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1. Entroduction. In this paper we study the problem of obtaining
lower bounds for the class number b = h(—d) of an imaginary quadratic
field Q(T/ —d), d > 0. ' We recall that Siegel [18] has shown that h > dt~*
for d - dy, and that his argument does not permit one to determine all
fields with given cluss nmmber. Recently the problem of obtaining effective
lower bounds for & hay receivod considerable attention (see, for example,
Baker [1], [8], and Stark [16]).

Ivom the Devring-Tleilbronn formulae it may be shown that if
hoes dt? then all von-trivial zevos of certain L-functions are on the
aritical line, at loust up to a height depending on &, on &, and on the L-
function. Tf the elags mwumber is somewhat smaller, h-< @*%, then the
imaginary parts of these zeros can also be described; it is found that the
zoros are quite evenly spaced, so that two zeros of the same L-function
canmot be very close together. To state this more precisely, let o = $+4y
and ¢’ = §-+iy’ bo consecutive zeros on the eritical line of an L-funetion
L(s, x), where x is a primitive character (mod k). Put

. 1 . .
AE) == mm-%gly —~y }logfx,

where the minimam is over oll &< K, all g (mod %), and all ¢ = 44y
#21. In this range the average of |y—9'| 18 2nfloghk,
g0 trivially T A(K) = 1 Presumably A(K) tonds to 0 as IO increases;
if this could be shown offectively then the effective lower bound & > ar-s
wonld Tollov. Tn tach the weal inequality A(K) < §— 6 for JL > K, implies
that b= @ ® for do O(K,,); the function C(IK,, &) ean be made
oxplicit, Jven A(A) < § —0 hos atriking consequences.
The initial vemark of the previons paragraph makes it clear that in
bounding A(K} one may asswme that all the zeros of the L-functions under
consideration are on the critical line. In this situation the techniques.
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of Montgomery [10] can be used to show A{K) < 0.68 for all large K,
but it is not clear that the method used there will produce an upper hound
of the requmired sort. Hence we do not diseass the above observations
in greater detail. Instead we illustrate our approach by using specifically
known zeros to derive a modest resulf.

An’ examination of the formulae in Lemma L revealds that if & iy
small then real L-funetions have no zoros unear 4; indeod zeros of real
L-functions near % have the same effect ag correspondingly ¢lose paira
of zeros of arbitrary D-fanctions. We have found seversl zeros of veul
L-tunctiony which are mear 4; using these zerod wo demonstiate the
following theorem.

TumoreM. Let b denote the cluss number of an imaginary guadvaide fiold
with disoriminant —d, If 10% < d <5 104200 fhan b 26 B, and &f 102 5 d
< 100%™ then h =+ 3.

Lehmer, Lehmer, and Shanks [9] used o sioving technique to demon-
strate that if 1(}5 < 4 10%2 then b 5 3. Moreover, all imaginary quadratic
fields with h == 3 and d < 10° are known, so our theorem enables one to
list all such fields with class number B = 3 and 1 = d = 10%%,

Baker [2] and Btark [18] have given offective freatmoents of the
h = 2 situation; in partieular Stark showed thab if & == 2 then 4 < 10200,
Moreover, D. Il Lehmer used hiy delay-line sieve to Himw that fo =2
does not occur for 10° < d < 10%, while the fields with A = 2 and d < 106
were known previously. Combining these results we have the following

COROLLARY. If am imaginary quadratic field ¢ (V :E.’T) with discriminami
—d has class number %, then d is one of the eighlecn numbers d == 15, 20,
24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 282, 235, 567, 408, 427.

Stark (to appear) has adopted a somewhat differont approach to
treat the range 10% < @< 10% with h == 2. His method, lLowevor,
depends on an extended computber calculation,

We are indebted to Dr. George Purdy for providing us with a st
of real L-functions which could be axpected o huve zeros near 4.

