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Since the integral in the lagt terny of (13} is bounded in @, putbing e
= (=1 BV ()], (18) Decomes

] o ,
. g e MY ol
(14) f Bpethas = D)ol - ( log i
—3/4 J=1
The integral of the ervor term in (10) gives
0 ] .
P logw f ddl = 0@, and fﬂf}(ﬂ)dt = O(L),
—34 — M

which, combined by (10), (11), (12) and (14}, completes the proof of the
Theorem. |
The constructive remarks of the referec ure pgreatly apprecinded.
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XXV (1074)

On the simultaneous diophantine approximation of values
of certain hypergeometric and algebraic tunctions
by

AT ¥ Oscoon (Waghington, D. C.)

Introduction. Tu this paper we shall prove a number of theorems
coneerning the arithmetic properties of functions which we shall denote
an B-Tunetions. This class of functions includes many well known functions
of classical anplysis,

DurINerioNs, A function g(#) is an A-function if there exists an effec-
tive algorithm for computing a positive constant y and a finite set of
ordered puirs (¢, f;), where each a; is an algebraic number (*) and each g,
fs a non-negalive integer, such that g(z) may be written s a finite sum
of functions of the forn

) H(&) = 29 (1og (&) g,, 4, (4

where: (a) The function Y5, (2) is amalytic at & = co. (b) Bach derivative
of Gus,p;(2) ot % = o0 ig algebraic. (¢} There exist T;(n), a non-vanishing
Gaussian integral valued function defined on the positive integers, and
& positive integer M, guch that (i) My <y, (ii) [T;(n)] < 3" for all n = 1,
(iii} M, ga;,0,(00) and each Zy(n)(nl)™ ﬂﬁﬁj(oo) are algebraic infegers,
and (iv) the absolute values of the conjugates of M_,;gﬂj, 5j(oo), and each
Ty (n) (n!)~* fj;’ #y(o0) are less than p and »", respectively.

Wo shall say that o function g(z) is & B-function if there exists an
effoctive algorithm for calewlating not only y and o set of (g, ;) as above
but, also, u positive constant y, such that, for a set of f; a8 above, g(?)
ne %‘(J/j where eath e O and each o] <<y,

Our first resull is: _ _ _

Tienowwsr Lo If y(e) is o solution of (e, y) = 0; wheve ¢z, y) 2 0
8 polynomial in & and y with coefficients in G (3), then y(2) is an A-function.

(1) By offeolively computing an algebraic number a; we mean heing able to
approximate it offectively to within any proassigned error by on element of Q(4)
ag woll as belng able Lo efleotively compube a non-zers polynomial eguation with
coolfielents in §) (i) which iz satlsfied by ;. (Given a;, ay; oy, 2nd a, which have been
effectively ecompuied wo may effoctively determine, for example, i o 4-a, = a3 4ay.)
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DrriNiTIoN. Liet W{y,, ..., 7,) denote the Wronskinn of %, ..., -

Our next result is about the simultaneous diophantine approxi-
mation of B-functions, for large Gaussian integral valucs of the variable 2.

Suppose that ¥ is a non-pelynomial B-function which satisfies o given
linear homogeneous differential equation of ovder s with coefficients
in @i, ¢) which has as a fundamental system of sohutions around 2 = oo
a collection of A-fonctions ¥y, ..., ¥, such that (W(;r/“ ey (.yrm))‘I i8
also an A-function. Let ay, ..., ¢, ..., «, denote % 2= 2 (istined elements
of Z[i] such that the difference of no two distinet o’y equals o singulurity
of the above linear differential equation satistied by . Liet (Py 15 oy P, nd
denote 2 non-zero (Nn)-tuple of Gaussian integers. Lot Fy denote any
0-fold integral of o for 8-+ 0,1,... Let N, denofe a Guussinn integor.

TugorREM IT. There exist a non-negative integer N and hwo effectively
computable functions ¢ = p(e ¥, Ay ooy o) a0d 6 = 3{e, 4y A1y ooy @) SuCh
that if (N, > ¢ end |g) > |NV,|° then

1-&

() max {| DBy (N +a) — 907} > 1) VT
0= jN-~1
1sr<n

Bince it is inconvenient to always have fto consider the intograls of
¥ we have the following result not involving them: Suppose that in fhe
above differential equation for y, D"y has the coefficient a,,(2) = 0 and
the indieial equation at # = co hag no integral roots, i.e. no formal seriey
in descending integral powers of z can be a solution. Het f == dega,(2)
and p = (8—m+1){n—(m+1)g"" '

TuroredM ILL If n > (m+1)f then there ewist fwo effectively compust-

_able funetions ¢ = @ (& ¥, @y ..y 0,) and 8 = 8.(s, Y, 0y, ..., 0,) such
that if |Nyj > @, and |g] > [Ny then
(3) : max {ID7y (N, +a,) —py,07) > gm0,

0<<jgm—1
lrsn

Exawere. Suppose that y is & zero of an element plz, ¥) of Q[4, &, ¥)
of degree 12> 2 in y. Suppose, furthior, that p(z, ¢) i irreducible over
the field of fanctions meromorphic &b 2 = oo and that the cocfficiont of
41 is zevo. Suppose that Ly = 0 is o minimal order linear homogencons
differeritial equation with coefficients in Z[4, 2] which one can oblain,
for all zeros of p(z, ¥), by the process of differentinting p (2, 4) == 0 repoat-
edly and writing each derivative in the basis 1, g, ..., v"" over Q(i, ).
Suppoge that the order of the operator L is m and the degree of the coof-
ficient of D™ in the operator L iz f. Then we shall show that inequality
{3) holds for all y¥ which are zeros of p(z, ¥).

We must show that the hypotheses of Thecrem IIT are satistiod.
Each zero of p(z, ) iz an analytic continuation about 2 = oo of one of
the zeros of »(z,y) and no zero of #(# ) has any integral powers of 2

icm
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in its expansion abowb 2 — oo, It the solution space of Ly = 0 is spanned
by the zeros of p(z, ) we are through, since each zero of Pz y) is an
_4,-funa1aion (which wonld mean, also, that 2 = oo iy ot worst ’a, regular
singular point of Ly = 0, 50 all roots of the indiea] equation at 2 = eo
c-.om’.espond to actual solutions), the reciprocal of the Wronskian of a col-
lection of zeros of pla ) is (if defined) an A-funetion, and no zero of
2(% ¥) hag any integral Powers of ¢ in its expansion about 2 = co (which
means that the indicial equation of Ly =0 at 2 = oo has no intesral
roots). IE y; .i’q.a‘ ze'r(.> of B (2, ¥) then p(z, ¥) must be » minimal polynmii&l
for g; over (i, 2), since otherwise (2 %) would be factorable over (%, 2).
But then the linear homogeneous differentisl equation Ly = 0 obmi;led
above must he, for each zero of 2(2, ), a minimal order linear homo-
geneows differentinl eqnation with coefficients in Z[4, #] satigfied by that
zero. Suppose that y,, -++y ¥ are the zeros of p(z, y). Since each analytic
continuation of a y; is another zero of P2 ), we recall from [4] that
Ly = 0 must equal, up to 2 factor in @[, 2],

WWas ooy iy W W (01, ooy )™ = 0,

Whers 4y, ..., ¥,, are u maximal linearly independent subset of Y1y onvy Wy.
Then, clearly, the g, ..., % generate the solution space of Ly = 0, so
we have proven our agsertion. It ig clear that our proof will go through
it p(2, ) is irveducible over @ L4, #] and each zero of p(z, ¥) has no integral
powers of & in its expangion about 2 = oo, -

We wish to soe what one may 8ay, using the methods of the present
paper, under more general conditions than in the Example above. Suppose
that y(e) is any non-rational function which is a solwtion to gb(z, Y) = 0,
where (2, ¥)e @4, 2, y] has degree 12> 2 in y. Form Ly — 0, as in the
above Example and let m and B be as in the Example also. We are able
to obtain the following result: '

Lucnorim IV, There cxists am eifectively computable fumction g,
= @y {Ys @y, .oy ) such that if |N,|> @, then the dimonsion of the field
QUy 4 (Nt ag)y vony 5(Ny - @)} over Qi) is at Teast (m-1)g~L. ‘

