144 W. L. MeDaniel

6. Conclusions. We have shown, in this paper, that one of the best
known theorems involving the sum of divisors function, a8 defined in 2
has an analog, based on Spira’s definition of o, in @. While it is not abso-
Iutely certain that an alternate definition of o would not yield comparable
or even better results, the case now seems to be quite strong for the vali-
dity of Spira’s definition of the sun of divisors function in &.

Our examination of the properties of ¢(%)/n suggests that the answers
{or lack of them) to nearly all the questions which could be asked con-
cerning the existence or the structure of odd perfect numbers in &, and
concerning whether there exists a finite number of even and odd perfect
numbery in &, may be similar to the answers to the same grestions when
posed about perfect numbers in & The fach that if & is a prime and ¢ < b,
then [o{=®) /=% is not necessarily less than fo(n®)/#"||, and the vesultant
implication that imprimitive perfect numbers may exist, certainly sugz-
gests additional questions. A characterization of the even imprimitive
perfect numbers or a proof that all perfect numbers in & are primitive
would be of considerable interest.
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I. Introduction. For each positive integer &, I™ (k) is defined as the
least & such that the congruence

(*) s+ .+ a,xf =0 (mod p")
has a primitive solution for all non 7810 integers a,,..., @, and all prime ‘
powers p". ‘

Except for & =8, I'(k) is known for 1< % <12 and algo when %
ig of the form p—1 or p(p—1) where p is a prime ([3] and [6]). These
results are given in Table 2. In all cases for which I'™(k) is known it is
trae that I™(k) =1 (mod k) and Norton [5] has conjectured that I™(k)
= 1 (mod k) for all %. In this paper we show that I'*(8) = 39, disproving
thig comnjecture.

Throughout this paper we use the same notation as Dodson in [3].

2. LEMMA 1. Let n be a positive integer cmd suppose that fort = 0, ..., n,

v
)__J‘af,wj with all the ay odd and with Z‘fv = 2F for each k = 1, vty

i=0

Then for any positive integer N > m, 2251? represents at least mm(Z' v;, 2 }

different residue elasses (mod 2%) whe’re the my; = 0 or 1 and wwth a,t least
one of the wy; = 1.

Proof. The proof i by induction on n. For n =0 the result follows -
from Chowla’s theorem on the addition of residue classes ([1] or [4],

p. 49, Theorem 15).
~ Assume that the result is true for #» —1. It is given that 20{2 2

n—1 i=0
k=1,...,nand so ) 2°F, represents at least 2 diﬂerent residue clagses
t=0

{mod 2") by the induction hypothesis, and at least 2,'0 = N, say, differ-

ent residue classes (mod 2V).
Tet us represent these residue classes by numbers of the form
§H2% Wy, b= 1, .0, 25 8 = 0y 0., 271, where 1 < u, <C 277" for each s.
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We note that
2t
5"1 Uy == Ny,
5=10
kil
Now Y 2°F; represents all the residue classes of the form

=0 .
o,

P {Yﬂ + 3 )

Femt

where t =1, ..., & = 0,1, 2% 1, :
Then by Ohow”m’b themom ﬂw part in b u(*!{(stq ropresonty .ui; least

min (u, -+ 0, 2V different residue clagses (mod 2¥°%).  Thus 2,’2' y
) danl)

a1 !
represents at least ¥ min (u,+v,, 2777 different residue claggses (mod 2V),
&0
By considering the two possibilities w, -2, = oN=" for all ¢ and u,+u,

&£ 2V for some s, it can casily be seen that

Lo ’ 27
—_ ul
E min (4, -+, 2¥°™) ;= min ((2{) 'u,ﬁ) A0, 2N)
8= =
which gives the required vesult. .
Limvaa. 2. Let T be an infeger power of 2, them fhe numbers 1--32n,
no=0,..., k-1 are oll The odd 81h powers (mod 32Fk).

Proof. If # is odd, then #® =1 {mod 32). Since there are just %
odd 8th powers (mod 32%) and just & numbers of the forin 1 4-32n (imod 32k)
the reswlt follows. '

LmMMA 3. Lot T = Fy+9F, +AF, where

v B
) 8
Fy = Z Oy Ty y

i=0,1,2,

and ay is odd for each 1, j.

Suppose vo-to 40, =0 with 3 e <<
o6 multiples of 8 (mod 2%).