2. Netation. Thmmrﬂmr —d is the diseriminant of an iimaginary
quadratic field (V' —d), with d= 4. Wo let Gy g - ot bay - oy?
be a reduced quadratic. im'm ol digeriminant --d, with tirst minimmm g,
and we let 2’ denote & sum over all reduced quadratic forms with

Lo —dY -
digeriminant —d. We put xl(w.) == (—-—%—), in the notation of Kronecker,

while y(n) is & real primitive character modulo by b= 1,

We let & = -4t be a complex variable, wh1le o = fi--3y i 0 non-
trivial zero of the zeta funetion or of an I-function. To avoid coulusmn
we let ¢ denote Euler’s constant, ¢ = 0.5771... The letter 0 denotes
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a real or complex number, possibly different on various appearances,
guch thati (0] =5 1.
Ay iy customary wo let

o
I, w) == f e Yy dy
i3
Do tho partinl pavuns funciion, defined for Reoe > 0, and arbitrary complex
I g 1 y . D
. Tinally,

1 O (rt!wr“]j
I, (@) == { ¢ ® e T YT

ig tho nodilied Bessel function of the gocond kind, where Rex > 0, and
w i an arbitvary complex number.

3. Lexmwnas. In the following leminas we assemble the mechanism
that wo use to obtain our result.
Lmwwa Lo If (d, &) =1 then

( L

s
W ;:;) L)L sy )8, ) = T(5) + T (1 —8) + T ()

Sfor all complew s, where

kdl/2\5-%
T8) o L) E(28) P, (r\’)f[(é‘)( ?)_m__) ’

. nd*? .
T{8) = eLw‘”;'.':“‘lz ™ 2 Fom ,](na ) pi i E T
‘r

(4] FIEES Y%
i'r,

?r,q, bw

_;'::1

Ir"" : [I ..-2@,-)’.

ok

Dulaya
a ‘
Trook, This follows immedintely from Corollary 2 of Stark [17]
togother with the fanetional equation for the zeta function in the form
BI(s 3 E(F = 1) = m P (L —8) (2 —2s5).

We now multiply both sides of (1) by s—4%, and we take s
13 0, to obtain the identity

i

= ¥+,

: Toflf2 it ]
(2 S idy, ) L i, ) P& @t)( “;w ) == M (#)sing(t) + 008 (L),

7 — Acta Artthmetica XXIV.5.
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where

(3)  M(1) = |20L(1+200) (3L ity Py(1 +-200) A (§ - i0)],

fed A\
(1) elt) = arg(@‘é’(l 248 (3 #) Py (1 -+ 2it) A (5 ”)(z,) )
™

Z (@, m)e (;;)

mu Jam

and

’ﬂﬂ!“"
(B) B(t) = 4wl Zm"*“> T’u(ﬂ : ) >1

al

In subgequent lemmas we give a lower bound for M (1), we show that
@(?) 18 almost linear for small ¢, and we bound H{) from above, When
these estimates are sufficiently sharp we then deduce from (2) that the
zeros of L(s, g} L(s, xx.) lie approximately in an arithmetic pProgression,
Levma 2. Lot F(s) = (2s—1)5(28) (8}, If 0<< €56 then |B(4 | )]

8 monotonically decreasing, and
arg B {4 -F i) = (' —logd)i- 306

Proof. From the definition of F(s) it follows (so0, for cexample,
Section 12 of Davenport [5]) that
) 2«/0
K

Pis) __T“' —nde l [ (

. o
A = Re— = 301 —4logdn = 0.023 ...
Z 0 5 tlog :

where

and the product and sum are over all non-trivial zeros of the zeta funetion.
On one hand

——RelogF(&—j—wt) == -Im—uloojff’( & 4 06} ey

= Im( Fit) = D (L 2it )"
1]

for 0 < ¢« 6, since the zeros g = Btdy all andisfy |g| o 14

the first result. On the other hand

L (LA ke 'é)-—.l)) 0

. Thix givod

d ‘
~—Tmlog #(} +it) = Re Tﬁ«log.lf”(a
o

= )

2
=1 e et 1 L Oy e
ogm TR -2 Re _5_ (o -+ 2¢)
1]

812 A .
= Ot gy —logd +2ﬂez (o425 — =),

Q

icm

Notes on small oloss numbers 533

We notoe that
1)_ 888 (39 — B2 — dth)