(As wo shall show later, a lower bound of ng—! may be obtained by
& faitly simple srgument which does not involve the methods of tl1fs
paper. One would hope to eventually obtain o stronger result in this
cagse. On the other hand, somewhat more will bhe proven for mogt cages
than is sctually asserted in Theorem. ) '

Porrawene BxAMrw, Tn Theorem TI we may set ¥y = &L Then
(@D A1)y = 0 as ¥ as o solution, y is an A-function, and (W)™ =z
is an A-function. Thus we see that

148

max(flog (N, 4+ aj) -+ o) —p,q7"]) > |g ™3

L f=an
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under the conditions of Theorem II for any complex congbant ¢ Sefting
¢ = —log(N,+ ) and choosing e, = 0 we have that
ite

i = 1,

max {log (14 N7 ) 247"} > 1g
2 fan
under the conditions of Theorem II. The reader may wish to compare
this result with those obtained in [2] by Fel’dwan,
The hyperceometric function of Gamss, F(e, 4, b, ¢) Ratisfics tho
differential equation

(#D 4 a)(2D+ By = D(Eh-+c—1)y.
Noticing that D(eD) = (¢D +1)D we sec that
(zD+a—N)(eD+b—~ N By = (zD4c— N) By,

up to a polynomial of degree N -1, for any definition of Yy, Sinee the
coefficient of £y is (a— N)(b— N) we see that if neither # nor b are
non-negative integers we may define %[y so that euch ¥y may be
expressed a8 a linear combination of y and- Dy. Suppose that y, and y,
are the two linearly independent solutions of (8D --a)(zD--d)y
= D(eD--¢—1)y given by the method of Frobening at 2 = oco whon g, ¥,
and ¢ belong to @ and neither ¢ nor b are non-negative integers. By Lemma 3
of [B8] it is easy to see that y, and y, ave each A-funchions if @ and ¢ do
not differ by an integer. (If a solution involving logarithms should oceur
it would be an 4-function. also since, by [6], the least common multiple

. : 3 def
of the numbers 1,2, ..., N is less than 25°.) £ W i-W(yl, 4,) then

i ‘
- (-—6;—2- log‘(W)) = (o— (&b 4«1)2)@“1(5»1)“1.

By the same argument as for the hypergeowetric funebion we see that
each (z—y)’ is an 4-function for all y and din Q. f[‘huﬁ%' Wtis an A-function
and we may apply Theorem II to obtain

U
1pﬂnx{t01y‘1‘”_(N1 A )+ O S (N - o) = s 507} = Jgl P
==, 1 .
I fssn

for all fixed non-zero (0, Cy) In G, it |Ny > ¢ and |g > N
- Notice that if we consider the equation :

ki -1

(JTep+a))y = {[Jen+,41)y

=1 ja=1

where each a; and each b;« § then the same sort of argmnent goes through.
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If we consider the equation

k)

([T @0+a)y =(in (+D -+ b))y

Jeal Fi

where each a; and each b,e @ and no a; equals an infeger, we can apply
Theorem ITE. Here we se6 ¢ = 2 (nu(erl)z)—l'

a .
Suppose that i (logy) = — & ((z—a) " +(2 D)+ (2 —0)™%), where a, b,
and ¢ each belong to @ (4). Then in general any %, i will be related to elliptic

funetions and will be non-algebraic. Algo in Theorem LI we have Y= -—3€
7 —

and in Theorem IV the lower bound is %(n-+1). These hold if we do not
have a =8 =¢.
If we choose y = &, where % and % ave relatively prime positive
integers with & > 1, then we would obtain results similar to those in [3].
Some corrections for [4] are included at the end of the paper.

Section I

Proof of Theorem L Suppose that y(z) denotes any solution to
2o(2 ¥) = 0 where g,(2, ¥} belongs to Z{i, # v], has degree m > 1 in the
variable %, and hag no repeated zeros. One may easily obtain effective
upper hounds on |y (2)| near 2 == oo from the equation q,(z, ¥) = 0. Thus
we may effectively compute an integer &> 0 such that y,(2) = 2fy(e=™)
i analytic at # = 0. Using the integral representation of ¥{" (2), for each
L 0, we may obtain effectively computable bounds on the gbsolute
values of the coefficients of the expansion of #(z), about 2z = oo. Let
¢ (7, y) = 0 be a polynomial equation with ¢,(2, ¥)< Z[i, 2, ¥] of degree m
in 4 which is satistied by #,(s). Set y.(¢) = 27 {¥,(2) —¥,(0)). One may
eifectively bound from above the absolute values of the coefficients (and
also their conjugates over @:)) of an element g,(z, %) in. O,z yl of
degree at most m in g with g,(2, ,) = 0 % ¢,(0,%), where 0, is the ring
of plgebraic integery of Q(q}, 911(0)). We may continue in this faghion for
any finite number of steps. (Note that these bounds hold for all solutions
y(#) of gi(z4) -0

Tt i posgible to effectively hound the nwiber of initial power series
coefficients which may be identical for two distinet roots of g, (2, ¥) =0
in terms of our bounds on the absolute values of the coefficients of g,(z, ¥),
as we shall show, T ¢y(z, 4) iz monic then letting v, »,, ..., v, be the
solutions of g,(z, ) =0 we have deg([](v;—u)% =1 and for some

: <k

aifectively conaputable constants By and g, if j2| = #; then |v, —uy| =5 2|
Thus one may bound |v; — ! from below by iz]~Ps, where f, > 0 is effecti-

4 — Acta Arithmetica XXV.2
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vely computable, if || > #,. (The general case follows easily now from
this particulax case.) Below let N be fixed.

If N is sufficiently large we shall see that ¢y (0, ) = ay +5 for con-
stants @ and b in Oy with a s 0. Further the above lower bound on N
is effective. If we choose N sufficiently large thaft each of the other m —1
functions which are solutions of gy(#, ¥) = 0 must have a singularity at
z = 0, then gy(#, ¥) looks like

M—1i

y (2) (” ty—

71

o %‘(z)))(y — Y (2))

where each ¢;(2) is analytic at & = 0, cach ¢,(0) 5% 0, each o is & postbive
integer, and ay(z)e Ox[z]. Thus we see that ¢y (s, y) looks like

m—-1

2) (n (2"y “‘f—j(z))) (¥ —yx(2)

where by(2)e Oy[2] and by(0) 5= 0. Then ¢ (0, ) = ay-+ b, with ¢ # 0,
where ¢ and b are in Oy since gy5(0, )¢ O_N[y]

Choose a positive integer M, such that M, a~" ig an algebraic integer
and each M,y (0), 1< j< N, is an algebraic infeger. We may place an
effective upper bound on M, since we can effectively bound from above
_ the absolute values of the coefficients of each g;(z, ¥), in Oy, and we soe
that each O; hag a quotlent tield F; with [F;: Q(i)] < mi.

Place the series _Z‘anz for y{z) in

- m—1
anle, 1) = by ([ ] (7~ i@ v —9(2)
Fwsl

and collect the coefficient of ¢* for each n > 0, in the resultant We gee
that we have exactly one term involving a,, i.e.

-1

(” —'WJ 0)) Oy = Al .

J=1

 The other terms in the ooeﬂmmnﬁ of & arve each numommls, with
coelficients in Oy, of the form ] 1 a;, where (i) m

i
< m, (i) 29,, w1,
Term,

and (iii) each 0 <j, < n~1. Thus each M a, « Oy for eve ry ﬂ/ = 1. The
remainder of the proof of Theorem I is trivial, since one may bound the
absolute values of the 2,’s (and of their conjugates) by 6" for some § > 0
independent of # by using the upper bounds on iy,(e)| and the Cauchy
integral formula. One can then use what we have just proven above to
see that our original (arbitrary) solution y (2) of ¢, (2, ¥) = 0is an A -function.
Thig proves Theorem T,

icm
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It is relatively ensy to see that the class of A-functions (B-functions)
is closed under addition of functional values, mulfiplication of functional
values, and differentiation. It we define an integration operator H by

(2’ g g° log ) 2 a,

4—2«_1 allog (@)*Ha@+ 1)~ —E( 2 uc,d(c+1)“dz°(10g(z)]d‘“1),

c#—1
then it is mot hard to show that the set of A-functions (B-functions) is
closed wnder the operator %.

