Sieving by prime powers

b

P. X. GALLAGIER (New York, N.Y.)

To Professor C. L. Siegel on his 75th birthday

In this note we give a simple proof for a result of H. L. Montgomery on the large sieve and its generalisation by J. Johnsen to prime-power sieving moduli, and some examples.

Montgomery's result gives an upper bound for the number of positive integers $n \leq N$ which remain after f(p) residue classes mod p have been removed, for each prime p. The bound is $(N + O(Q^2))/\mathscr{S}(Q)$, where

(1)
$$\mathscr{S}(Q) = \sum_{q \leqslant Q} \prod_{p \mid q} \frac{f(p)}{p - f(p)};$$

here the dash indicates that the sum is over square-free q, and Q is a parameter ≥ 1 , which is generally chosen a little less than $N^{1/2}$, in order to minimise the upper bound. The resulting bound is about the same as that given by Selberg's method if f(p) is constant, but is smaller if $f(p) \to \infty$.

Montgomery's proof depends on two inequalities for means of exponential sums. The first is due to Bombieri and Davenport. For arbitrary complex a_n , put

$$S(\alpha) = \sum_{n \leqslant N} a_n e(n\alpha), \quad Z = \sum_{n \leqslant N} |a_n|^2,$$

where $e(a) = e^{2\pi i a}$. Then

(2)
$$\sum_{q\leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^q \left|S\left(\frac{a}{q}\right)\right|^2 \leqslant \left(N + O\left(Q^2\right)\right)Z.$$

For a simple proof of (2), see Bombieri's paper [1].

The second inequality is due to Montgomery. Assume, for each prime p, that $a_n = 0$ if n is in any of the f(p) removed residue classes mod p.

Then, for square-free q,

(3)
$$\sum_{\substack{a=1\\(a,q)=1}}^{q} \left| S\left(\frac{a}{q}\right) \right|^2 \geqslant |S(0)|^2 \prod_{p|q} \frac{f(p)}{p - f(p)}.$$

Simple proofs of this inequality have been found by Wirsing, Richert and Euxley ([7], pp. 26-29).

Putting $a_n = 1$ or 0 according as n remains or not, we get from (2) and (3) that $Z^2 \mathcal{S}(Q) \leq (N + O(Q^2))Z$, from which Montgomery's sieve bound follows.

Montgomery remarks in [6] that the sieve assumption gives no apparent control over the sum on the left of (3) unless q is square-free. However, if, instead of primes, we sieve by an arbitrary set \mathcal{D} of pairwise relatively prime moduli d (for example, the set of kth powers of primes, for some k), removing f(d) residue classes mod d, for each $d \in \mathcal{D}$, a similar argument leads to a similar upper bound for the number of integers $\leq N$ which remain, with

$$\mathscr{S}(Q) = \sum_{g \leqslant Q} \prod_{d \mid g} \frac{f(d)}{d - f(d)},$$

where the dash now indicates that q runs over all products of distinct elements of \mathcal{D} . Still, the hypothesis gives no control over the other q.

In a recent paper [4], Johnsen has solved the problem of finding a suitable lower bound for the sum in (3) for non-square-free q (1). However, instead of sieving by primes or a more general "independent" set of moduli, he sieves first by primes, then by squares of primes, etc. He gets the following generalisation of Montgomery's sieve result:

THEOREM. For each prime p, remove all but g(p) different residue classes mod p. In each of the remaining residue classes mod p, remove all but $g(p^2)$ different residue classes mod p^2 , etc. Then the number of positive integers $n \leq N$ which remain is at most $(N + O(Q^2))/\mathscr{S}(Q)$, with

$$\mathscr{S}(Q) = \sum_{q \in Q} \prod_{p^{\nu} \mid q} \left(\frac{p^{\nu}}{h(p^{\nu})} - \frac{p^{\nu-1}}{h(p^{\nu-1})} \right),$$

where $h(p^r) = g(p)g(p^2) \dots g(p^r)$, the number of residue classes mod p^r remaining at the rth stage.

If the sieving stops at the first stage, so that $g(p^r) = p$ for $r \ge 2$, then the sum (4) reduces to (1), with f(p) = p - g(p).