Re((o+2i)™" — o7 (220" —p7Y) =
B((Q 1t) ¢ (g --2it) (‘32_1_},2)(‘324-(7;-1-2? )(ﬁ2+ y——2$)2)’

go that

X Wl a1 - - ﬁm
0 <2]$(;Z ((Q Aty - g 1) < 24t2‘2 (,),2_144);
¢

2

for 0 =04 6. It would not be difficult to estimate precisely the size of
this last sum, but o ¢rade upper bound suffices. Since |y] = 14, we see that
(% L)% 32 18 (92 - 1), Fence

Y “rm‘ﬁ ) ) 1 1

L (144 T3 500

Thud
t

arg (& - if) = (0~10g{l~)t+8j‘———u—2—2du +16t5.
y 14-4u 3

Here the infegral is << 1% so we have the result.
Lomwa 3. If h == 2 and d > 102, then a =1 or a =
@ =1 or gz (d4)0 _
. Prooi. The first assertion was proved independently by Weinberger
[2¢] and Kenku [77, following Starlk [15], but in the spirit of Siegel [14].
To prove the second assertion we note that from the theory of genera
it is cleay that if A is odd then & is prime. Hence (a, d) = 1, so that in
Q(V?(f) the ideal (@) splits into tiwo non-principal ideals. The desired
rosult now follows from Lemma 5 of Weinberger [21] (see also Lemma 2
of Boyd and Kisilevsky [4]).
Lmarvea 4. Lat M (1) be given by (3), and suppose that d > 1012 If 0 <<
and k== 3 then

3. If h ds odd then

- L
= %4

My =i la-p.
pik
Ahe above (Mh() holds if O < tudy b o= 2%, and if the first mindmum a of the
won-prinvipal quoadrabic form iy larger Lhcm 10%. Finally, if 0 <t < 55 and
B = & then

Mityz=¢f [ (1—p7").
1
'I"rooii. In Lemma 2 we established that [F| is decreasing, so if
0 < {5 g then
| (g A48 = | B @4—-4 ) > s
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if 0 <<t then

R4 = (P >

The required values of |0{1-24t)| were computed by Haselgrove and

Miller [6]. Clearly
[P (1 +24t)]

= [[a—»,

. mlk
go it remains to treat 4 {s), If B = 3 then by the previous lemma ¢ =1,
or a2 (dj4)'", 8o
»1l—20 12

ind*

L4 (%)
which suffices. If b =2 and o> 10" then
AG+iDizl—aPzl—-L

and we obtain the second assertion. If h =2 and d = 102 then by the
previous lemma 4 2 3, 80 in any case

AL+ 2 1-371" 5 2

1007 -

LEmMMA 5.
Then

Suppose that d > 1042 016, and h =2 or h =3.

)+36t3+m( (hy-+2 5‘ ]O“ﬁ)

pU’G

172

i
w(t) =1 (0 +log ‘f

where ¢(2) = 5, and o(3) = 5.
Proof. The first two terms arise from the definition of ¢(f) in (4),

and from Lemma 2. In addition

logp

d y 24
~— arg Py{1-+2it)| = 2 | Xm —" (L +24t)| < 2 -
dt Pi’c ' P —1
Bk
80
g P, (1--2it) = 260 > —0F_
Dk

We use Lemma 3 to bound A(s). If h =2 and d 2 10 then a > 3, %0

log
i—»%wp t), 0*“:—1<—g-.

Ith =3 and d > 1012 then a > (dj4)', so

2loga 1

Af
L i < 208 L
‘ 7 < Tm e <5

The following; lemmas are useful in hounding the error ferm H(f).
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LEMMA 6. Let p be an odd prime, lat v be the quadratic character (mod »),
and suppose that pfd. Then

(g, m,p} =1

lzp”g if
<
(y,m,p) =p.

bl .
X jm
;x(Q(J,y))e(?) <1, i

Proof. The result ig obvious if ply. Otherwise the argument of
Weil [19] (see his ineguality (5)) gives the desived bound.