Probably the most difficuls pmt of the proof of Theorem IT is in
showing that one may express, for each positive mtegel N, the different

DIEN-Ty (54 0,), <VN—1and L<r<n,

2 e+ 1) [log (=) +

for 0 i<

in terms of a basis (chosen from among themselves) of the vector gpace

“which they generate over @ (i, #), while having effective upper bounds

on the degrees and absolute values of the coefficients of the numerators
and denominators (which we take to be in Z[4,2]) of the coefficients.
Therefore we sball now begin to build up to a proof of this latter statement,
in Theorem VII. :

DEFINTTIONS. Let Q(@, #)[DY(Z[4, 2][D]) denote the set of all oper-
ators of Lhe form & = 2 p;(2).DY where each p,(2)e Q(i, ) (4[4, #]). If

D (2) 2 0 we say that & has order m or ordG = m. I m = 0 and py(z) =0
we set ord& = —oo. For a set of parameters ¢,, ..., 6, set

11‘[11’:(61: ey ) = If[:z]01+ -f-K[Z] O

for any field K with [K: @(i)] < oo and K a subtield of ¢. - .

Lumma I Suppose that & and @y == 0 each belong to Q (£, )[D] (and
that v and v, each belong to My (ey, ..., 6,)). Then if both Gy = 0 and G,y = 0
(or Gy =v and Gy = v;) hold fory =y, ...,y =1y, bul no relation of
this type of order less than ord G, holds, we hr:we t?mt & = G2G1 for some @,
e (g, 2)1.D). (Additionally, v = Gyu,.) :

Proof. One sees that @ (4, 2)[D] hae the property that if « mn& B
belong to Q) (4, ¢} LD and orda > o1d f > — oo then there exizts ¢ € @ (4, 2) [.D]
sueh that ord{a-—pf) <01°(Ioc Thus one may constrict Gy e @7, 2 [D]
with ord ((— ) < 01(“1(}1 But then & = @,&,. Further we have that

oty = Gy (GhY) = (GuGh)y =Gy = 0.

This proves Lemma 1.

Dywiwrriow. I Iy and L, belong to Q(@, 2)[.D] then by (L, Ly) we
#)[D] such that Ly is a right divisor of both I,
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and I, (in the ring Q (4, 2)[D]) of maximal order. We call (L, L,) o groatest
comanon divisor of Iy and L.

Lemma IL The vight Buclidean Algorithm for determining o greatesi
common right divisor holds in Q(i, 2)[D]. The greatest common right divisor
obtained by this algorithm is vight divisible by any other common vight divisor
of I, and Ly; hence, @ grealest common divisor is uniguely determined wp
to multiplication on the left by a factor from Q (i, 2).

Proof. Trivial.

Trymva IXT. The kornel of (L, Lg)d—if Ker(L,, Ly) == (Ker L) n(Kerly).
Further, (L, L) may be defined as denoting any operator in € (2, 2)[D]
with kernel equal to V = (KerIy) N(KerL,).

Proof. Let ¢ =20 be an element of Q(i, 2)[D] of minimal order
which satisfies GV = 0. Then, by Lemma I, Iy = L@ and L, = L6
Hence Ker@ s (KerLy) n(KerL;), We Iknow, by definition, that Eerd
2 (Ker L) Nn(Kerl,). Since & is a right divisor of (L, L), by Lemma IT,
we have that Ker(L,, L,) = Ker@ = (KerL,) n(KerL,}. On the other
hand since (T, L) is a right divisor of L; and Ly, Eer (L, Ly) & (Kerl,)n

N (KerL,). Thuy Ker(L,, L,) = (Ker L) n(KerL,). Any two elements of
Q (¢, 2)[D] with the same kernel V ynust have the same order, i.e. the
dimension of V over (. Purther, their greatest coxmon dlwsor must
_also have the same order, hence; th.e two elementy differ by a left factor
in @{4, 2). This proves Lemma IIL.

Lemma IV. If we are given o system of any number of non-zero linear
homogeneous - equations in w variables with coefficients in Z[3] which are
each less in absoluie value than some constant ¢= 1, then there exists an
effectively computable number B(n, ¢) such that there will always ewist o basis
Diyores Uyy - Of the solution space of the above system of equations, with
each entry of each v; belonging to Z[i] and having absolute valwe less than
B, ).

Proof. If the zero wvector iz the only solution we are through. If
the solution space has dimensgion exactly one and s > 1 then the state-
ment of the Lemma is well known and the proof involves nuge of the
“pigeon-hole principle”. (If the sclution space hag dimension one and

-

# =1 then the number of equations was zero. In thiy case X, =1 is

& Dhasis of the solution space.) Thus we may asswne that the solution
space has dimension d = 2. We may complete n maximal linearly inde-
pendent collection of linear equations belonging o our sysbem. 1o a col-
lection of » linearly independent homogeneous equations by adjoining
ag many of the equations X; = 0, 1< j<n, a8 may be necessary. The

number of equations adjoined ix d= 2. Without loss of generality we

- may assume that X, =0, ...,
turn X, = 0, ...

X, =0 are adjoined. Then decleting in
y Xz = 0 from our set of % equations we obtain & different

icm
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systems each with a one dimensional solution gpace gpatned by a non-
zero vector v;e (Z[i])" for 1< j<< d The jth component of ¥; can not
be zero or else ¥; % 0 would he a solution of the homogeneous system
of xank n. If I 5 j, however, the Ith component of v; 18 zero for 1 T d,
Thug the v/s, 1 < j< d, ave linearly independent vectors in the solution
space of our original system of equations. Then by the cage d = 1, mention-
el above, we may effectively compute B(n, ¢). This proves Lemma IV.

DrErmNrrrons. Let 135 denote by (G, ..., &) any operator in Q(4, ) [D]
with kernel equal to [M(Ker®;). Note, uging Lemms IIL, that
j=1

(Gry ooes @) = (61, @)y -y ) = (G, B, -
' (Gry-ens Gy)

may be determined by wsing the right Euclidean algorithm ¢—1 times.
Let Ay, ..., A, denote parameters. If we say that p(z) in Qfi, 2] is effocti-
vely bonnded from above we mean that for effectively computable con-
stants a; and @, each coefficient of p(2) has absolute valué less than ot
and. p(2) has degree less than a,. If we say that p(z) in @, &) is effecti-
vely bounded from above we mean that there ave effectively eomputable
constants a; and @, such that we may write p(2) = p,(2) (pg(z))"?, where
both p,(2) and ps(e) belong to Z[4, 2], the coefficients of hoth p, (2) and
Py(#) have absolute values bounded by a,, and the degrees of both p,(2)
and p,(2) are bounded by a,. If we say that ve Q[4, 2] + ... +Q[4, 214,
(or Le Z[i, 2][D]) is etfectively bounded from above we mean that the
coelficients are effectively bounded from above (and in the case of L,
additionally, ord L is effeetlvely bounded from. above).

-1 (G, G))
80

Suppose that 7 = chff where each f is an. A4-function with  coef-

- ticients in X, where [K Q ()] < oo, and where each ¢; i a complex valued

parameter. Suppose that 7 is the general solution of Gy = 0 where G
is any element of Z[i, 2][D] of order m> 0 and the coefficients of G
are cifectively bounded from above. ,
TuBoREM V. Under the above conditions there exist, for some m, < m,
iy veny A€ Sy b oo + Ko, and LeZ[i, 2][D] such that:
(i) the diy ooy Ay, are linearly independent over. K;
(i) ovdl == m-wml;

(iti) Li = Epj(z 1A whew the »;{s)'s belong to Z[i, z],

(iv) ¢ mt@sfws ne equation of the form Lyy = vy with Ly e Z [, 21[.D]
and vy e Myley, ..., e,) (or even oqual fo amy polynomial), of order less
than m —my; C

(v) L and each p;(2) may be effectively bounded from above; and
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(vi) each A; may be written as a linear combination over Q (i, #) of the D'y
(for t = 0, 1, ...) with coefficients which are effectively bounded from above.