Proof. We deal with 3 different cases

(1) vy 2,0,-+o, 2 4. In this case it follows from Lemma 1 Ghat
we can Solve I = 0 (mod 8} with at least one of the ay == 1, and g0 wo
have that F =84 (mod 2% for some integer 4. Now if # is an integer
and we sot £, = & we get F = 84 + ay; (0® — 1) (mod 2% but by Lomma 2
with & = 8, we can solve #°—1 = 32n (mod 2*) for % = 0,..., 7 and so
for m =0,..., 7 we can solve

14, then B reprosents af loast

T = 84+ 32nay; (nod 2%).
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The numbers 84 - 82may;, 0 == 0, ..., 7 are multiples of 8§ and are incon-
groont (mod 2% and ko, us v << 14, the result follows.

(") 'm, = 4] or L m(_l #, 2 2. In this case we ignore #,. Tirst suppose
Wn‘h dm I(‘:hhb one of the «;; = 1. Thus again by using Lemma 2 we can
reprosont 4 muitiples of 4 (mod 27, say 48 32nay,, n=0,1,2 and 3,
by #1208, Hence we can represent 4 > »—6 nultiples of 8 (mod 28,
as roquirel.

Necond suppose 8o by, By Lemma L we can solve ¥, --2F,
b L ('l-nm-lH) and, M4 "].f‘_‘ ms 0 (mod 8), in each case with one of the
iy == Lo By applying Lemina 2 as before, in each case we can represent
it 1( n.hh 4. different nmlt]pleﬂ of 4 (mod 27) by ¥, +2F, and so altogether
we e roprosent ab Ieast 8 v —6 different multiples of 8 (mod 2°).

(3) 'u“ by w5 30 In this case we ignore I, and F;. Pirst suppose
b oy« 7 50 that v <10, Then by Lemma 1, 7, represents both 2 and
4 {mod 4) and as }J(‘.’[OT(, by Lemma 2, each of these gives rise to 2 multiples
of 2 (mmod 2%, So altogetiier #, rvepresents 4 multiples of 2 (mod 2%) as
required.

Necond suppose v, 2 8. Then by Lemma 1 F, represents 2, 4, 6 and
8 (mod 8) and again each of these gives rise to 2 multiples of 2 (mod 2%),
giving in ol 8 multiples of 2 (mod 2% as required.

Tunoruy 1. 18, 2) = 39.

Proof. Qlenrly the congruence

7 3l )
wa +8 2 yi =0 (od 2°)
il i=1
has no non trivial solution and so we know that I'™(8, 2) > 39.

Suppose that we have a form I with 39 wvariables. Then without
loss of generality ([3], pp. 182-183 or [2]) we can write F in the form

o= By 420 48+ 8 (T +2F + 40, +-8F, -+ 161F,)

g '

. 1
witlh Ky == 2, ayily for each 4 =0,...,7; ay all odd and > ;=239 and
i=0

Fral
¢ |39 f -1 -
such that >'o; = pn ‘—«-)» b =20y, 7.
fauf) 8

Tt wo can ghow that we can alwuys solve P = 0 (mod 2°) with at
leagt ono of the varinbles @y odd, then the problem is solved.
We have
003 5> 2,
v+ = 10 > 2%,
V- Oy 05 = 16 > 29,
Vor Ty 0y -0y 23 20 > 20
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4 .
and 50 by Lemma 1 3 2°F; represents, with at least one of the @y odd,
=0

4
at least »" = > v, > 25 different residue classes (mod 32).
i=0

Now if ' = 32 the problem ig solved and so we take 25 < o' < 31
without. logs of generality. This implies thot 8 = vy -kv, v, < 14 which
is the hypothesis for Lemma 3. .

Thus we have that ¥, --2F; - 4F, reprosents at loagt ;- og-+0, —
—6 =39 —v —6 = 33— ditferent multiples of & (mod 2%).

4

We have already shown that 8 {3 271} represents o multiples of

1]

il

o
8 (mod 2°) and so, as there exigts only 32 multiples of 8 (mod 2°%) the
problemn ig solved. ' :

ATl that remains is to show that I™(8, p) < 39 for all odd primes p.
Now if p does not divide % we note that '

T*(k, 9) < B(y* (b, p)—1)+1  ([3], Lemma 4.2.1)

where »"(k, p) is the least ¢ such that () hag » primitive solution for all
integers @y, ..., @, prime to p and » = 1, and so we have to s¢how that
1¥(8, p) < 5 for all odd primes p. If d = (k, p — 1) then we know that ([3],
p. 166-167) »*(k, ») = »"(d, p) < d-+1, and so we arc only inberested
in priimes = 1 (mod 8), the first few of which are

17, 41, 73, 89, 97, 113, 137, 193.