LmmMa 7. Let g be an odd sguarce-free number, and put k = q or k = 4g
Let g be the primitive quodratic character modulo &, and mppow that (d, &)=

Then
k .
Zl v (Q(h )) (;’_) = 2o Z ]] 6 ':"b, Y, P

yln Jcl yn  plh

where 8(m, ¥, p) = 39 if ply and p |m, and S{m, y,p) =1 otherwise.
Proof. For given y the inner suni on the left can be written as a produet

Vi3
over p |k of sums of the sort in Lemma 6, with m so that (m, p) = (?, _’p) .

Tt % = 4 then the hound is trivial, for then the sum on the left is never

~larger than 2.

Lemma 8. Let

Zd f ——

for a> 0. Then fla) is monctonically decreasing, and fla) <

glo) = a~le* {1 +log(1+a ™).

gla), where

Proof. The first assertion is trivial. Clearly

) @ d du
fla) = > d{n) J a—mq_“i = fc““ Zd(ﬂ))?
o1 ne b [ " i
But
[ @ 1
Z d(n) = 24 [»};—] <@ Z " 2({1+logw)
N Al NRT

for 221, 8o
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It is eagily shown that

~ du
fe‘”—d“—e”“log(l—% a ) #0,
g0 we have the result.

Lmvma 9. Let B (1) be as in {B), let 0 << 1< 4, and let |t be as in Lemma 7.

Then
8 . .
P (‘a—f—nf) (h—1 40w (logh) [ [ (2439737
plk
Proof. For «# =1 write # = ww, where « I8 the largest divisor of =

guch that (w, k%) is square-free. In this notation the bound of Lemma 7
is
= 27022 (logieyd(w) [ [ (1+4(e—13p"") <2°®Mr2a(n) [ (19",
PO L

since 1+3{a—1)p*® < 3p¥(a+1). Thus by Lemma 7 wo see that the

sum over # in J(t) is

dll2
2&:(1’5)]1]" K TR d 1mli2
§ (“Tk ) [ ] o

n=1 vl
in
) 751(22# (H (19 ) Z iln (de”“ )
rik =l .
riin

From the definition of K,(®) and the fact that din) <L d(rt)d
it follows that the above g

. U2\
g.ZW(k)']ClmZMz( (m"%i )II( vy

vk

(n/r?) if r2|n,

In Lemma 8 we note that eg{«) is monotonically decreasing, o the above
is

1/2 1/2
\<‘2m(7c)751f2 (Z‘ik )Z ,LL ” '_ _3/2) — g(’ﬂ?d )7{1/2]] 2—!—31?“2',2)

Hence altogether

Bl < 4 (i]:—)u (n (2+3p“3’25); a”“g(;i:).
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Again aFgla) is monotomcwlly decreasing, and a < (d/3)Y
replace the @ > 1 by (@/3)'*. Thus the above sum over  is

, 850 W6 can

< 2h{log k) (h— 1+ =% [ (30)1),
and we are done.
4. Proof of the theorem. In this section we make use of information
concerning the location of cortain zeros §--iy of L-functions L(s, x),

where i i# the primitive quadratic character (mod%}). In the next section
weo diseuss how these zeros wore caleulated.

Table I
&k
& y L%z log wfy
87
163 0.202901] 6.8532 x 10-2 2.44679 15.4834
427 0.249925 1.4376 x 101 3.40083 12.5701
2683 0.156678 8.6867 x 102 5.24774 20,0511
17923 0.030986 6,0171 x 10-2 7.14688 101.387
28963 0.033774 5.8873 x 10-° 7.62682 93.018
30895 0.018494 06,9746 % 102 7.68139 169.875
37427 0.0195056 3.1815 x 102 7.88319 161.068
115147 0.003158 6.0362 x 10-8 9.00701 994.931
128204 0.010850 2.5269 x 109 0,07464 204.085
139011 0.012930 3.0484 < 10-® 9.19535 24.2.966
145412 0.017312 5.8390 % 10-* 9.24037 181.469
151419 0.021347 6.6712 % 10° 9.28085 147.168
188995 0.026513 5.5608 % 10-? 9.50252 118.493