Proof. Let L denote an element of Z[4, 2][D] of minimal order
such that L7 is a polynomial. By looking ab the expansion of gl about

2 = oo we fee that Lie Mgley, ..., oy). Suppose that L.y = 'glpj(z)zj
Jn

where the p;(z)’s and the 1’s are, respectively, linearly independent
elements of Z[1, 2] over Q(¢) and lineaxly independent elements of e, +
... + K¢, over K. By Lemma I, L is aright divisor of ¢, so Ker L < Ker@.
Now (Ker.L)n(KerG) has dimension exactly m—m, since L(§) = 0 iff
the parameters ¢, ..., ¢, are given values so that 4, = 1, = ... =4, = 0.
Thus ord? = m—m,. If m; =0 we are through. In what follows we
shall assume that m, 3> 1. One may find m; elements w;(2)e @4, 2) be-
ginning with (o, = (Pm, (¢ ))7t such that for some Gye Z[4, #I[D], G,
= m(Dp;) ... (Dpp )L and Gy equals zero or A;. Binee DGy = 0 and
ord(Dd,) = m, we see that G, = 4,.

Now there must exist ¢, 0 in Q(i, ) such that DG = ¢,6, or
equivalently, G*p, = 0 (where G is the “Lagrange adjoint” (*) of @, i.e.
if ¢ =-2afj (2} D7 then ¢* = 2( — DY a,(2)). If one repeats the above argu-

ment for each 1<j<<my one obtaing @y, ...y Pmyy DON-ZOTO el,ementq of
Q(iy2), and @y, ..., Gy in Z[, 2][D] such that, for each 1< j<my,
9,6 = DG; and ¢;7 = 4;. Suppose that the ¢/’s are linearly dependent
over K Then for a collection of f; in K which are not all zero we have

0= Zﬁgqoj It follows that

0= (;ﬁj%) G = D(Zﬁﬂj)

Then EﬁjGj = 0} however,

Zﬁ] Jy“Zﬁj;{j#O'

gral : I=1
Thiy shows fhat the @; are linearly independent over K.
Buppose that 6;,..., 0, are 2= m; linearly Independent Holubmna

{over K) of @*y = 0 which are in Q(@, 2). Let DG '13 @ and getb Aj (];J
|—1’Cam. If Zﬁjlj = 0 where the f;
belong to K and are not all zero then Zﬁjﬂjy == (0 which 111:11)11% that

ZﬁjG = 0 since 2 £;G; has order less ﬂmn m. Tt follows thatb \’ﬁjl’)Gj '

gm:],

By the choice of ¥ each 1« Ke, + ..

(%) See [1]. One may verify that G** = @ and ((hG,)* = G*G%.
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== (jé:ﬂj )¢ = 0. Then j;Bi; B 63-. = 0, which is a confradiction. It follows
that the A; are linearly independent over K.

For each 1<j<t, Ker@; — {E‘c;flj A =0}, We 1ecall that H
= (G, ..., Gy) exists in Z[4, ][ D], ]g,ls kernel exacily equal to

m
{Zﬁzfﬂ =2 =..=14= 0}:
lo=] .
and may be effectively determined from G, ..., G, using the right Buclidean
algorithm. Carrying through the nom-homogeneous terms in the above
algorithm we see that we have an equation of the same type as

™y
Iy = D pyleby
j=1
but of possibly lower order, ie. of order m —¢. This is not possible, by
definition, so ¢ = m; and, except for a factor on the left from @ (s, 2),
L = H. Further the non-homogeneous terms are equa,l up to mulbipli-
cation by this factor.

We shall show that we can effectively bound from above a mazximal
linearly independent set of solutions of G*y =0 in @(4, 2). (Obviously
the number of functions in this collection must be m,.) If we conld ac-
complish this then we could effectively bound from above the numerators
and denominators of a collection of corresponding @’s. (Then, using
G;¥ = A to define a “new” set of A’s, we have satistied part (vi) of the
theorem.) Tt would follow that we could effectively hound from above
the coefflclentﬁ of an operator H in Z[i, 2][D] of order m, such that

oy = )__,’gf #}d; for a set of ecffectively bounded g;(2Ys in Z[i 2] and

the “neW” APs. All of Theorem V' would then follow,

One may obtain, from the effective upper bounds on &, effective
upper hounds on ¢”. Then one may bound from above the absolite values
of the finite singularities of ¢, the degree of the minimal field extension
of @(¢) which containg each zero, and the magnitude of the smallest
positive integer such that multiplication by it takes each singularity into
an algebraie integer. From this one mey effectively bound from above
o collection of elements of Z[4, #] whose zercs include all of the roots
of all of the indicial equations about all singularities (finite and in-
finite) of ¢y = 0. We may then effectively bound from above the absolute
values of these roots. It follows that the denominator of each ¢, may be
faken to he the coeefficient of the highest power of D in & raised to an
effectively computable positive integral power while the numerator is
effectively bounded in degree and i known to satisfy the system of homo-
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geneous linear equations implied by g = 0. Thus by Lemma IV wo
may offectively bound each g¢; from. above. This proves Theorem V.
ki3 P
et & be as in Theorem V. For any N 3 m set By ™F = 3 e,V ™ |-

N N =1 _
4+ Y oI ™ where ¢pyy -. -y oy arve additional parameters. Ohviously

F=mt1 . g . :
GDY-"y = 0 ig a minimal order linear homogeneous ditferential equation

which is satisfied by BY~™7. By Theorem V applied to B "F there
exists an effectively bounded L e Z 4, ][ D], of order N —m,, a_'nd effocti-
vely bounded p,(2), ...,pml(z)ez {7, 2] sueh that, for a collection of

My

linearly independent & in ey - oo Koy, L (BN m:j%*jnj (#) 4 and

there exists no equation of this type of lower ovder satisficd by &Y¥—™7,
Recall that each A may be written as a linear combinstion over (i, 2}
of the DFEN-"%5(2), 0 < s < N —1, with coefficients which ave effectively
bounded from above, Suppose that ay, ..., o, ave n = 1 digtinet elements
of @ (4) such that no a, equals the difference of two singularities of &y = 0.

TunorEM VI. Under the above conditions:

() The D°BY"g(s+ta), 0<s< N—1, and the D" "5(2+a,),
agr<n ond 0<s< N—my—1, are lncorly independent over Q[i, 2).

(ii) The D°EY™3(z4a), 0 <s<N—1, may each be written as
a linear combination of the functions lsted in port (1), with coefficients in
Q(4, &) which are effectively bounded from above.

(iil) The D*BY ™% (g), for 0 <8 <X N —my—1 are a basis of the vector
space 'V which is the vector space generatod over Q (3, ) by the D BY "™ (g),
for 0 s N—1, taken modulo the subspace of all elements which are
rational functions.

There ewists R(z), a non-zero eloment of Z[i, &], which is effectively
bounded from above, such that each R(2) DEBY "5 (e), for 0 < e N1,
may be writien as a linear combination over Z[i, 2] of the D*.BY "™y (2), for
0 < s <K N —my — 1, with coefficients which ave effectively bounded from above,
plus o polynomial function having degree effectinely bowndod from above.

Proof. First we shall show that the DFEY""§F(z+a,), 0 < 8 5 N~
—emy-1oand 1<r<n, and 4, ..., Am, dro linearly independent over
(i, ¢). Since each A may be writben as a linear combination over ¢ (4, 2)
of the D°HY ™§(z+ay), 0< s < N—1, this will prove part (i). Suppose
that a non-trivial linear combination over @i, 2) of these elements is
zero. Without loss of generality we may assume that the cocefficients
are in @[, 2]. Then, for each 1< r< m, the sub-sum consisting of all
terms involving derivatives of BY ™% (2--a,), for some one «,, is entire

icm

and bounded by [¢] to some power if |e| is sufficlently large (we wugo hore -

our restriction on the differences of the a,’s). Flence Y "7 (2 + a,) sabistion
- an equation of the form Iy ¢ K [#]e, + ... + K [#]eyfor sotne Ly eZ i, 21 [D]
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of order less than N —m,. This contradicts Theorem V, so part (i) has
heen proven.

By Theorem V parts (i)~(iv) we see that the DFEY"%(z), for
¢<s X N—m,—1, are a basis for V. The remainder of pars (iii) follows
from parts (v) and (vi) of Theorem V.

To see part (i) differentiate

iy

L{B="y) xZ?j(z)lj
=

repeatedly and express ench D° BV (e a), 0 s Fooand 1<y =< n,
In terms of 4,..., 4, and the D*BY-mg(z 4 o) for 0<Ce < N —my—1.
Then expressing the A8 in terms of the D° B TG ta), for 0L s < N — 1,
by Theorem V we are through. This proves Theorem VI.

