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1. Intreduction. Let n = £[]af be a Gaussian integer, with & a unit,
Rew; > 0 and Imos = 0. In 1961, Spira [3] defined a sum of divisors
function ¢ in the ring © of Gaussian integers by

= ] @ =1 —1),

and extended the concepts of even and odd, Mersenne primes, and perfect
numbers to & as follows:

(1) 5 iz defined to be an even Gaussian integer if (14-4)jn and an
odd integer if (1--4)t%.

(ii) The sum o 1+@"*1) = —{[(144)F —1] = M, is called a com-
plex Mersenme prime if M, iz prime.

(i) n i8 » perfect number if o(y) = (L-41)y and 4 is 2 norm—perfeot
number if |o(n)| == 2|y]. (For any complex number #, || = 2%, where 2*
denotes the complex conjugate of 2.)

If a (norm-) perfect number 4 does not have a (norm-) perfect number
ay a proper divisor, we will say that g is primitive.

We characterize the even primitive norm-perfect nmmbers in this
paper and establish ag our principal result the following analog of the
corresponding Euclid-Euler theorem. in the ring £ of rational integers:

Mary Turorzm, Let M, be a complex Mersenne prime and e a unil.
If p =1 (mod 8), 5 = e(L+1)?"' M, is a primitive norm-perfect number;
if p = —1(mod 8), 5 = e(L4+)P71 M, is a primitive norm-perfect number.
Conwersely, if v is an even primifive norm-perfect number, then, for some
unit e, either n = e(L+47 M, where M, is a complew Mersenne prime
with p =1 (mod 8), or § = s(1L+1)°" M}, where M, is a complex Mersenne
prime with p = —1 (mod 3).

Our theorem has the following _ _

COROLLARY. ¥ is an even primitive perfect number iff there oxists a ration.-
al prime p =1 (mod 8) such that 5 = (L+4)°" "M, where M, is a complex
Mersenne prime.
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With the exception of My, Greck letbers will be msed .thrr.rugl'}out
to designate Gaussian integers, and p will always denote. & m»tlona).l ]prllme.
Tn the interest of simplifying the notation we will write o(14-4)** for
of(1 -4y

2. An inequality. Spiva [3] showed that if #e@ and Rey 2 1, then

lg* =11 2= 19"l 1,
with equality holding iff 4 == L. A proof for 5 == g, wn wrbitrary complex
number, may be found in Mitrinovié [2], p. 1l41():_‘

We now improve this inequality for |¢| = ¥is.

TumonmM 1. Let ¢ = x-+iy, |3] = V 5, and @z Lo Por any posilive
inbeger n, E _

' Ltz e 2" > @] TL 4 (22— 1.4)/|lell],
and if, moreover, Wyl <o —1,
L2+ ..o +&" > 1" [1-+20/|k]].

Proof, ¥ # =1, we have

St = Gty = el D (2o 1) k],
If 0 =2, o -
L2422 = [l -+ L +2]f . ‘
| == Yol Ll 4+ 2 - 1+ (202 + 20 1 — 29}/ ]]]
el - TL+ (R — 1) /Y21, fox arbitrary ¥,
le*l - (L4 (2o -+ 1) /Mell],  for jyl <@ —1.
. Now, writing # = r¢, we have '
L2 .t 42 = " —1) /(e —1)] |
| = (=D& =1 fle~1)(" 1)
= (R LT ()T (0 - 20 1)
== |le"| - [r* 4 #20 — 2" eos (- 1) 01/(r* — 204 1).
If w22 3, this quotient is
[ 20T (o — 20 -1 1)
Using » = 1/5, an easy calculation shows thiy Just quoti_ent tobe = [lB%| X
XL+ (2o—1.4}/l2|l]; another short calewlation shows thet if |y < 2—1,
the quotient it > l™[l- [+ 2=/liz]]. :