The values of y printed above are correct to within one unit in the last
place. We roquire only a few of the above k. We do not use the values of
L(}, x); the quantitios tabulated in the last two columns arise in the
course of our prool. Note that wo do not claim’ that £--iy is thenea rest
zoro to 4, although wo have no doubt that it is.
Suppose that 4 -4y, y > 0, i8 w zero of L(s, x). We put ¢ =y in (2),
50 that the loft hand sido vanishes. Tence if (d, k) = 1 then

(6) M (y) sing(y)] < vB(y) -

Wo congider h == 3 firgt. Here d monst be prime, so (d, k) = Lifk < 102
< d. We tirst put k== 17923, which is prime, and let y be the corregponding
value in '])(\.10]0 T. Trom Lemmas 4 and 9 we see that (6) requires that
[sing ()| < 4. On the other hand, if 10 < d < 10%, then from Lemma 5
we $ee tham In < p(y) < Fm, 50 sing(y) > & Thus there is no such 4. If
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d > 10% then we put k = 115147 = 113-1019, and we let ¥ be the corre-
sponding value in Table L From (6) and Lemmas 4 and 9 we conclude
that

lsinegs {y)| < 10770,

From Lemma 5 we see that if 10% < d < 107 then 7 < p(y) < 3n— 3,
so if the above is to hold then

lp{y) —m| < 107% o |p(p)—2mn| < 1070
These inequalities hold only if
(7) 1L AdLTI0™ or 10V < d < 10

To treat these remaining “short” infervaly we take &k = 123204 =
= 4+3-10267, and we let y be the corresponding value in Table L. If 4 > 10%?
then yB(y)M(y)" 1< 107, For d in the infervals (7), we find that
B+Hr<o(y)<(3+d)w or (6+5)n < g(y) < (6--5)w Thus (6) does
not hold for d satisiying (7), and wa are done,

By continuing in the above manner one can clearly improve on the
bound 10%%; one should achieve 101909 eagily. If it became necessary one
might push. the bound to 10%°,

I£'h = 2 then our approach iz more complicated because € is no longer
prime, but instead wo(d) = 2. However, if d > 102 then 4 can have ab
most one prime divisor <2 105 Hence if (%, %) =1, k< 10% ¢ =1, 2,
then at least one of &, and &, is relatively prime to d.

Suppose that A =2 and 102 < d =< 10%, We Clirst suppose that
(4, 17923) =1, we put & = 17923, and let y be the value in Table I
The bound provided by Lemma 4 ig a little weaker than before, but the
class number is smaller, so we find that E(y M (y)~' < §/7. From Lemma
5 we see that we still have +n < ¢(p) < £x, 5o sinp(y) > 4. Thus (6) does
not hold, and we coneclude that if 102 < d < 10% then 17923 |d. Ilence
(d, 427) == (d, 37427) = 1, and the first minimuem of the non-principal
guadratic form is @ = 17923 > 10" We first put &k = 427 = 7-61, and
lot y be the value in Table I. If d = 1012 then yH(y) M(y)~'< {, but
if 102 < d < 10" then =+ << p(y) < 24, so (6) fails. We now assame
that 10% < d << 10%; we pub k = 37427 = 13-2879, and let » be the
value in Table I. 'We still have 17923 |4, so yE(y) M(y)™' < 15 On the
other hand + << ¢(y} < $n for 10 < 4 < 10%, 50 (6) fails. This completoes
our tréatment of the case 101 < d < 10%, :

We now suppose that b = 2 and 10 < d <102, We choose threc
“values of & that are pairwise coprime; each % eliminates certain ranges
of d for which (d, &) = 1. Tt is easy to cheek that each d, 107 < & < 10220,
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ig treated by at least two of these %, so (d, k) = 1 for one of them, as re-
quired. We first put ko= 115147, and uge the same zero as hefore. We
find that yEB()M ()™ < 107 g0 we must have 10%° < d < 10°° Next
we take k= 123204 and use the same zero as before. Then () M(y)™"
< 107% so (6) holds only if 10" < d<10%, 107 < d< 10°°, 107
< d < 107, or 104018 <2 d < 1012, Finally we put & = 37427 = 13-2879
and woe use the zero given in Table 1. Tere yE(p) ' M(9y " < 107 and
we Tind that (68) holds only if 10™ < d < 1657, 10°% < d < 10%7, 109
< d’{ :L()fl-l‘?? JOMQ < (ﬁ*‘;_ 10557’ 106!1‘.) < d<: 10&97, 10529< (l< 10837’ 10969
< d< 10" or 1M < d e 101,