Tt ig fairly easy to show using exponential sums that if (d-1)*"'
< p¥~! then »* (d, p) < 5 ([3], p. 168). For s — b and d = 8 this is certainly
true for all p > 193.

Another well known result (see [3], p. 166) is that if d = J(p—1)

then _
lo
M) = [EE ],
log2

Applied to p =17, d = 8 this gives »" (8, 17) = b,
Thus we ave left with. the primes

41, 73, 89, 97, 118, 137.

LeMMA 4. Let N be a posilive integer. Let f be @ real positine function
defined on the integers (mod N) and let ¢y, ..., ¢, be inlegers prime to N.
Then ' : : '

N N
Zf'(ml).. . fine,) < Zf(n)“.

fival A=)
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Proof. This iy straightlorward using Holder’s inequality and in-
duction on s. _
Suppose that o,al+ ... +0,6f =0 (mod p) has only the trivial

solution. Then
-1 Pt

Nid d
Z 2 311(01'%1t) sen ep(csmst) =P,
m]:--umﬁ‘“‘o i)
f.e.

[
—

»
S(C]‘t) “an S(csf’) = PPy

N

e

e ]

where, a8 usaal, 6,(®) == exp(2rin/p) and

8(b) = ,,2 ey (D).

. L=
Taking moduli and applying Lemma 4 we get
n-1

D8z —p

LD
and. g0 i we now define, for s> 1,

p=1

QUd, p,8) = > I8N ~p)

Pl
wo geb:
Tmmms B, Jf Q{d, p, 8) <1 then

y*(d,jp)és.

The values of @(8, p, 5) for the six relevant primes were calculated
on 'York University’s ICL 4100 computer and they are listed, accurate
to three tigures, in Table 1. Tt can he seen that they are all well less than 1. -

We have now shown that 7™(8, p) < 33 for all odd primes p, and so,
combining thig with Theorem. 1 we get owr final result.

TICROREM 2.

I™(8) = 39.
Table 1 .
P 41 73 89 97 . 113 137
015, 1, ) 0.880 0206  0.338 0.519 0.448 0.249

Pable 2. Values of I'* (k)
k|12345_6789101112

5 7 .37 16 37 22 39 37 10l 45 145



150 J.D. Bovay

T k-+1 is prime then I'™(k) = k2-+1 and if k-1 i8 composite and
k can be written in the form p (p — 1) for prime p then I™ (k) == 1% (p2—1) 1.
Acknowledgements. T would like to thank the Seience Rcsearch
Council for my Maintenance Grant while this research wag heing done.
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1. Introduction. Throughout fthis paper capitals will be uged for
denoting (strictly increasing) sequences of non-negative integers; if
4, B, ..., 4", A%, .. denotes some sequence, then a,, b, ..., a,, @b, ...
is its th element, and A{»), B(z), ..., A"(z), AP (z), ... the number of
ity elements less than or equal to .

Lot A+ B denote the sequence of all numbers which can be written
in the form a;-|-b;. P. Brdés ([1], page 30, problem 15) asked the following:
it AP = A4, how much denser will A® be than 4. In general, we.
can, state nothing, ag iy seen from the example of the inui_tiples of some
fixed number d; Erdis conjectured that A (») = o(s) implies .

limsup A9(@) /A (@) = 3.

(In all the limits, if not stated differently, we mean a— oo.) Freyman in
his book ([2], page 120} has proven this (in fact, a little more).

Also Hrdis asked the analogous question for the sequence of differ-
ences (that is, the numbers which ean be represented in the form a; — @;
2 Ji this sequence will be called the difference-sequence of 4). If A, A,
AW i o gequence, s difforence-sequence will be denoted by D, DY,
DO Brdiy conjectured that i A(x) = o(e), then D(w)/4 (#)—co
{(unlike the case of stwms, whoere lmsnp A® (@)/A () > 3 is best possible),
and with Narkdzy he proved that if the upper density of 4 is positive,
thon dy,.,  d, =~ O(L). In Seetion 2 we prove [rdis’s conjecture, and in
Section 3 we determing exactly what can be asserted about the lower
density of .1, knowing the wupper density of 4. Finally, in Seetion 4 we
ghall mention sone moere problems and some regults, ouly outlining the
proof.

2. The case A(w) = o(a).
Trmonwes L If A s an infinite sequence for which A(z) = o(z), then

tim D () A (@) = oo.