We shall refer to a Gaussian prime @ as o first-quadrant prime if.
“Ren > 0 and Imw > 0. It should be noted that every Gaussian, integer
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is uniguely representable as the product of a unit and powers of firgt-
quadrant primes. Theorem 1 has the following
Comorravy. If @ is on odd Goussian prime, then

o (a') Jat] > (lln]) 2% — 1.4) [,

where £-1-iy 4s the first-guadrant prime associate of @y if y<<w—1, then
o (@) [l > (lkel 4 29) /=]

Proof. We need only note that for the first-quadrant prime =4 éy
and unit s sueh that ev = 244y, o(a’) is equal to L4 (em)+- ... + (),
and then apply Theorem 1. ' e _

3. Norm-perfect numbers, Let 2 = (L+4)*p, with x odd and
% > 1. Spira [3]has noted that if & = 0, £1 (mnod 8), then |o(5)] > (L - £Yerl,
that is, fo{m)l > 2|5il; so 5 is norm-perfect only if & =0, -1.1(mod 8),

We let Ay, = [LM,], and note the following: - '

(1) @ & = 0 (mod 8),
: My = —i(2¥ 1) and

(2) i % = +1 (mod8),
My = £2-D2 _(ol=02 9y and

A == 2k glbin 4 g :

Ay = 9o+ 0R 4 q
Lumdoia 1. Suppose n is & norm-perfect number, = is an odd prim
divisor of 4, and em is the first-quadrani associate of 7.
(@) If & =0, £1 (mod 8) and k> 11, then |u] > AL,
(b) i ko= L1 (mod 8), then || > .3[2%+V2__17,
(¢} f b = +1 (mod 8) and Resw 1, then || > A, .
Proof. Let o be the largest rational integer such that 7=*]7. Since,

for amy prime power &%, |a{é%) /6% > 1, and since ¢ is a multiplicative
function,

= o)l j2 1l = o (L +i*] o) @ e,

By the Corollary to Theorem 1, this iz greater than Az (el 4 e) {25 e D),
where ¢ = .6 if Reer = 1 and ¢ = 2.6 if Reex > 1. Bolving for x|, we
have

(3) [zl > edy (2% —A,).

(a). I k=0, £1(mod8), 4,>25—20+ {1 by (1) and (2).
Hence, from (3), :

Il 2 .6 [2° — 984902 -1 ] 9+ 1] > (2~ 1,

which, for > 11, is > 2% = A15,
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() and (c). T = 1 (mod 8), 4y = 25— 2B+ 41 > [2+IA__1pp0.
Hence, from {3),

loel > o[2%+V2 — 12 [2 (2% V8 —1)] = (of2) [3%+% —1].

This product is clearly greater than or equal to .3 [2FF02 175 if Resn # 1,
the product equals 1.3[2%+9% _17 which iy greater than 4}°%

LamMa 2. Suppose n = (L9 u is a norm-perfect number with
k= +1 (mod 8), and o¢(1+43)"" = smp, where & i¥ o unit and % and ¢
are first-quadrant primes. If m = a-+bi and ¢ = ¢--di, then i most one
of the rational integers a, by, ¢ and d is equal to 1.

Proof. If k =7, o(L4i)F ' = —(8 I—'M) is not the product of two
primes. If & = 9, 4 is not norm-perfect, since (1 +3)® = — (2 -+ 38) (1 + 64),
and |2 +3i] = 13 < V481 '= A%, contrary to Lemia 1(c). The remaining
values of & are = 15.

Neither a and b nor ¢ and 4 can both he 1, since o(1 44! ig an odd
number. Suppose one element from each set {a, b} and {¢, d} is equal
to 1, and assume, w.lo.g., that x| < llell. Then |r|| = 1+ g2 where g
ig @ or b, and [jo| may be similarly expressed. Now, =[5 or =*|#, since
norm-perfect implies that

= 2l = lo{n)ll =
By Lemma 1(b),

oo {p)l = an* Iea(u)ll

1+¢% = | = [*] > 3[2°—1] > 76.