Section I

In thig section we shall prove Theorem IT. Suppose that we are given,
for any m > 0, an mth order linear differential equation

(4) : Liy) =0
'which bag coefficients in Z [4, #]. After equation (4) has been multiplied
through by an appropriste power of z and one has used 2D — Dz—1
[4
repeatedly it may be put in the form 3 P;(sD}y == 0, for some non-
=0
negative infeger e, where each p;(eD)e Z[4, 2D] and Po(eD)p (2D} == 0.
Without loss of generality we may assume that (4) is in this form alveady.
We have then that p,(f) = 0 iz the indicial equation corresponding to

expansions of solutions of (4) about 2 = co. Rince Y1y «-o» Y are a funda-
mental system of solutions of our equations of type (4) and they are each

" 4-functions then & = oo is, at worst, a regular singular point. Thus p,(£)

bay degree exactly m and roobs 1y ..o, T Which are not necessarily all
digtinet. Let us now agsume, without loss of generality, that y,, ..., 4,
are the m canonical expansions ahout 2 = oo given by the method of
Frobeniug and that each g; corresponds to the root #;. Thus the order
of vanishing, at & = co, of each y;(2) is at least —max {the real part
of #;}--2 for every &> 0. I,

Lot L* denote as before the Lagrange adjoint of L, i.e. 2o (— Dyl
Choose IC; 2= max {[r]}. Seb ' f

Ll wim

=4
(5) Iy == (e )P kL Ty ot
Note that for each neC, '
¢

L&) = X py(—n—f— K= 1) T(0 -+ Fy42) (I (n 4 — 4 1)) 2em 4,

e
VR
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Since the indicial polynomial of I has degree m—l—c\—%— Ko--1 Wf:, foe .thm;
L7 has a regular singular point at & = oo. Also each solumor_x of L; vanishes
ot 2 = oo to the order 1 — & for each & > 0. We may rewrite (5) as

L") = D°( 3wyl =m—i— Ky~ 1) Tln+j+ Ko+ 20 5 + 1)~ ).
i=0

Since po{—n—c—Ky—1) #0¢ i n =0,1,..., we see that given # =0,

1,... we may produce a polynomial u, of degrec exactly n such that

I () = D170 Lo (@)™ e +5(2)),

where ¢(2) i% a polynomial of degree less than or equal to ¢—I1. That
is, there exists a polynomial of degree exactly » which solves L () = 2™
no=0,1,... Set L(y) =ay(&)DVy+ ..., where N =m-to+K+1L
Set {Ty, ---, Uy} equal to any collection of (¢+ K,+1)-fold integrals of
the ditferent y;(2), 1. < j < m4, which were given as solutions of (4). Bxtond
{U,,..., Uy} to & fundamental system of solutions of L(y) = 0, i.e.
{T,, ..., Uy}, by adjoining the solutions 1,2, ...,2" ™%

According to [1] (see page 70) if &' = A(f)x i3 a vector differential
equation and @ is a fundamental matrix of solutions of this equation
then (®*)~* is a fundamental matrix for the adjoint system, &' = — A* ()
where by 4* is meant the conjugate transpose of 4 (but clearly the rosuly
ig also true if we interpret M* to be the transpose of M for each matrix
M). If one uses the canonical reprosentation of an mth order lineax homo-
geneous differential equation Hy = 0, with H(1) =1, as a first order
system ‘with a fundamental matrix of (), 1<<j, k+1<m (where
Yisores Yy 8Te 2 fundamental gystem of solutions of Hy = 0) and v is any
fundamental matrix of the adjoint of this first order system then accord-
ing to [1] (page 85) the functions in the bottom row of » are a funda-
mental system of solutions of H*y =0. (Again the result follows for
the Lagrange adjoint, also, with M* denoting M trangpose.)

Using these two resulty above we see that the

do y ‘ ow ey
U3 () = (on () ey (2) = (ay (&))" W PRk 1<jat NV,
are o fundamental system of golutions of Liy == 0, where W ig the Wron-
skian of Uy, ..., Uy. By our assumption that W* i an A-function we
see that each w;(z) is an A-fonction, By Theorem I {ay(2))" is an A-func-
tion. It follows that the Uj(z) are A-functions.

Now let us reverse the above procedure, going from LF to (I})* = L.

We see that the

an-

'vj(z) 2(—1)NW1-1W:§’ l%j{N,

icm

On the simulteneous diophantine approsimation 179

are a fundamental system of solutions of Ly = 0, where W, is the Wron-
skian off Wy, .- Wy« The logarithmic derivative of W, equals - Gy ()"
= —W (W)"'. Thus W, = KW-. We may multiply W, and W together
and caleulate, in terms of the expansions of the U; and w; about z = oo
the constant K. Hence we may bound |K| effectively from above 'zméi
may also effectively bound from above s positive integer M such that
MK is an algebraic integer. Therefore Wi is an A-function and each
7;(2) iy an A-function. (We have just used the remark in footnote 1 on
the first page of this paper.) .

We wish to use “variation of parameters” in order to write the general
solution of Ii(u,) = 2" for » — 0,1, ... Recall the definition of the
integral operator ¥, given before Lemma I. Recall, from differential
equations, that

Wl () a0y, <.y (o)) 7 00) = {ag () W oy, ..., 10,
We see that the general solution looks like
N

Z (B (v (232" + b) UF (2)

=t
for a collection of arbitrary constants b;. We wish to find a polynomial
solution. by choosing the b’s appropriately. The different Ui {z) all vanish
a.ii # = 0o Go the order 1—« for each & > 0, since they are solutions of
Lﬁ . Thus we mway take u, to be exactly those terms in the expansion. of

12 (v (2)2") U (2) about z = co which do not vanish at z = co. Hach
= ],
2;(2) and each U}" () i8 an A-function. In [6] it was shown that the Ieagt

3

common multiple of {1, 2,..., s} < 97", Using all of these facts we see
that: . . o

Levwma V. Suppose that Ly and Uy, ..., Uy are as above. Then for
each positive integer m, L} u, = & has « solution u, in Q[i, 2] such that
there vwists o non-zero Gaussion integer d, of absolute value loss than K¥
which when multiptied times uy, for each 1< 0 n, gives an element of
713, &) with cogfficients having absolute value less than K%' for some pair
of effectively computable constants Ky and I, independent of n.

Lot

" A N
oy : Aot~ ;
Jﬂjy"m?] ('l’:) L; 2{1 OJEN_m?fj (t) 4 2 Gjtf—'(m+1)
Fam], Fem1
M ’
where § = 3 ¢;y; 15 as in thiz section and N =m-+e¢+K;+1. Then
. jwl

L = 0 has BY¥-™F ag its general solution. We would like to be able
to detine BY-"+95 (1), for 6 = 1, 2, ..., in such a way that we may express
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it as a linear combination over §[i,#] of the D*EY “m‘*'ﬂ?}” (#), fo;r 0 < 8
& N—1, with the coefficients having a common .denommajtor in Z [%]
which does not have “boo large” an absolute value. Since we are 1'egzb1'F111%g [
28 the vaviable now z-Fa; is regarded as a constant and we may define
EY-mi58) to be
T
(G- [ (—w) (BTG () du

Gty :

1 !
= o= T [ g ) du.
} N fe==0 ‘ @y _
‘Now consider, for each 1< k< 0, the identity

i
0= [ mlw){L By (w)du

24y
i

¢ a
- f (B ()} (L7 () g j D(H BY"7 () du
&ey © o @tay
; .
= [ oF (B g (w)) du— (BT + (H I )5 ),
. gy -
where the H)'s are linear ditferential operators of order at most N with
coefficienty in Q[4, t] which have degree at most K+ 0 and which have
a common denominator d, in Z[4] where |dy| < KF, for effectively com-
putable constants K, and K; which are independent of k. Thos we see;
Limvivea, VI For each 1<Sr <Ky each 0 =1, 2, ..., and each 1. << o< 0,

(—1)! & BY ™75 (2 + )
equals a linear combination over Z[i, 2] of the D*EN "5 (z--«,) and the
DR "G (e+ay), 08 N1, with cogfficient polynomials which are
bounded from above in degres by 0-- K, and whose cogfficients are smalley
in absolute value than K3, for effectively computable positive constanis K, and

