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T k-+1 is prime then I'™(k) = k2-+1 and if k-1 i8 composite and
k can be written in the form p (p — 1) for prime p then I™ (k) == 1% (p2—1) 1.
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1. Introduction. Throughout fthis paper capitals will be uged for
denoting (strictly increasing) sequences of non-negative integers; if
4, B, ..., 4", A%, .. denotes some sequence, then a,, b, ..., a,, @b, ...
is its th element, and A{»), B(z), ..., A"(z), AP (z), ... the number of
ity elements less than or equal to .

Lot A+ B denote the sequence of all numbers which can be written
in the form a;-|-b;. P. Brdés ([1], page 30, problem 15) asked the following:
it AP = A4, how much denser will A® be than 4. In general, we.
can, state nothing, ag iy seen from the example of the inui_tiples of some
fixed number d; Erdis conjectured that A (») = o(s) implies .

limsup A9(@) /A (@) = 3.

(In all the limits, if not stated differently, we mean a— oo.) Freyman in
his book ([2], page 120} has proven this (in fact, a little more).

Also Hrdis asked the analogous question for the sequence of differ-
ences (that is, the numbers which ean be represented in the form a; — @;
2 Ji this sequence will be called the difference-sequence of 4). If A, A,
AW i o gequence, s difforence-sequence will be denoted by D, DY,
DO Brdiy conjectured that i A(x) = o(e), then D(w)/4 (#)—co
{(unlike the case of stwms, whoere lmsnp A® (@)/A () > 3 is best possible),
and with Narkdzy he proved that if the upper density of 4 is positive,
thon dy,.,  d, =~ O(L). In Seetion 2 we prove [rdis’s conjecture, and in
Section 3 we determing exactly what can be asserted about the lower
density of .1, knowing the wupper density of 4. Finally, in Seetion 4 we
ghall mention sone moere problems and some regults, ouly outlining the
proof.

2. The case A(w) = o(a).
Trmonwes L If A s an infinite sequence for which A(z) = o(z), then

tim D () A (@) = oo.
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- In fact we shall prove the following stronger
TumorsM TF. If A is an arbitrary infinile sequence, then eidher

UmD(g)jA(@) = 00, o dpy—dy =O0(1).

In case 4 is of density 0, Theorem I"* yields Theorem I. In case 4
is of positive upper density Theorem I* yields the Brdos-Sarkizy rosult
mentioned above. Later on for the second we give an improved lower
estimation for the lower density of ..

Proof. Let us suppose that liminfD(w)/d (@) = ¢ < co; Tthen we
can choose 2 sequence X for which

fe—+oo

(1) : limn D {m) A () = €.
Now congider the following sequences:
-1 :
AP = (A—a)NU (4—a) (49 = A—a)).
_ =1

(4 — ¢ means the sequence {s#;—a}, beginning from the suffix 4, sabig-
fying a;, 2 a> a -—1)
Certainly D = U A® and the AW are disjoint, thug

=1

}?A“’ (@) = D).

=
Tt follows from (1) that
| - "
,:21 A( )(mlo)
limsup =t 0

k00 'A- (.wh)

holds for every n. Therefore
) n ¢
2).14() .’Ii']
lim lim gup e o e 2= 6 5 0
¥ A ( S

nooo - koo ) wk)

Let us choose the sulfix », so that

#Lo
2 AN () 1
(2 limsup &= e = —
’Hﬂﬂ_p () %= a 3
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Wo now ehooso u sequence Y < ¥ sueh that

iy

240w
(3) L A e 2
, F-rm0 A (yh)
hold. .
Lot ¢f == {ay, ..., o, }, and repeat the above series of opemfions for

the  sequenco A" == ANG (it iy possible, becauge D'ly) Do)
A" () =7 (Y}
D ()

s v =g}, I bhis £ {1 T X o
A(W) . ﬂ( 3 ¢} In this way woe get a subsequence Z of ¥ and

a wulfix g, sueh that

er
i
E A ()
(4) 7N st M S N W —
B : (zk * s 3 !
whert
k1
ul i
24 A @ (y.’c}
(B) = lim i sup <=5
froe  fereo (?l k)