The proof of Johnsen's result reduces, as before, to the proof that

(5)
$$\sum_{\substack{a=1\\(a,q)=1}}^{q} \left| S\left(\frac{a}{q}\right) \right|^2 \geqslant |S(0)|^2 J(q),$$

where J(q) is the qth term in (4), provided $a_n = 0$ if n has been removed. If (5) holds generally for a given q, then on replacing a_n by $a_n e(n\beta)$, we get

$$\sum_{\substack{a=1\\(u,q)=1}}^{q} \left| S\left(\frac{a}{q} + \beta\right) \right|^2 \geqslant |S(\beta)|^2 J(q).$$

Proceeding by induction on the number of different prime factors of q, let s = qr, with q > 1, r > 1, and (q, r) = 1. Then

$$\begin{split} \sum_{\substack{c=1\\(c,s)=1}}^{s} \left| S\left(\frac{c}{s}\right) \right|^2 &= \sum_{\substack{a=1\\(a,q)=1}}^{q} \sum_{\substack{b=1\\(b,r)=1}}^{r} \left| S\left(\frac{a}{q} + \frac{b}{r}\right) \right|^2 \geqslant \sum_{\substack{b=1\\(b,r)=1}}^{r} \left| S\left(\frac{b}{r}\right) \right|^2 J(q) \\ &\geqslant |S(0)|^2 J(q) J(r) = |S(0)|^2 J(s). \end{split}$$

Thus it suffices to prove (5) for prime-powers. We have

(6)
$$\sum_{\substack{a=1\\p\nmid a}}^{p^{\nu}} \left| S\left(\frac{a}{p^{\nu}}\right) \right|^2 = p^{\nu} \sum_{c=1}^{p^{\nu}} |S(c, p^{\nu})|^2 - p^{\nu-1} \sum_{d=1}^{p^{\nu-1}} |S(d, p^{\nu-1})|^2,$$

with $S(c, q) = \sum_{n=c(q)} a_n$. For each d,

$$S(d, p^{v-1}) = \sum_{\substack{c=1 \ c=d(p^v-1)}}^{p^v} S(c, p^v),$$

so, by the Schwarz inequality,

(7)
$$|S(d, p^{\nu-1})|^2 \leqslant g(p^{\nu}) \sum_{\substack{c=1\\c=d(p^{\nu}-1)}}^{p^{\nu}} |S(c, p^{\nu})|^2,$$

since, by the hypothesis, there are at most $g(p^r)$ nonzero terms in the sum. Similarly,

(8)
$$|S(0)|^2 \leqslant h(p^*) \sum_{c=1}^{p^*} |S(c, p^*)|^2.$$

Combining (6), (7) and (8), the left side of (6) is

$$\geqslant \left(p^{\nu} - p^{\nu-1}g(p^{\nu})\right) \sum_{n=1}^{p} |S(e, p^{\nu})|^{2} \geqslant \frac{p^{\nu} - p^{\nu-1}g(p^{\nu})}{h(p^{\nu})} |S(0)|^{2} = J(p^{\nu}) |S(0)|^{2}.$$

This completes the proof of (5).

⁽¹⁾ In the context of the ring of polynomials in one variable over a finite field, rather than the ring of integers.

EXAMPLE 1. The number of $n \le N$ in whose p-adic expansion $n = a_0 + a_1 p + a_2 p^2 + \dots$ (with $0 \le a_r < p$) no $a_r = 0$ occurs for r < k, for any prime p, is $\binom{2}{r}$

Example 2. By comparison, for the number of $n \le N$ which remain after all but an arbitrary set of $(p-1)^k$ different residue classes mod p^k have been removed, for each prime p, we can only get the (larger) upper bound

In the first example, $g(p^r) = p-1$ or p according as $1 \le r \le k$ or r > k. Thus the sum (4) is in this case $\sum_{q \le Q} J^{(k)}(q)$, where $J^{(k)}$ is the multiplicative function for which

(11)
$$J^{(k)}(p^{\nu}) = J_{\nu}(p) = \begin{cases} \frac{p^{\nu-1}}{(p-1)^{\nu}}, & 1 \leq \nu \leq k; \\ 0, & \nu > k. \end{cases}$$

To permit an induction on k, we estimate more generally

$$\mathscr{S}^{(k)}_{\mathcal{D}}(x) = \sum_{\substack{q \leq Q \\ (q,D)=1}} J^{(k)}(q).$$

The case k=1 is in [5]. A similar sum is estimated asymptotically in [8]. Lemma. For $x\geqslant 1$, we have

