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On a theorem of MacCluer
by

Mropasn Frip (Stony Brook, N. Y.)

L. Introduction. Let I == F(q) be the finite field with q elements
In [6] €. MacCluer proved a theorem which says (roughly) that a poly-
nomial map on o finite field that is “almost” one- one, iy actually one-one.

More precisely, let f(y)e F [y] satisty (called eweeptional in [6] and virtually
one-one in [4]): ‘ :

Flon—1{

(1) plyye) = ==

has mo absolutely irreducible factors over #

(that is, every irreducible factor of @{¥, #) reduces over F, a fixed algebraic
closure of ).

Assume in addition that
(1.2) the function field #(y) is tamely ramified over F{f(y)).
Then MacCluer showed that ' '
(1.3) f(y) is a one-one (and therefore onto map) of the field ¥ into itself.
Actually, it turned out (by much deeper methods) that for fe F[y]
satisfying (1.1) and (1.2), f is indeed very special: a composition of cyclic
and Chebychev polynomials (see Theorem 1 of [4]). :
R. Lidl and C. Wellg in [5] introduced polynomial mappings (in many

variables) from F™—F™ that generalize the properties of cyelic and Che-
bychev polynomials in that they often produce one-one mappings.

Let R De cither a finite field or the ring of integers of a number field
and let Res (&) be the collection of field extensiong of residue class flelds

vof R. In fact, in [B] it is conjectuled that if

(14) H: (yl:' oy Yn) "‘J""(k
with h;e R[y] for ¢ =1, .
and if

(1.3) H: F*>F" ig one-bne for infinitely many fields ¥# ¢ Rer(R),

Taﬂ,(y)) is a polynomial mapping
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then

{1.8) H iz a composite of the generalized cyclic and Chebychev polyno-
mials of Wells and Lidl

~Actually, as example 1 of [4] shows, this was already wrong for
n =1, B = F(g) becanse of wild ramification (condition (1.2) does not
hold). In Section 2 the notion of virtually one-one is extended to all
. — S
fal)

for ¢ = 1, 2. Then, we may formally add oc to #, in order fo agk it

H as in (1.4). Let f{#) be a rational function, with f;(y)e Eiy]

(L.7) fly): FUe—FUco is a virtually one-one map.
This is equivalent to H being virtually one-one where

(1.8) H = (hl (¥1y Yo)s Pa{yy, 19'2)) = (?Jafl(%)a f’f'afa('yl))-
In tact, if f satisfles (1.7) then f is one-one (Proposition 1). But

(1.9) Hy, 9i) = H(yP, yf) for y», yPe F* and ¢ = ¢ =0.
If 40y £ 0, the ratios of the coordinates in (1.9) are equal so that

LY AP

RWY) T RGP
From (1.7) this implies that g = y®, and therefore from (1.9) that
y§ = y@\. Thus H is nearly (but mot quite) one-one. S0 MacCluer's the-
oret does not held in the many wvariable cage.

In this paper we generalize MacCluer’s theorém to show that & poly-
nomial map (as in (1.4)) that is virtually one-one, finite and surjoctive, is
actually a one-one mapping (Theorem 1). Proposition L generalizes Mac
Cluer’s Theorem in another direction. The observation for treating wild
ramification was made by 8. Cohen in [1]. For the notions of finite and
surjective morphisms we refer the reader to [10], pp. 243-245. The f
satisfying (1.7), of prime degree, are classified in [4] and [9].

2. Generalizations of MacCluer’s theorem. Throughout # denotes

a finite field, Wlth order |F|. Let H be 2 polynomial mapping a8 given

in (1.4). Let I’H = G‘rrarph of H so that over any field I'e Rex(R),
(21) Iy(F) = {('.Ul: ooy Yni BolY); ooy hn(y)” Jelm}.
We agsume that )
(2.2} trans, din. P(hy (), ..., k() = n,
- and that '

(2.3) F(y) is a separable extens.ion of F(x) where we have introduced
the variables a; = R (y), for i =1,..., n.