K, independent of v, 6, and ¢. Pinally, mwh-ﬁfw B0 s N N (),

Suppose now that we define JEF () for y = 0,1, ... 0 equal FHE,

t A Ly

iy N—m, and to equal {(y~1)1) [(f—up Nto-t(pN-mg ) du it
' &

w > N —m, where & is any point of analyticity of 7.
Lovma VIL For each 1 < v < m, each § = 1,2, ..., and each 1 < ¢ << 0,

(¢~ 1)1y I ™43 (2 + o)

icm
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equals- a Uinear combination over 7 [ 2] of the D' EY "™y (z-+a,) with coef-
Jicient polynowials which are bounded from above in degree by 64K, and
whose cocfficients are smaller in absolute value than, K2, for effectively comput-
able positive constonts K, and L, plus a polynomial of degree at most
p—1 in 2 Dach dy is an edement of Z[i] with |4, < K, for an effectively
computable positive constant Iy independent of 8. Finally each

d
T = By )

(Lemma VII i for use in Section IIL)

We next wish to apply Theorem V of [4]. We shall first verify that
Qondition A iz satbisfied by the clags IT of “functions” consisting of the
one function D*EY-™5 where 1 is a non-negative integer chosen so that
each D*EY-"™7 satisfies a linear differertial equation of type (15) in [4]
in which ¢,(s) hag no non-negative integral zeros, and where each para-
meter ¢, 1< §<m, is bounded effectively from above. The argument
affer equation (10) of [4] (see page 32) shows how to place our given
differential equation for #¥-"7 in the form-of (10) and also how to obtain
an. analogous equation of type (10) for each D*EYN-"4. One may use
This argument to effectively bound from above hoth A and the differential
equation of type (10) for D*EY-™g7 We also choose 13> N —m. Since
A2z N —m and we assume given bounds on the absolute values of the

- exponents and the coefficients ¢, ..., e, in the expansion of # about

2 = co we may show that
IDABY G (0] < Iy 4]

if 2] > K5, and e —1] < §12|, for effeetively computable constants K, XK,
and K, independent of 2 regardiess of Cmg1y »oey Oy In [4] seb K, (y, a,,
oy ) 2 I+ 1 max {la,f}. Set Ky(y) = 0, Ky(y) = + oo, and 7 = 4.

,
Then Condition A holds. Without loss of generality we may asswme that
A = N -, ginee wo may substitute a derivative of 7 for 7 in the previous
argurnends.

We next wish o seo that condition B i satisfied (see the end of
this paper wheve correetions for [47 are listed). By Lemms VI and Theorem
VI wo may write, for some non-zero g(z)e Z [, 2] which is effoctively
bounded from above, each §(2)dy. s {p—1)1 B 5(s 1 a.), for 0 < g
€ m-bJC—1, 08 n linear combination over Z{di,#] of the elements of
a basis of p,(y) clements from among the different D°EY ™y(z-+ a),
0<st N1 and 1<t n, with coofficients bounded as required in
condition T for ¢ = 1. One may effectively bound from above the coef- -
ficionts, in (i, ¢), obtained when the generators of P, (y) are expressed
in terms of our basis. We may choose p < p; of these generators of P, (y)
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to replace p elements of our basis above and form a new basis, i‘?j t?r_x.e
U;,,(2). Now T, ,{2) == 1 and 8, (m) = dyypir- Also T,,(z? ma;},rrbe e.lfecm-
vely bounded from above from what we know. We sce that_ .l,,(z) is g {z)
times 2 least common. denominator in Z[i, 2] of the coefficients giving
the elements of the old basis in terms of the .different Um‘,(z)’sl bies
a polynomial which enables us to satisty the ffm.ﬁ-:e number oif con.ch'f.{ox}s
involving derivatives of 7. The remaining conditions are (_a:‘.u.mly've_rlﬁecl..
Then Theorem V of [41 applies. The T, ,(2) are linfzar GO]Tl.b.lI.l‘c'hthhH over
Q(5,2) of the D*EY"§(z+a,), 0<s<< N1, with coefficients wPlfzh
are effectively bounded from above. Thus we may conclude thc“;qj\i;f}j;e;
ment of Theorem IT, but for the BY ™7 as above. We may now sct By ™™ §
= BV "™y and we have proven Theorem IIL

Section ITE

Tn thig section we shall prove Theovems ITL and IV. Suppose that
m . - g y

7 = }'¢;y;, where the ¢’s are parameters which assume values in ¢ with
=1

absolute values bounded from above by some known constant, and each y;
is an A-function. Suppose that 7 iy the general solution of

m
(6) Hy = > a2} Dy =0
J=0
where each a;(2)eZ[%,2], the ¢;(2) are relatively prime, and ao('z)?élo..
Set f = dega,,(2). Since oo is a regular singular point of (6) the indieial
* polynomial there must have m zeros. Therefore we have dega,,(s)—m

=max {deg;{2)—j} = 0, and f = m -+ max{dega;{z) —j}. Let ovda{s) de-
j i

i _ . -
note the order of vanishing of a;(2) at & = 0. Let f == max {j-— ord ay(e)} == 0.
Lsig=im
Tt we multiply (6) through by & and use 2D = D1 vepeatedly we may
write (G) as :
.

(7) Hyy = ¥g;(—Da)ely = 0
iza .

for some 0= e<im and some collection of ¢;( —.De)e Z[4, ~~ D] with
' o

o) (2) 3 0. (We could rewrite Hy oy as 2_5$jq3_,,(—-~ g b5 -1y so that
. =
it iy put in exactly the same form as was (4),) ‘

- Letting N == m 4 ¢ iy -1, a8 in Bection 1T, we may agsuwme withoub
loss of generality that § < N, sinee K, may be taken. larger if necessary.
Detine BY ™4 (1) to be as defined Defore Lemmay VI and VIL Intograting
equation (6), ¥ — g 4+ m -y times for each y 2= § -~ N —m using integration

icm
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by pm;us,_ repeaétedly, differentiating each Power of 2z and integrating
exch DX into D°~1g, ..., 7, By, ..., we have a linear differential equation
of order exactly g with coefficients in Q[i, 2, 7] which is satisfied by

E¥-m g and which hag a polynomial non-homogeneous term. The coef-
ficient of BY ™7 ig a not identically zero polynomial in v of degree B,
Thus the dimengion of the vector space over [i,z] spanned by the -
D, DL 7, By ¥, ..., modualo all polynomial funetions is at most
% plus the number of zeros of the coefficient of BF-m75 e -+ .

Choose N sufficiently large that the coefficient of Y™ 5 does not
vanish if y 2 0. We see by considering our above equation with y = g~ N,
fi==N 41, ..., thait for each positive integer » we may write (et ()Y g,
henee each (4, ()"~ 5) ag equal to a linear combination over
Qi, 2] of BY-"tvg B-mivif-ig modulo all polynomials. We may
replace our basis for V, given in Theorem VI by a new basizs B which
ig formed by completing to a basis a maximal linearly independent subset
in ¥ of the ..., 5" and have all of the assertions in Theorem VT
(iii) about the old basis still hold for B. Since ¥ is not a rational function. 7
does appear in B.

In the remainder of this paper K with a. subseript will alwayy denote
an effectively compuiable constant. Using Lemma VI as well as the
statements above we see that there exists g{#), 2 non-zero element of
Z[i; 2] which iz effectively bounded from above such that, for every
vz 1, each

e(2}d, (y —1)! Eé\’-—m‘l—vg, - vy @@y g (y+ B —2) BY-Wtvii-ly

may be written as a linear combination over Z [4, 2] of the elements of B,
with coefficients < &Y, (2+1)""%u, plus o polynomial of degree ut most
¥ -+ Ky, where Iy does not depend on . (For the definition of < see [4]
p- 359). Let 4 denote the dimension in ¥ of BY g, ... EN-m+~1g ang
hence, of ench Bty . EN-mirti-lg Tet n o denote the dimension
in V of the derivatives of 7. We see that n < 8 and 7, < m. Let &, denote
any point in ¢/ which is not a zero of a,,(2)o(2). .