(12)
$$\mathscr{S}_{D}^{(k)}(x) \geqslant (k!)^{-2} \left(\frac{\varphi(D)}{D} \log x\right)^{k}.$$

Proof. We have [5]

$$\mathscr{S}_{D}^{(1)}(x) = \sum_{\substack{q \leq x \\ (q,D)=1}} \frac{\mu^{2}(q)}{\varphi(q)} \geqslant \frac{\varphi(D)}{D} \log x.$$

For $k \ge 2$, we put $q = q_1 q_2^2 q_3^3 \dots$, with $q_1 q_2 q_3 \dots$ square-free, and get

$$\mathscr{S}_{D}^{(k)}(x) = \sum J_{1}(q_{1})J_{2}(q_{2})...J_{k}(q_{k})$$

where the sum is over $q_1 q_2^2 \dots q_k^k \leqslant x$, and $q_1 q_2 \dots q_k$ square-free and relatively prime to D, and the J_r are the multiplicative functions defined on

$$\begin{split} \mathscr{S}_{D}^{(k)}(x) &= \sum_{\substack{r \leqslant x^{1/k} \\ (r,D) = 1}} \mathcal{J}_{k}(r) \mathscr{S}_{Dr}^{(k-1)}(x/r^{k}) \\ &\geqslant (k-1)!^{-2} \sum_{\substack{r \leqslant x^{1/k} \\ (r,D) = 1}} \mathcal{J}_{k}(r) \left\{ \frac{\varphi(Dr)}{Dr} \log(x/r^{k}) \right\}^{k-1} \\ &= (k-1)!^{-2} \left(\frac{\varphi(D)}{D} \right)^{k-1} \sum_{\substack{r \leqslant x^{1/k} \\ (r,D) = 1}} \mathcal{J}_{1}(r) \log^{k-1}(x/r^{k}). \end{split}$$

The last sum is

$$\int_{0}^{x^{1/k}} \{ \log^{k-1}(x/y^{k}) \} d\mathcal{S}_{D}^{(1)}(y) = -\int_{0}^{x^{1/k}} \mathcal{S}_{D}^{(1)}(y) d\{ \ldots \}$$

$$\geqslant -\int_{1}^{x^{1/k}} \frac{\varphi(D)}{D} \log y d\{ \ldots \} = \frac{\varphi(D)}{D} \int_{1}^{x^{1/k}} \log^{k-1}(x/y^{k}) d\log y.$$

Here we have used the case k = 1 and the fact that $\{...\}$ is a decreasing function of y over the last interval of integration. Putting $u = x/y^k$, we have $d \log u = -k d \log y$, so the last integral is

$$\frac{1}{k} \int_{1}^{x} \log^{k-1} u \cdot d \log u = \frac{\log^{k} x}{k^{2}},$$

from which (12) follows. The bound (9) follows from the case D=1 on putting $Q=N^{1/2}/\log N$.

In the second example, we are sieving by the set of kth powers of primes, and

$$\mathscr{S}(Q) = \sum_{p^k \in Q} \prod_{p \mid q} \frac{p^k - (p-1)^k}{(p-1)^k},$$

where the dash indicates that the sum is over square-free q. It follows from a more general asymptotic formula of Halberstam and Richert [3] that

$$\sum_{q \leq x}' \prod_{p \mid q} \frac{p^k - (p-1)^k}{(p-1)^k} \sim \frac{1}{k!} \log^k x,$$

and the bound (10) follows from this on putting $x = Q^{1/k}$ and $Q = N^{1/2}/\log N$.

⁽²⁾ The notation $F \leq G$ stands for $\lim F/G < 1$.

(367)

Example 3. The number of primes $a \leq N$ for which $a^{p-1} \equiv 1 \mod p^2$ for no odd prime $p \leq N^{1/4}$ is

$$\lesssim 32 \frac{N}{\log^2 N}$$
.