So, g = 9, which implies that 0 < argm < 7° or 83° < argm <« 90°. Since
Boll = ||, 0 < arge << 7° or 83° < arge < 90°% also. However, for & =15,
argo(L-4-4)*~1 is within one degree of —45° if k = 1 (mod 8) or +within
one degree of —135° if ¥ = —1 (mod 8). We now have a contradiction,
since argo(l i) = arge-farg -+ arg o.

LeMMA 3. If 5 = (140} u is norm-perfect, then M, = o(14-i)*?
is prime and & is a vaiional prime congruent to -1 (mod 8).

Proof. Let @ denote the first-quadrant prime factor of o(L--4)e
of leagt norm and assnme that # is norm-perfect. As nofed in the proof
of Lemma 2, either mln or a*ly. By Spira’s result, k = 0, 4-1 (inod 8).

It & = 0(mod 8), say k = 8, then A4; = 4, = (2¥ - 1)2. I{, now,
t =1, the Gaussian prime 3 divides 4, which implieg that 3"|4 for gome
72z 1; but, using the Corollary to Theorem 1,

1 = o)LL+ ) 9]l

lla(l—]—@ a (3" /(L +4)° 31"1“ > “é*ﬁ"g‘ e

225 15\1
g 7
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On the other hand, if ¢> 1, then |lu| < 2—1 = 2" —1 < 41? contrary
to Lemma 1(a). We will therefore assume for the remainder of the proof
that % = 41 (mod 8).

H & =T, the lemma is true, since o(L+4)* = —(8 +74) is a prime;
if & == 9, the hypothesis is not satisfied, as noted in the proof of Lemma 2.
It % > 15, then, by Lemma 1(a), lkwll > 4}° which implies that o{L-}4)%!
hag at most two prime factors {nob necessarily distinet). Suppose o(L+4-4)%?
hag exactly two prime factors, and let o denote the second first-quadrant
prime factor. Now, we may assume that Rem =3, since if Rex #= 1,
then [z > AY%, by Lemma 1 (e}, and henee o{1--%)*!is prime. By Lemma
2, then, Reg s 1. = is the prime factor of (L4} of least norm, so
lell 2 43, Since Ay = 28—+ Ly o) > 7[8#HU2 17 and, by
Lemma 1(b), =] > .3 [2%+¥% —1]. These two inequalities and the Corollary
to Theorem 1 yield, for some rational integers ¢ and d,

1 = flo(m)/HL+d)nl ,
> o (L8 o (af) o (@) - [(1 + 8 o~
> [lmell (Il +.6) (el +2.6) [2% - firel - ll)] ™
> [2F 4 (.2)- 2% 2.1 367-27F > 1,

Henee, o(L-+4)** ig prime.

To see that & is prime, we asgume that & = g8, ¢ & rational prime
and g<s. Then o(144F! = —i[(1-+4¥—17 hag the proper divigor
[((1+4)?—1], contradicting our result that o(L--4)*"! is prime.

TemorEM 2. If 9 is an even norm-perfect number, then there emists
o Mersenne prime M, such that, for some positive integer t and odd Gaussian
integer 8, either
C(a) y = (L8P ML 5, with p =1 (mod 8),
or ‘

(bY 5 = (1-+4)7 1(M"‘) <8, with p = —1 (mod 8).

Proof. Assume that 5 is an even norm-perfect number. Then o (1)
= 2lnll, s0 o(y) [o(m)]* = 27", Sinee g = (L+4)7"p, o(y) = o{l+i)F~1 x
x o{u), where, by Lemma 3, ¢(1+4)*"' = M, is a Mersenne prime and

= 41 {(mod 8). Since Mpllf(?]), either M|y or Mjln. Now, if p =1
(mod 8), M, =2~ L@=DR _1)i Suppose (L+i)P (Mg, for
gome i Nomng that Im My = Re M;—1 and using the Covollary to
Theorem 1, we have

flo(m) 1l = llo (L4820~ J(L +0Y° | flo (M K DY
> (| M0 (1) -+ 2P0y (2P | M5}

— (2" 4+1)/2" 1> 2,
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Since this implies that 5 is not norm-perfect, My1y. We find, similarly,
that if p = —1 (mod 8), then M,1#5. The proof is complete.