Limmma VIYI. For every 2, and positive integer 6 there ewist elements of

RN -

#y{@) hawing degree at mast 50 -- K,

to, (%} having degree at most 4,6+ I,,,

and

Up pa(2) € Ky (1Ym0 Ky
suel thab: . .
(i) cach

-1
Loy =3 U pal@) 0(3) dyyy (6 4+ 1— 1)L BY 040
fe=0
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equals o linear combination over Z[4, =] of devivotives of § plus a polynomial
of degree ab most (1— 1) 0+ K ' ]
(i) Mty p(2) Lo 5 (2) = 84(2)7 plus o polynomial of degree al most n0-1- I 43
»

(iil) so{ry) 5 0; and (iv) Ko 4s independent of 0 and 2.

Proof. The various effective upper bounds will follow trivially once
we have constructed our polynomials so ag to satisfy the other conditions,
et each o(2)dp (01— By 040G e gy, dor 0T f—1. We may
write each v, in ¥, as a linear combination of the elements of B. Sef
# = 2, and choose out of the above coefficient matrix any maximal non-
gingular matrix. Since at 2 = 2; we may write each g9 an a linear combi-
nation of the ¢, one may use elementary row operations to see that our
submatrix must contain the », columng corvesponding to the #, elements
of B which are derivatives of 7.

Now Jlook at any maximal non-singular submatrix &, with # indeter-
minate, which confaing a submatrix which is a maximal non-singular
submatrix when ¢ = &, that in turn containg the #, columns of coelficients
of derivatives of #.

We may apply Cramer’s rule to solve, in V, for

47 % (= ()7 < (
as a linear combination over %[, 2] of the v, where 4 i the deferminant
of 8, and s,(2,) # 0. If the coefficients of the v, are denoted as 4y, where
Ay iy either a determinant or zero, we shall see that each A; must be divi-
sible by (2 —2,)". We wigh Ho see that any minor of § gotten by expanding A
along any column of coefficientsy of a derivative of § must be divisible
by (g—=,)". The column operations which one goes through in order fo
show that the matrix hag a determinant divisible by (2-—=)" are not
affected by the loss of such a column, since at 2 = #; such a eoluinn can
not enter into any dependence relations, and an arbitrary rvow. Whns
each. /; is divizible by (& —e,). Letus agsume for now that 4, > 1. Expand-
ing each A, along a column of coefficients of o derivative of 7 we muy
write s == M e A;; where each 4, is divisible by (v—2,)" and ocach

451

ee Q[ ] Then

2= %]

. B o oy
(ﬂ f— zl)y‘?ﬂy m _.}._i (!J' (Z ‘Jlj,I’UI.) .
4 [

Hach 3 A7 8 alinear form in the derivatives of 7 (in facl in § and
144 -

one other derivative of i) inside of V. We may continue the above process
7, ~2 more times until we have an equation which we write in ¥ as

(2—21)" 3] ,5(8) Lo, () = (2--21)"54(2) §.
n
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Note that the non-homogeneous term must be divisible by (2 —2,)" also.
As wag remarked the upper bounds are trivial. This proves Lemma VIIT.

Notice that Lemmas VIT and VIII do not depend on the solutions
of (8) being anything more than A-functions. In what follows we assume
that ,(#) has no integral zeros. Note that », = m. Let N, denote a para-
meter which takes on Gaussian integral values. Let H, be as in eguation (7).
Congider for ainy positive integer «, any non-negative integer 0 < h < .~ i,
any eireular path I which winds once about each N,-+ g, in the positive
divection, and any $(2) as in Lemma VITI,

n

0= (27)™" [ (s ()" (Ha e ([ ] (o, — 0) ™) o

I r=1 .
= (2mi) ™ [[ Y lso@) oy e sole)) [ [ (o—¥,— o)~ [s0(2)7 (2) de.
I j=p i=1
Let B, _»(s,7) denote
(7)™ [s0(2)g(e) (] [lo— 1 — o)) ™" de
I i=1

for all % and & as above. Note that the final integral in the above equation
muy be writhen as a linesr combination of RBy(sy%), ..., Ry s(s.7) over
9, N, where 1 = @m——(h—kc)—km(degsg (z)) and §<C mnl+mn -+ K,
== 8y == §,(0), where I, is independent of 6, w, and N,.

The coefficient of 27 in the expansion about # = co of

L4 . n
Dlsal@) e y(2D) [ (s )"+ [ ] (2 23— 0]
Je=q) : i=1
iy essentially fpc( ~1—e¢+degs,(2)), which is not zero since @,(2) has
no integral zeros., Thus R, (s,7) actually appears in the above equation.
For each pair of non-negative integers & and 6 set M, o, €qual to the module
gonorated over Q[é, Nyl by the. Rp(sef) ..., Brys (8:7), for each sy(2).
{Recall if o(2))t,(2,) =% 0 then by Lemma VIII there exists an §,(z) with
8y(2) 4 0.) Wo see that: :

Toanema LX. If g (@) has no integral 2oros and by < by then My, € My, ,
Jor all 01,

I ¢, (#) hag no integral zeros it follows that HY p == 0 hag no rational
function solutions. Thus (see the proof of Theorem V) it follows that 7
satisties no equation of type (6) of order less fhan », even allowing a poly-
nomisl non—homogcneous term. Therefore (see the proofs of Theorems V
and VI) if 80 oj—a; is a singularity of 7 the functions 7%(N,+ q)), for
0t m—1 and 1<j<n are linearly independent over ¢ (4, N,).

§ — Acta Arithmetica XXV.2
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Hach
(2) [ (s0(e))0) (5 — Ny — o)™V,
I

for t =0,1,...,m—1, may be written as a linear combination over
Q[i, Ny] of the elements of M, ;. Then each

(o ( Ny 4+ N, -+ o) e M,

for each 6 <t < m—1, a8 we may show by induetion. Wa see then:
Lmvsa X. If g (3) has no integral sevos and wmo two ofs have their
difference equal to o singularity of 7, then the g (N1 a), for O <t < m—1
and 1< J < m, are lnewly independent over Q[i, Ny] and for all positive
integors 0 and ko each (so(N,+ o))"y @ (N -+ a;) above belongs 1o M, ,.
What we are actually interested in ave not the M, but the module
M, generated over @[4,2] by all of the

»
RunalTop) = @)™ [ T, ([] (= Fi— @)~} e,
: r- el

where each Dy, (%) is in Lemma VIIL and
| det
B un—h <l 6y = Tk Oyt 04 Ky

Wo see, using (i) of Lemma VIIL, that we may write each Fy(s,7) as
a linear combination of the different Iiy(Ly ,). From this wo have:

Luvma X1, If g, (@) has no integral zeros thewn, for all positive integers 8
and &, oach (s5(Ny+ o))"y (N1 + o) in Lemma X belongs to Mgy, for
all choices of sq(2). :

We wish to evaluate the £,,(Ls p); « ..y Busos, (La,p), Where wf— 5, —1
= f(n—n)+ Ky (I > (m4-1)n this condition will be satistied for
all 0 larger than some effectively computable constant.) For wun-—h in
the above range we may write

n .
(8) RuprlZop) = [ Lop@ ([ [ (6= ¥, — a2,y iz
£ Jmal
a8 a linear combination over i, Ny) of the D'y (N, - a;), 0«8« m-1,
using the residue theorem, our representation of L, as a lvear form.
over Z [4, #1 in the derivatives of F with a non-homogeneous tern, of degreo
less than wn—h—1, and the differential eguation for . Then using our
representation of the Ly, as a linear combination over Z[4, 2] of tho ,
with a non-homogeneous term of degree less than wn—h -1, and the

. n , "
-partial fraction decomposition of ([ (z2— N, ~a;)™% and simplifying
pr|
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we may express {8) as a linear combinabion over Q[i, ¥,] of terms of
the form

(9) (2mi) ™ [ (= Nym o)™y (0-+1— 1)1 B0+ gy
¢

for 0 I f—1 and u; < w. As in the proof of Lemma VI of [4] we gee
that there exists o common denominator in % [¢], for the coefficients of
our clements of type (9), whose absolute value is bounded from above
by Kj, for some K, independent of §. The coeffieient polynomials in
@ [%, N,] have degrees bounded from above by (n—n,) 8-+ K, and their
coefficients have absolute values less than &7, for some K, independent
of 0,%,,1 and ¥, +o;. Bach element of type (9) may be written as

6 +1—1
o ( i )(9“*“1)’ oy BT g, L)

sinee 01 wu-+1= 4 =1, Now

(6—I—Z—~1

Ol 0+ K
= 2 < Uiy
i, 1 ) R 3

where X5 is independent of ‘6, uy, I, and N, a,.