(Obviously we can mpld.ce A’ () by A () in the denominators.) Similamly
Tot 6 == {ay, -o0s } {an()—{ll‘? ceey a‘nn+n1}: A" = ANG = {Ongpngg1s - -}
Now we shall prove 4, L —d, = O(1), from which the theorem will evi-
dently follow because D" = D.
Lot d « D' be arbitrary. Then
dy o Gy @y, PG NNy

For a & large enough because of (2), (3), {4) and (5) we have

(6) S‘ A(‘f) (2,) < — A(z,,) L.
fmngll
and :
. gy j
(7) | \‘ Az < = A (%)
' ;imﬂ] +1 3

According tio (6) the nnmber of integers a; satisfying ap—i-Q';Ll < dj < &
and a; -y, ¢ A g, Tor all ¢ is less than 1A(Mk) since the condition a;—a,

¢ A—g, for all ¢ {8 equivalent to a;—aye U A, The same estimation

s Ewﬂ-(}v{ 1 )
18 V‘nhd for the number of those a; for which ty — g A—g, for all 3, since

Ay = “’urw-w 0 and go the condition cuj—cb ¢ A—g; for all ¢ is eqmmlent to
2—=tig
)' (T; € U A’(!)

4m')’l¢1 -1

3 — Acta Arithmetica HXV.2
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Hence it follows that there exigls a j such that
O — by == Oy~ fs;
(ﬁj—— C&g == a;g -_— g;
from which it results that
Oy gy, == %,'—@q"l"{,’; —fs = b;z”i" ({}'-; "’"}7,,\)-
On the other hand, a,> a,> g for a > ay b g;}’,’ 11.{31}(:0, Gy e A",
g, — e D', that is, sinee 0 < gi— s < fuys nsr— G < oy 900

3. The case A(#) 5 o(w). Theorem I' implies that under this con-
dition MminiD(z)/z > 0. First we show a simple improvement of this.

A = lim sup %u for on arbitrery infinile se-

TrmorEM IL inf

&
guence A.

This will be proven in the following, slightly stronger form:
TearorEM IF. Por arbitrary notural wumbers o vy, 2,

w—1 .
A(m+y)—A(y)é[ - +1]D(wo)-
. )
' Making y =0 we get
| Al(e) 2o\ D(®@y)
@ %(14— m) @y
by w—oo for all z,
. D
I 1) O

which is Theorem II.

(onsidering that the interval (¥, 2 4+ 4] can be covered by [f"i:l:;.{-|‘.1|
Ll w
ones of length z,, it is sufficient to see that A (o4 @) — A (e} 5 Diw,).
But this is almost trivial; if (2, » +2,] containg no 4 at all, wo ave ready.
Ii-it dloes, let a; be the least of them; then all they are elements of 13- a,
{#;—a;e D becanse of the definifion of D), thus indeed their number is
less than or equal to D(z).
Still weakening the statement of Theorem XI we geb liminf.D(z)/w
>limsupﬂ(w)/m. The next theorem is a best possible improvement of
- this inequality. . o
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TeEroREM ITT. If limsup A (2)/z — ¢, then

D) > 1 ‘
[1/e]

A suitable subsequence of the multiples of [L/e] shows that there

is no more connection between limsup 4 (@)/e and limint D (w) /.
Theorem YII will be shown in the following form:

VrmrormM INT®, Let @ be any natural number. If

iim inf

1imin-f(p(m)_%) = —co

)
then

Alp) < —2_1.0(1).

Theorem XIT follows with d = [1/e].

Proof. One can select d41 natural numbers 0 <0 <. <6z
such that ¢, —o¢ D. Namely if we have & (< d) of them, ther we can
choose one more. We have to satisty Opr1—C1¢ Dy ooy 61— 0pd D, that

k
I8 ¢ d B ="1J (D4¢). Bubt aceording to our condition for suitable @
=1 :
Bw) <kD(2) < dD(z) < 3 —ep—1,

therefore there must be a number beyond 6y Dot contained in it.