4. Primitive norm~perfect and perfeet mumbers.

Durnmmion. Let n be o (norm-) perfect number. If theve exists
& (norm-) perfect number § such that 8|y and & + sy for any unit &, then »
is said to be an fmprimitive (norm-) perfect number. If 4 is divigible by
ne . (norm-) perfect number ofher than the associates of », then n is said
to be a primitive (norm-) perfect nmmber.

In the ring of rational integers, all perfect nmmbers arve primitive.
This is a consequence of the following property of the o iuuubmn o do-
fined on #': If ab, then o{a)/a < o(b)/b. The analogous property ((lo(a)/al
< la($)/pIl} holds in the ring of Gaussian integers if § = ay and o and »
are relatively prime, but not necessarily if (a,y) %1 (for exflrmplc, if
a =12 and f = (1+29)% |o(e)/al = 40/25 > 37/25 = |lo(B)/F1).

Using Theorem 2, it is now possible to characterize the even primitive
norm-perfect numbers _

Proof of the Main Theorem. Ifp=1 (mod 8) «mday = (L +i)P M,
where M), is a Mersenhe prime, then

o ()l = o (L 487~ (M = | I, 2P~ V2 (L4-0)| = 2 |In]l.

% 18, similarly, norm-perfect if p = —1 (1110(18) and in either case 5
is obvieugly primitive.

Convergely, if % i3 an even prmutwo norme- p(,rfecb nwmber, then,
by Theorem. 2, there exists a Mersenne prime M, such that » ig divisible
by (l+’i)p”1My or (L+i)" M}, according as p =1 or —1 (mod 8);
gince x is primitive, # is eqnal o a unit times one of these divisors.

Proof of the Joxollary. The sufficiency was proved by Spira [3].
T'he necessity is an easy consequence of Theorem 2 and the Main Theorem.
Since every perfect number is norm-perfect, » = (L--4)*~g, for some
odd integer w and prime p = +1 {(mod 8), by Lemma 3. Howover, since
(A+i)y = o) = My o(p), M, divides », and it was shown. in the proof
of Theorem 2 that if p = —1 (mod 8), and M,|», then 'y is not norm-
perfect. Hence, p =1 (mod 8), and, by Theorom 2, 5 is divigible by
(L+4)P~* M. Since ‘ : -

ofe (L1 M) = (144)2 M, Wpy 9 = (144710,

A fable of factors of A4, for p < 1200 was published in 1962 by Brill-
haxt [1]. The primality of A, for all p < 809 was determined, Examination
of the table shows that M, is a Mersenne prime for 12 primes p < 809,
p = 41 (mod8): 7,47, 73 79,113, 161, 167, 239, 241, 353, 867 and 457.
Bach prime iz of course assoclated with a primitive norm-perfect number,
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and the five primes congruent to 1 modulo § (73, 113, 241, 353, 457)
determine the even primitive perfect numbers 5 = (14+4)'M, for
P < 809. .

- 8. Dmprimitive norm-perfect numbers. Do imprimitive norm-perfect
numbers exist? The answer to this question is “yes” and the shmplest
example of an imprimitive norm-perfect number i3

— (L 9)8(T BT +1204).

While the form {(or existence} of such numbers, beyond that given
in Theorem 2 and Thecrem 3 below, it not known, the following surprising
result shows that an even imprimitive norm-perfect number exists for
each prime p = 1 (mod 8) for which both M, and o(M}2) are prime, and
for each prime p = —1(mod 8) for which both M, and o{(My)") are
prime.

THEOREM 3. Let & be ¢ unil.

If p =1{mod 8) and M, and o{M}) are prime, then

7 = &(1+4)" 7 M [o (M)

is an imprimitive nevrm-perfect awmber.
(by If p = —1(mod 8) and M, and of(M,)’} are prime, then

5 = e(L+ P (My)* [{(Mp A"

18 an imprimitive norm-perfect number.