We hadl sorpo freedom in choosing our triple of pairwise coprime 4.
Among other triples that work, we note (30895, 115147, 139011), and
(37427, 115147, 145412). Tf we had hased our argument on close pairs
of merog of the zeta function then the complications arising from the
condition. (d, &) = 1 would not have arisen. The cloge pairs of zeros of
found by Rosser, Schoenfeld, and Yohe [12] would in principle be suitable
in this connection. When working with the zeta function with large ¢,
a van der Corput bound for H,(x) provides a matural ¢ analogue of the
estimate of Lemma 7, so that in place of Lemma 9 one has an estimate
of the sort ' '

Bly) <€ hd~ Y4 2 lopt.

5. The zeres. When ecaleuwlating values of the zeta function it is custom-
ary to use an approximate functional equation. There is'an approximate
funetional equation for L-functions, but the error terms ave difficult to
boand without underfaking extended ealenlations. Lavrik [8] has given
a formmula which meets our needs; in the present situation it takes the
following form: :

(8) (s x)
A P FASHE
= (l) : .'I”’(-g ﬁﬁ-) L (8 x) = (“;z“) Zx(w)w*ﬁr(s+“

; rmﬁz/]o) +

bt
fhwal
A i) X 1—s
| (l() ] 2 (W) pit ]"( ----- —1-: -Ci, rcnﬂ/(kz)) .
w T ) 2

Here Roz > 0 and @ = 4 (L—~g(—11). If s is small then we simply take
2 =1, bub if ¢ is large {hon it is useful to be able to take 2 o args is near
4-m/2. Lavrik derived his formula from the funetional equation, bub in
fact one can easily deduce the above from the msual theta funetion
relation, by slightly modifying the usual derivation of the functional
equation. -
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The Dedekind zeta function of an imaginary quadratic field has an
approximate fonetional equation similar to that in (8). If the field hag
discriminant —d and ¢ > 4 then we find that

dl/z § W dl,’z 5 2
@ (g oo w =g+ {5 2,7 T (s, 2

d]ﬂ Loeg S ] .

N (?ﬂ) %9‘(%)%” LI 5, 2mn /(@)

Hore again Rez > 0, and’
rin) = 3 a(m).
m|w

If (1) = —1 then we can pub d = &, y, = y, and use (9) to compute
L(s, x). We note that r(n) = 0 for many values of # so that a caleulation
Lbased on (9) instead of (8) involves the computation of rather fewer of
the numbers ['(w, @). The & we consider are all such that y(—1) = —1,
50 we abandon y(mod &), and instead consider y,(mod d).

We now set # =1 in (9); in this case (9} is obtained from an identity
of Siegel [13] by interchanging the order of summation and integration.
If we put L—s for s in (9) then the right hand side is unchanged; hence

dl!Z g dllz 18
(5] T 2 = (5] -0t 0) B, )
T 27
Here we put ¢ = 4+, and write the left hand side ag Z (¢, ). Clearly
Z(t, d) is real. Hence if 0 <, < t, << 14, and if Z{t,, d) and Z(4,, d) are
of opposite signs then thers iz ab least one zero $4-iy of L(s, y,) with
b <<y <1y, Ancillary to his thesis research, Purdy [11] found several
values of d for whieh Z(0, d) is small. For some of these d, and for a fow
others, we have located a nearby change ol sign for Z(t, d). These are
the y in Table I.

In order to be sure that Z{f, d) has changed sign it is necessary to
know how small a caleulated value of 1Z(¢, )] can, with certainty, be
distinguished from zero. The errors in the {Jaflcul(htcd values of Z{1, d)
arige from truncating the infinite series, and from approximating the
various terms, chiofly the partial gamma funetion, in the remaining
finite sum. We estimate the truncation error fivst. Trivially |[’(»} -2t o)
KT} )< a e and #(n) < din) < 20, §o

dl/“ dl/ﬂ 1/2 A
| 3 rimpum it ny i, znqv,/d””)k-—_(——m ¢TI,
ne N ’ T 2’TFN
We take N so that the right hand side above is < §-10-".