@)
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Without condition (2.2) it is unlikely that H eould give a one-one
mapping. In fact, the image set would be of lower dimension (say % < %)
and therefore would have roughly |#|* rational points over the finite
field # (see proof of Lemma 2). _

Let {z]7 be new variables, algebraieally independent over F(y).
Let § be the affine algebraic set in 7*" defined by the ideal

I = (ha() — (), Bay) ~ P (2), ..., Pl )"-hn(z)) in  Fly; =]

We let £ be the normal closure of F(y) cver F(x). Let 4 be the affine
algebraic subset of F** defined by the ideal '

L= =5, s Yn—2,)  In Fly; #].

LeyMma 1. The irreducible components of S are all of dimension n and
include A with multiplicity one.

Proof. We denote the fields conjugate to F(y) = F(y™) over F(x)
by F(y®), i =1,...,1 where I == [F{y): F(x)]. The irreducible compo-
nents of § have generie points in 92", {where £ is some universal domain
containing Qz) given by (y; y®). Also, (¥®;y™ and (y®;y") define
the same irreducible component of § if and only if F(y™) is comjugate
to F{y") over F{yM). Olearly the transcendence dimension of the generic
point (and therefore the dimension of the algebraic set defined by it)
s n.

The generic point of A is (y®; y™). In order to show that 4 is a com-
ponent of multiplicity one, we have only to show that

(2.4) (T2 2 Ig.
From (2.3) there exist ¢ and j such that

d
&,

ad
(]"i(y}"“hj(z)”@(n;y(l)} % (1) (hj(y(l)))
in not identically zero. However, for fe(I,)% the expression

of

BYy |y

is identically zero, thus demonstrating (2.4). ® _
- LmMwma 2. Let H be o polynomial mapping as given tn (1.4) such that
(2.2) cmd (2.3) hold. In the motation above assume that

{2.6) 8 has an absolutaly irreducible componmt defimed over F and dstinot
“from A,
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Then there cwist constanis O, B, ¢ with 0 < <1, e> 0, B> 0 (4l
independent of |F|) such that '

(2.7) the image of the polynomial mapping H cxcludes ot least | F|* — B P~
elements of F™ :

Proof. Let ¥* be an absolutely irreducible variely over the finite
field 7, of dimension n. Then ¥* has |[F|"+O(F*°) rational peints
for tome constant ¢> 0 (independent of |F']). This is well known, but
we point out that this fact can be reduced to the case of curves by Bertini’s
Theorem. For many curves the clementary axgument of Davenport applies
(see [2]: in general we use The celebrated Riemunn hypotbesis for
curves over finite fields). Let 7 be the absolutely irreducible component
of § hypothesized in (2.6). Since VN4 is an algebraic set of dimension
n—1, it has O(|#F|*™") rational points. Thus V — A hag |F*+ O (|F"%)
rational points. Let (y™; #®) (as in the proof of Lemma 1) be a generic
point of ¥, where ¥y has ¢ conjugates over ¥(y™). Then there are ab

least ~]i |F 4+ O (| F|"*) elements of " which oceur as the second n-tuple

of rational points of ¥V — A, Since H maps each of these elements onto
elements which are the image by H of at least two elements of #", the

1 . ]
image -of A must exclude at least 5 [ 4= O (] ele.mel_lts of F". Taking
0 =1ft, the proof of the lemma is concluded. m

DrmrivrrioN. If H is @ polynominl mapping (as in (1.4)) satisfying
(2.2) and (2.3) and such that

{2.8) § has, excluding 4, no absolutely irreducible components defined
~ over FH
then we say H is a virtually one-one mapping over I
TeROREM 1. Let H be o polynomial mapping that iz virtually one-one
fimite amd surjective over F. Then H: F">F" is a one-one mapping.
Proof. We use the notation of Lemma 1. Let a2, be a place of F{x)
and let p be a prime of Q, extending a,, with decormposition group D(p).
Let ¥ be the algebraic closure of ¥ in Qp, and (as in [1]):

= dor

C(2.9) G(Qu/T(@) = |re @(Q2g/F(2))|7 restricted to ¥ is the
: Frobenins element in G (F (7).

