs Jor v< k, for any
prisne P, 8 (%)

(9) < 9E(k1)?. (N - 0).

N
log“ &
Txawerw 2. By comparison, for the number of # =3 N which remain
after oll but an orbifrary sel of { (p 1Y% different fm%duo classes mod p¥
have been removed, for each prime p, we con only gl the (lavger) upper
bound

(10) S R ooy

In the first example, g(p*) =p—L or p according as L=lv={k or
v > k. Thus the swm. (4) is in this case 3 J®{g), whore J® is the wwulti-

Peqe
plicative fanction for which
T ’
. e Tk
(11) T () = J,(p) = (p~1)"" ’
0, -

To permit an induction on k, we estimate more generally

@) = D J0).
Qs
{7, L)=1

The case k& = 1igin [B]. A similar sam is estimated agymptotically in [8].

Lemwma. For @21, we have

- (-b). - "
) ,
(12) -9’(9 = (k1) 2( .logm) .

Proof. We have [5]

1 owte) el
) = > LS T 1004,
5 % el D T
(@, L)=1

For k> 2, we put ¢ = qlq_iqg sguare-free, nnd gob

ey With ¢ 000y - ..
= D@ Talga) - Tilgy)

_ Wl}ere the sumis over ¢, ¢3 ... ¢f < @, and g, ¢s ... g5 square-free and relatively
" primee to D, and the J, are the multiplicative functiony delined on

7o)

(*} The notation ¥ < G stands for_l_i-ﬂlF,fé}»i 1
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square-free integers by (11). Tence

@) = ) e et
pezglf®
(ry I =1

. ; 1 (D k-1
=) (’5 e 'I.) i-d \ J."n {——‘j)";-)"']. p;(m/')‘k)}

rr’rrli"‘
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. Myl oy
S A (_(}_a([jm)_) Z Jl(z'")log’“’l(w/w"‘).
pregtll
The lagt sum is
wll ik
f {log"H(w/y")} 4B (y) = — f SRl
0 0

,Gw

wlif (D) .
[/
= —~~f %}——mgyd{...} = f log" ! {a/y*) dlogy ..
p)

Tlere wo have used the eage k = 1 and the fact that {...} is o decreasing
function of ¥ over the last interval of integration. Putting % = @/y", we

have dlogu == —kdlogy, so the last integral is
@
1 loghx
f]—cuflog’“‘lq,s-dlogu = .;:2 ,
1

from which (12) follows. The bound (9) follows from the case D =1
on putting @ == NY*/log ¥
In the second (&X(lu,lll_lila, wo are sieving by the set of Zth powers of
prirmos, and
yj P-(p- Dw
(p 1)

gésaey  Ble

whore Ghe dash indicates that the sum iz over square-free g. It follows
from a more general asymptotic formula of Malberstam and Richert [3]

that
P -
] [ ”M ~RT log's

W’eﬂ? »l

and the bound (10} follows from this on putting @ = QY% and ¢ = N'3[logN.
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BxAMPLE 3. The number of primes a <z N for which e = 1 mod p?

for mo odd prime p < NV is

Proot. The primes a < N'* are negligible, so wo may Lirst yemove
the zero class mod p for each prime p =< < VM5 thon, in ench of the remnining
residue class mod p, remove the umquu 1@51(1110 ¢laiy mud p% of mulii-
plicative order dividing »—1, for cach odd Inmm p = N TLere g(p)
= p —1for p L N2 and g(p?) = p -1 or odd p =5 N*2, As in Exumple 1,

for @ < N2,
wR(ryr N1 uR(s 7
? T e )2’ XT f,__,( ) Nog (¢ %)
0dclr<Q1/2 ‘P f@ﬁ)}/r"" fjf?(s) oddrget/2 Pir
8, 7)==1

QLE
=4 f log{Q) fy®ydlogy
1
Ohoosing ¢ = N'"*/logN, the result follows.
" The same result (also with the constant 32) may also bo dbtained by
combining Selberg’ sieve mod p? with Bombieri’s mean value thoorem.
Bxamrrm 4. The number of integers w <L N for which o~ e Lod pt
for mo odd primes p < NV is

= Nog*Q).

581[( + _'p:I 1))10?1\7

oddp

Proof. In this example, we temove p—1 residue classes mod p?
for each odd prime p < NV so for § < N,

w]

odd gl »ig

F(@) =
By the result of Malberstam and Richert mentioned oarlior,

PIQ) ~ o (1, ................ )
udzf{:!@lf . pa

e T =S e ALY

o yod.désilt;\l/ﬂ (J. P) oilclloui;éllﬂ (1 | plp ""’1))
-1

~5o20 [] P+

Putting @ = N /log N, the result: follows.
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For the analogous problems mod p3, the sieve of Tiratosthenes

~ (combined with the prime number theorem for arithmetic progressions)

leads easily fo agymplotic formulae: The number of integers {primes)
@ < N for which o#~% == 1mod p° for no odd p;rime PE N

~N i[(] —--1—?—_—-}-) ~Tog¥ [[( 2)

pfi

adidp i [rate Y]

Nuwerical data Tfor a = 100 cl\ll(l p = 2% iy given in [2].
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