One may effectively hound {#(2)| from above by a power of |2}, if ||
Is larger than some effectively computable constant. Then we may esti-
mate By (Ly,)| by integrating along the circle Jz—N. = %N, Using
Lemmas VIY and X and all of the above remarks we see that if . 1 is
a Gaunssian integer and |,| is larger than some effectively computable
bound then for each positive integer 8:

Leyua XIT. There ewists some mon-zero élement of Z 3] of absolute
vadue less than K3 such that if it s multiplied times each form in (8) the
products each equal a linear form Sy, p(Ly ) in the 4® (N, +o), 0t
sm—1 and 1<<j < n with coofficients in Z[i] having absolute value less
than Hig | N[5 and such that the absolute value of cach linear
form is less than -

U (Ol )+ Eyg

Jor some K indepondent of 0 and N,.
We next wish to nse Lemmas VIIX to XII, along with the Lemma

of [3] to conclude our proof of Theorem ITT. We note thai for each N 1
with || farger than the absolute values of the zeros of a,,(2) p(2) We may
pick out of the S, x{Lp,), for n6—38, < un—h << nb, v linear forms
in the 7 (¥, +a;), 0 < ¢ < m~1 and 1< j < n, which have a non-singular
coefficient matrix, Leb us call this coefficient matrix M,. Our system
of forms may be written as M, V, where V iz a column vector. Then, -
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by Lemma XTI,

(i) Bl < K | O
and
(i) 1M V| < K |1 | 7000 s,

where |matrix] equalg the maximwmn of the absolute values of its entries.

Next set £{8) = | N[+ Then in the Lemma of [3] choose 1 = 5
and e<<1 80 (L-&/5)5(1—gfB) " <146 We geo that f(0) =1 and
that f(0) is monotone increasing and onto [1, oo} I ¢ iy larger than
some effectively computable nwmber 0, then '

(i) 1)) < (F(O)) 1,
(i) : 1M, VIl << (f( @)}~
and

(i) F8) < (F(O—1)",
where '

A = {n—{m+Linn—n+1"" 2 (n— (w4 LE)H—m--1)"%

Thug the hypotheses of Liemama [8] arve satisfied with 7 == 5. By that
Lemmsa we see that if ¢ is a (Gaussian) integer with lg| > {f(0,))4¢~",
then for all solumn madtrices P with (Gausgian) integral entries

1V —Pg= Y 3= (mn) =t j2g|~ L0+

This proves Theorem III.

Let ordf denote the order of vanishing of f at & = co. We ghall need
the following lemma in order to prove Theorem TV.

t .
Lmyna XTEX. Suppose that (I(2)} = (3 ay0(2)wy(2)) 45 @ sequence of
Faml

not identically 2ero linear forms over Q[i, 21 9n w,(2), ..., w,(2), where ewch
wy(z) is algebraic over ((i, z) ond s minimal polynomial over Q(4,%) is
known. Set cach A(0) = max{lega; o(2)}. Let v > 0. Suppose that for each
& > 0 and cach positive integer N therc exist, vespectively, ¢ffectively comput-
able positive integers Oy(e) and 0,{) such that if 0> 0,(z) then

y—{ord (s () (@(0)) ™ < &
and if 0= 0,(N) then '
- ' a0 = N..

Then There exists Ky, > 0 such that of N, is a Gaussian integer and [N, > K 11
the dimension of Q(i, wy(Ny), ..., wy (V) over Qi) 48 at least v 1.
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Proof. Without loss of generality we may take the w;(z) to be alge-
braie integers over Q[4, 2] and the a; ,(#) to belong to Z[4, #]. For each
positive integer 6 it is possible to find Ky, depending on 6, such that
if [N > K, then the absolute value of each (algebraic) conjugste over
Qi) of T(¥y) is less than |¥,|%HEw, where K, is independent of N,
and 0. The product of all of the conjugates of each 1,(I,) is a non-zero
Goussian integer. Hence it 0 is sufficiently large and |N,| > K, we see
that L (N,) must have at least y-1 conjugates (ineluding itself) over
¢ (i). Thus the ww,(N,) generate a field of dimension at leagt y-++1 over
((é). This proves Lemma XITL.

Proof of Theorem IV. We wish to apply Lemma XITI to the
sequence (B, (I ), where the p is chosen arbitrarily except that Ly p(2)
g2 0in ¥V and ¥ = . First we wish to see that no such By (Ly ) 18 icdlenti-
cally zero. Assume one is 0. Ag we have seen before any such identity
would imply that the sum over all terms involving any one value of o
equals a polynomial in N,. We would then have that s, (2) 18 the solution
of & non-zero linear differential equation with constant coefficients and
prolynomial non-homogeneous term. Since T, »(#) must also be algebraie
we see that it must be a polynemial (polynomials are the only entire
algebraic functions). This is a contradiction. Hence Ron (L ) 55 0. Omne
mivy look back to see that here

yo= - gtg)n—n -+t e (- p+1)EY,

since n < f and %, = 1. This proves Theorem IV,

As was remarked in the Introduction, one ean do nearly as well
a8 the statement in Theorem IV without using any deep results. Where
y (%) i3 the coefficient of D™y we conld set

W) = (25)7" [, ()9 () | ﬁ (& — Ny — )"0+

' el

where 7 is w circular path enclosing the points ¥, +a;. As in the proof
of Theorem IV, no Y(2) is identically equal to zero. Since z = co iy ab
worst & regulay gingular point of our differential equation for y we see
that deg ay, (2) = f > dega;(#) if § # m. Thus we have that here y = (n— §) 7%

The following are corveetions for [4]: On page 359 in 3rd line from the boftom
Dy (a4 ) should be TPy (-« and in the 4th line from the bottom the By (24 ap)
should be “H (- @), On the same page in lines 9 and 8 from the bottom (i) ghould
road “‘sorne sequence of repeated. integrals of y(f), By (2), ..., B (), ... with each

BTy () = o By (). In line 13 from the hottom on page 359 we should have
_ S de .
“lgja g’ not 1<j<py.
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On the upper asymptotic density of (0, 7)-primitive
sequences

by
H. G. MurJgr (Delft)

1. In this paper 4 will denote a subsequénce of the sequence of
positive integers. For a set ¥V we denote by A(V) = A(V, 4) the number
of elements of A NV, Moreover we put

A([1, n])

dA = liminf
i

and d4 = limsup_ﬂi’i])
tor the lower and upper asymptotic density of A; if dd = d4 we write 44
for the agymptolic density of A.

A sequence A = () is ealled primitive if o, 2 0 (mod a;) if ¢ 5% 7.
For & survey of the theory of primitive sequences we refer to [5], chapter V
and [4]. We only state here three well-known results, gee [3], p. 244-245,

TuROREM L. If A is o primitive sequence, then dA < }.

Treorem 2. (Behrend [1].) For every primitive sequence, d4 = 0.

TrroreM 3. (Besicovitch [2].) Corresponding to every &> 0, there
exists a primitive sequence A, depending on e, such that dA > L —s.

Let r be a positive infeger. We will call in thiz paper a sequence
A == (@) (0, r)-primitive if a; £ 0, r (mod ;) if ¢ 4. In the following
sections we give estimations for d4 of (0, r)-primitive sequences, similar
to the Theorems 1 and 3.

2. In this section we study (0, #)-primitive sequences with r odd.

Trogowam 4. Let r be an odd positive integer. If A is a (0, r)-primitive
sequence then dA < }. o :

Proof. Let » be a positive integer and a,, ..., ¢; the elements of
A not exceeding n. Let a; (1< i< t) denote thée greatest odd divisor
of a; and A’ = (a))h.,. Sinee a; = o; implies a, o; or a;le; all numbers a;
are distinct.

We congtruet o one-to-one correspondance between the odd integers
in [1, $»] and the odd integers in (§n--#, n-4r]. To every odd infeger ¢
in [1, 4n] there exigts exactly one integer of the form 2%¢ in (i, n] and