Proof. The primes $a \leq N^{1/2}$ are negligible, so we may first remove the zero class mod p for each prime $p \leq N^{1/2}$; then, in each of the remaining residue class mod p, remove the unique residue class mod p^2 of multiplicative order dividing p-1, for each odd prime $p \leq N^{1/2}$. Here g(p) = p-1 for $p \leq N^{1/2}$ and $g(p^2) = p-1$ for odd $p \leq N^{1/2}$. As in Example 1, for $Q \leq N^{1/2}$,

$$\begin{split} \mathscr{S}(Q) &= \sum_{\text{odd } r \leqslant Q^{1/2}} \frac{\mu^2(r) r}{\varphi^2(r)} \sum_{\substack{s \leqslant Q h^2 \\ (s, r) = 1}} \frac{\mu^2(s)}{\varphi(s)} \geqslant \sum_{\text{odd } r \leqslant Q^{1/2}} \frac{\mu^2(r)}{\varphi(r)} \log(Q/r^2) \\ &\geqslant \frac{1}{2} \int_{1}^{Q^{1/2}} \log(Q/y^2) d \log y = \frac{1}{8} \log^2 Q. \end{split}$$

Choosing $Q = N^{1/2}/\log N$, the result follows.

The same result (also with the constant 32) may also be obtained by combining Selberg's sieve mod p^2 with Bombieri's mean value theorem.

Example 4. The number of integers $a \leqslant N$ for which $a^{p-1} \equiv 1 \mod p^2$ for no odd primes $p \leqslant N^{1/4}$ is

$$\lesssim 8 \prod_{\text{odd } p} \left(1 + \frac{1}{p(p-1)}\right) \frac{N}{\log N}.$$

Proof. In this example, we remove p-1 residue classes $\mod p^2$ for each odd prime $p\leqslant N^{1/2}$, so for $Q\leqslant N^{1/2}$,

$$\mathscr{S}(Q) = \sum_{\mathrm{odd}\, q \leqslant Q^{1/2}} \mu^2(q) \prod_{p|q} \frac{p-1}{p^2-p+1}.$$

By the result of Halberstam and Richert mentioned earlier,

$$egin{align} \mathscr{S}(Q) &\sim e^{-\gamma} \prod_{\mathrm{odd}\, p \leqslant Q^{1/2}} \left(1 - rac{p-1}{p^2}
ight)^{-1} \ &= e^{-\gamma} \prod_{\mathrm{odd}\, p \leqslant Q^{1/2}} \left(1 - rac{1}{p}
ight)^{-1} \prod_{\mathrm{odd}\, p \leqslant Q^{1/2}} \left(1 + rac{1}{p \left(p-1
ight)}
ight)^{-1} \ &\sim rac{1}{4} \log Q \prod_{\mathrm{odd}\, p} \left(1 + rac{1}{p \left(p-1
ight)}
ight)^{-1}. \end{split}$$

Putting $Q = N^{1/2}/\log N$, the result follows.

For the analogous problems mod p^3 , the sieve of Eratosthenes (combined with the prime number theorem for arithmetic progressions) leads easily to asymptotic formulae: The number of integers (primes) $a \leq N$ for which $a^{n-1} \equiv 1 \mod p^3$ for no odd prime $p \leq N^{1/3}$ is

$$\sim N \prod_{\mathrm{odd}\,p} \left(1 - rac{p-1}{p^3}
ight) \quad (\sim rac{N}{\log N} \prod_{\mathrm{odd}\,p} \left(1 - rac{1}{p^2}
ight).$$

Numerical data for $a \le 100$ and $p \le 2^{25}$ is given in [2].

References

- [1] E. Bombieri, A note on the large sieve, Acta Arith. 18 (1971), pp. 401-404.
- [2] J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in number theory, Proc. Atlas Sympos. 2, Oxford 1969 (1972), pp. 213-222.
- [3] H. Halberstam and H.-E. Richert, Mean values for a class of arithmetic functions, Acta Arith. 18 (1971), pp. 243-256.
- [4] J. Johnsen, On the large sieve method in GF(q, x), Mathematika 18 (1971), pp. 172-184.
- [5] J. H. van Lint and H.-E. Richert, On primes in arithmetic progressions, Acta Arith. 11 (1965), pp. 209-216.
- [6] H. L. Montgomery, A note on the large sieve, J. London Math. Soc. 43 (1968), pp. 93-98.
- [7] Topics in Multiplicative Number Theory, Berlin 1971.
- [8] J. W. Porter, The generalised Titchmarsh-Linnik divisor problem, Proc. London Math. Soc. 24 (1972), pp. 15-26.

MATHEMATICS DEPARTMENT COLUMBIA UNIVERSITY New York, N.Y. 10027

Received on 20. 1. 1973