Proof of (a). Assume that p =1 (mod 8) and M, and o(M}) are
prime. Let & = (p —1}/2. By (2), M, = 2"— (2" 1}i = ~-§(2"—1 4+ 2"4).
We find that

[o (M) = —[(2"~1)+2%(2"* ~1)d].

Since ¢(M2) is prime, so ig [o(M})]". Then,

oo (ME))" = 2% 4822 —1)¢ = 2" (L +4)[2" + (2"~ 1)d] = (1+4)° M.

Now, if o == s(L-4+1)? M2 [o(M2)]" then -
o{n) = My o (ML) o{o(Mp))" = M, o(M3)- (1-+48)(144)P M.

Tt follows that |lo(n)|| == 2|7ll. n is obviousty imprimitive sinee (1 -}-£)?~181,
is & proper divisor of n. The proof of (b) ig similar to that of (a).
‘Whether imprimitive perfect numbers exist is not known. Examing-
tion of the proof of Theorem 3 reveals that the imprimitive norm-perfect
numbers shown to exigt in that proof are not perfect numbers, It is the
author’s conjecture that all perfect numbers in & are primitive.
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6. Conclusions. We have shown, in this paper, that one of the best
known theorems involving the sum of divisors function, a8 defined in 2
has an analog, based on Spira’s definition of o, in @. While it is not abso-
Iutely certain that an alternate definition of o would not yield comparable
or even better results, the case now seems to be quite strong for the vali-
dity of Spira’s definition of the sun of divisors function in &.

Our examination of the properties of ¢(%)/n suggests that the answers
{or lack of them) to nearly all the questions which could be asked con-
cerning the existence or the structure of odd perfect numbers in &, and
concerning whether there exists a finite number of even and odd perfect
numbery in &, may be similar to the answers to the same grestions when
posed about perfect numbers in & The fach that if & is a prime and ¢ < b,
then [o{=®) /=% is not necessarily less than fo(n®)/#"||, and the vesultant
implication that imprimitive perfect numbers may exist, certainly sugz-
gests additional questions. A characterization of the even imprimitive
perfect numbers or a proof that all perfect numbers in & are primitive
would be of considerable interest.
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I. Introduction. For each positive integer &, I™ (k) is defined as the
least & such that the congruence

(*) s+ .+ a,xf =0 (mod p")
has a primitive solution for all non 7810 integers a,,..., @, and all prime ‘
powers p". ‘

Except for & =8, I'(k) is known for 1< % <12 and algo when %
ig of the form p—1 or p(p—1) where p is a prime ([3] and [6]). These
results are given in Table 2. In all cases for which I'™(k) is known it is
trae that I™(k) =1 (mod k) and Norton [5] has conjectured that I™(k)
= 1 (mod k) for all %. In this paper we show that I'*(8) = 39, disproving
thig comnjecture.

Throughout this paper we use the same notation as Dodson in [3].

2. LEMMA 1. Let n be a positive integer cmd suppose that fort = 0, ..., n,

v
)__J‘af,wj with all the ay odd and with Z‘fv = 2F for each k = 1, vty

i=0

Then for any positive integer N > m, 2251? represents at least mm(Z' v;, 2 }

different residue elasses (mod 2%) whe’re the my; = 0 or 1 and wwth a,t least
one of the wy; = 1.

Proof. The proof i by induction on n. For n =0 the result follows -
from Chowla’s theorem on the addition of residue classes ([1] or [4],

p. 49, Theorem 15).
~ Assume that the result is true for #» —1. It is given that 20{2 2

n—1 i=0
k=1,...,nand so ) 2°F, represents at least 2 diﬂerent residue clagses
t=0

{mod 2") by the induction hypothesis, and at least 2,'0 = N, say, differ-

ent residue classes (mod 2V).
Tet us represent these residue classes by numbers of the form
§H2% Wy, b= 1, .0, 25 8 = 0y 0., 271, where 1 < u, <C 277" for each s.