Let r(p)e D{p) map onto the Frobenius element by the residue clags
map (that is, z(p) generates G(F (p)/F] where F(p) iy the residue class
field of p). All of this, including the existence of z(p), is classical in the
one variable case. See [8] (pp. 69-82) for the several variable cage.

icm
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Suppose that we have the relation

~ P
(2.10) G( Qg F(x)) = U1 G Q47 (yD).
e ,
Then 7(p)e G(2,/F(y?)) for some i. Therefore 7(p) fixes p(y®) (the
value of the place p on y) which implies that p(y®)e F* Thus, H {p(y™)
= Xy, and @, is an image point under H. In other words, H iz onto {and
therefore one-one) map.

Note that condition (2.8) implies that if z(p)e é‘(QfI/F %")), then
7(p)(y®) £y for i %1 since (yV;y®) is the generic point for an
irreducible component of § which is acted on nontrivially by the Frobeniuns
element. Thus G(2y/F(yY)) has no intersection with é(QH/F(ym)) for
i # 1, and the right side of (2.10) bas order 1|¢(Qy/F(y™)|. This is
also the order of the left side of (2.10), a8 F{y®)/F (%) is a regular extension

cof degree 1. Since the right side of (2.10) is @ priori contained in the left

side, and their orders are the same, we have proved thatb (2.10) holds.
From the previous argument we are done. m

The next proposition is proved in a similar manner, and it offers

still another generalization of MaeCluer’s Theorem.

ProrosieioN 1. Let iz, y)e Flz, y1 be an irreducible polynomsial, and
suppose F(x, yM) is separable over F (z), where {y®) are the zeros of h(w, y).
Assunie also that ‘ '

(2.11) each orbit of the represemiation of G(Q,/P™)) on 3@, ..., y®
breaks up into smaller orbils under the action of G(F-Q/F (y™))
(where 2, = F(w, ¥V, ..., 49} and ¥ is a fized algebraic closwre of F).

Then, '

(2.12) for each musFQ co, there ewists (n wunique) yye Flroo such that
B{@oy Yo) = 0. ’
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O rwnotese JI. Sitmepa

B. A. Heupmeszo (CBepRitoBeE)

Jleonapy Ditmep [2] BHCKABAN THIIOTE3Y, 9T0 JIA BCAKOTO HATYDPAIb-
HOTO 9ECHA # 2> 3 ypaBHEHHE

o
E .‘1? = ﬂ.’z‘ﬂ_’_l
=1

MMEET DelieHydA B PANMOHANBHBIX UYHCIAX, OTANYHHX OT {, 2 YDABHEHEe

n—1
E Ty =ay
fe=1

TAKWX pemenmii we wmeeT. Caydait o = 3 ORI paceMoTpen caMuM Jimepom
[2]. IIpr n = B, upegnoacenne Diimepa B cwry maiigensoro [laprUARIM
u Jlempmepom [3] TompecrBa 27° 184541105 --113° = 144°%, orazamocs
umepepueM. Ha IYTH e NOKA3ATEILCTBA BTOH TMTOTESH B Cliyune o = 4
OBITH IIOJIYTeHEl CIENYIOMHE Pe3yIBTATHE:

1} Yopxr [6] moxazan HepaspelIuMoCTs YPABHEHEA

(1} , eyt et =t
B HATYPAIbHLIX 9WCIAX &, ¥, #, t OpH § << 10% -

2) Heppu, JInu, Pos» » Gpynme [2], [6] manmm HECKOILEKO panEo-
HATLHEIX PEUIEHMH YpaBHEHHT

(2) $4+y4+zd+t4 :9.4

3) Hewpanenxo [1] yrasaa peryppeHtnsle (OPMYIH, I0BBOIAIOIIEE
N0 ONHOMY DeIleHWI0 ypaBHeHus (1) HAXOEHTL 6ecqﬁcneHHoe MHOMRECTEO
APYTIX,

Hacxomero mam mnecmo, APYIUXK cymec’me}mw{ CBeIeRMi, Kaca-
IOIMEXCA PTHX VPABHEHAH, He MMEercd.

(A. C. enuens modesmo coofmmi, UTo NOKOHHEIHR YopK samAMAICH
YPARHEMHAMHE (1} W (2) | IOIYYMI, M0 Beel BEPOATHOCTH, OYEHE MHTEPECHEIE
pesyneraTel. OpHAKo OIYGHWKOBATE DTH DPe3yALTATH YOpH, K Gonbmomy
COAtATTEHNIO, HE VCIel.)