But if we have chosen such ¢, ..., Gzy1, then the sequences A -4 ¢
are disjoint (a,+¢; = a,~+¢; would just imply the contradiction O~ 0
= Gy — 0y ¢ ), from which regarding the ¢;’s non exceeding =

(@-+1)A(2) < @+ 0444y
g.e.d.

4. Problems and results.

1. The question ariges whether Theorems I* and IT have a common
genernlization, that is whether one can estimate d,,,—d, from above
knowing limsup 4 (@)/z. The answer is no, even in the simplest cages,
a8 shown by the following example of Szemerédi: let ae A if ¢ == i (mod ),
0« d < d(}~s) with some large fixed d. Hence for arbitrary large ¢
and small e > 0 4 can have o density larger than % — &, while Y
intinitely many times. _

2. Does D have a density if 4 has a positive one? Not necessarily,
a8 can be seen from the following example of Sérkoézy: 4 consist of 0,
and of :

di+-1 i (2n—1)1 < i << (2n)!,
i<

4i4-2 if (Ee)lg (Zn+ 1)1
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3. Under what conditions will & sequence be the difference-scquence
of another? A simple sufficient condition given by Sarkdzy: if i contains
intervals of arbitrary length (as an interesting special case, all the se-
quences having upper density 1). To see this let the qequuncc be B. We
select a soquence O such that all the differences of A = {e,, t,-+b,} Tall
into B; certainly ils difference-sequence will be B. But it 1s easily satisfied;
having chosen ¢, ..., ¢, we have only to choos0 0, ko That

[(A’nﬁ—lwﬁnr cu--l-l 1H I] = B
which ig solvable by our conditions.

An interesting conseguence of fhis (,Omlmrm is that being given
a sequence B and an arbitrary arithmetical function wf {n) =0, w(n)—oo
one can find an 4 such that D 2 B, D(x)—B(#) < o@).

Cleaxr mecessary conditions are that every d, be representable In the
form d,— d; infinitely many ways, and that for all m, 1f B denotes the
gequence of the differences divisible by m, then by —0, do not tend
to the infinity. But these conditions are by no means sufficient. These
conditions if fulfilled for two sequences, hold fov their union as well,
while the union. of two diffemnco-sequences floos not have to be a differ-
ence-sequence. If a, = 2*7, a; = 2n, then D'UD’ is not u differonce-
gequence. If for some A D were equal to o', then A would not
consists of eloments of the same parity; lot a; bo won and a; odd. Hince
all the odd elements of D are of the form 2%—1, all the odd elements of A
greater than g; should have form. a;-- 9% .1 and the sven oney == a, form
,—]—27‘—1 hence all even numbers in D, L]mt iz all even numbers would,
be of the form 2% —27 9% 14 a;—a,, 2F—~14-a;—a;, or a,—a, where
s, 1< max(f, j), which is irnpossible.

One would expect that the problem can be “finitarized” in the fol-
lowing way: if for all % exist such numbers oY, ..., el that for 4™
= {¢, ¢™--b;} D™ < B, then B is » difference-sequence. (In the de-
‘finition of A" we meant those mumbers ordered increagingly.) Unfortuna-
tely this is not true, s iy shown by the sequence confaining all the non-
negative integers of the form 2°—%7 and 2'-+27. Ileve wuity of == 9" 2"
if by = 9f 199, That B is not a difference-sequence, can be seon similarly
to the. previous.

4. Given .D, the above sufficient condition (in the beginning of 3)
gives infinitely many constrnctions of the sequence 4. The question
arises whether thig is inevitable. The answer i8 no, sinee it is owsy to see
that it @, > 2a, for all », then A’ # A4 --¢ implies 1) 5 D. What other
conditions imply the unigquencss of A?

6. Can Theorem I* be extended to the difference of two distinet
sequences? If 4 and B ave two gequences, then by 4 —B we mean the

icm
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sequence of all a;—b; 2= 0. T have found examples for the following two
statements, showing that both parts of Theorem I* fail to be va,hd in
this case.

2. There exist such sequences 4 and B of positive density, that for
= (A —B)YU(B—4)

fn+1_“fn #* 0(1)'

b. There exist such sequences A and B of density 0, that for F
= (A -~B)U(B—4)

F(@) = O{min (4 (), B()).
The coustructions arve complicated.
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