We conclude with a brief deseription of our caleulations; the complete
error analysis will appear elsewhere [22]. The computations were done
on an IBM/360 model 67 eomputer in long floating arithmetic. We may
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conservatively think of the computer as performing 15 digit decimal arith-
metic. To calenlato I'(3 - 4, o) for the values of a required in {9), we first
caleulated the

(i+1)/2

(10) f gt (6< < 25),

ije
using six-point Gauss—Legendre integration, and the integral
(11) fﬂ’}'_H_ﬂﬁ_mdm,

13
using eight point Gauss—-Laguerre integration. The errvor in each computed
value ig less than 107 We now compute I'(4--4t, ) In various ways,

depending on the size of v. If a > 13, we simply compute the mteglral in
32
the same way that we computed (11). If 3 < d < 13 we calculate [ for

the § for which 7/2 is closest to a, in the same way that we computed the

integrals (10). Finally, if 0 << a< 3 then we write simply
3 Tl

- (__1) f pd 46 3
e Ay = Y
f% o ;% SRR

3 a‘JHr
6 ——————
n+ (J!(J—F*-})) a
Here we ook = 22, so that the truncation error is 2.2 x 107" when
0 < o< 3. Altogether we found that each value of I'(3 -+, o) is known
to within 10~ Thus the error in computing Z (¢, d) is substantially
dl[:a

1/
a—1 t0°¥ r(myn~ M,
(27:) Z )

.
naN

From Table IT below we deduce that if |Z(f, d)| > 10‘“7_1:}1611 we can
distinguigh Z (¢, d) from 0.

Table II
' r(nyn—12 21
d h n%N 'r?,_f);gn
163 1 2.76 7
497 2 4.89 16
2688 ] 8.16 32
17823 16 14.6 74
28003 16 18.7 92
J0805 52 448 156
37427 38 31.4: 137
116147 32 19.8 180
153204, 92 56.1 422
139011 78 %6.0 315
14:5412 92 54.2 . 368
151419 68 39.0 317
188995 48 26.2 20
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ACTA ARTTHMETICGA
XXIV (1974)

On Siegel’s theorem
hy

J. Pivvz (Budapest)

1. Linnik [L] proved in an elementary way the famous theorem of
Siegel, aceording to which the class number A{—k) of the imaginary
quadratic tield belonging to the fundamental discriminant —&<0
sabigfies h(—%) > B if 2> 0 and k > K,{e), where K,{e) denotes an
ineffective constant depending on e

The proof of Linnik is composed of the following 4 parts:

DEriNeeroN, A veal primitive character y, has the property A(f)
if there is gueh o constant Oy, B), that for all N > C4(y,, f) there exists
an Nye [VN, N] with the property

D %rc("%)M(%)l > N

=Ny

1 IE h(—Fk) < k% with 0<< g, << 0.01 for a sufficiently large &
depending on &, then IL(s,y,) vanishes somewhere in the interval
[1—0.00Le, 14 0.001e].

2. Tf L(s, y,) vanishes somewhere in the interval [1—0.001e,, 1+
4+ 0.00L8,] then g, possesses the property A (f) for f =1 —0.08¢,.

3, Xf », possessos tho property A () with a §>1/2 and &is an axbitra-
ry nuniber with 0«2 ¢ < f—1/2, then thore iy sach a constent €, (8, &, i)
that tor wll Ny o O (B, & xp) thove exists an Nye [N¥717%, Ny ], such that
| 5 gy A(m)] > NE |

N ¥y

)'ib. If 4, possosses the property exprossed in the agsertion of the
3rd statement for 8 i 3/4, then there is such & constant 0alg,, ne) that in
ease of T > Oy(xy, 70) A(-—Kk) > B0 where  n(f) = 10.5(1— )47
and 7, is an arbitrary positive number. _

~In this paper, based on the above sketehed order of ideas of Linnik,
we give a simpler elementary proof -of Siegel’s theoreni. Our proof
will be completely elamentary, we shall prove, that for arbitrary positive



