

References

- [1] Coddington and Levinson, Theory of ordinary differential equations, 1955.
- [2] N. I. Fel'dman, Estimation of the absolute value of a linear form from logarithms of certain algebraic numbers (Russian), Mat. Zametki 2 (1967), pp. 245-256.
- [3] C. F. Osgood, The simultaneous diophantine approximation of certain k-th roots, Proc. Camb. Phil. Soc. 67 (1970), pp. 75-86.
- [4] On the simultaneous diophantine approximation of values of certain algebraic functions, Acta Arith. 19 (1971), pp. 343-385.
- [5] Some theorems on diophantine approximation, Trans. Amer. Math. Soc. 123 (1966), pp. 64-87.
- [6] B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), pp. 212-232.

MATHEMATICS RESEARCH CENTER NAVAL RESEARCH LABORATORY Washington, D.C.

Received on 10, 10, 1972 (336)

ACTA ARITHMETICA XXV (1974)

On the upper asymptotic density of (0, r)-primitive sequences

bу

H. G. MEIJER (Delft)

1. In this paper A will denote a subsequence of the sequence of positive integers. For a set V we denote by A(V) = A(V, A) the number of elements of $A \cap V$. Moreover we put

$$\underline{d}A = \liminf \frac{A([1, n])}{n}$$
 and $\overline{d}A = \limsup \frac{A([1, n])}{n}$

for the lower and upper asymptotic density of A; if $\underline{d}A = \overline{d}A$ we write dA for the asymptotic density of A.

A sequence $A = (a_i)$ is called *primitive* if $a_i \not\equiv 0 \pmod{a_j}$ if $i \neq j$. For a survey of the theory of primitive sequences we refer to [5], chapter V and [4]. We only state here three well-known results, see [5], p. 244-245.

THEOREM 1. If A is a primitive sequence, then $dA < \frac{1}{2}$.

THEOREM 2. (Behrend [1].) For every primitive sequence, dA = 0.

THEOREM 3. (Besicovitch [2].) Corresponding to every $\varepsilon > 0$, there exists a primitive sequence A, depending on ε , such that $\bar{d}A > \frac{1}{2} - \varepsilon$.

Let r be a positive integer. We will call in this paper a sequence $A = (a_i)$ (0, r)-primitive if $a_i \not\equiv 0$, $r \pmod{a_j}$ if $i \not\equiv j$. In the following sections we give estimations for $\bar{d}A$ of (0, r)-primitive sequences, similar to the Theorems 1 and 3.

2. In this section we study (0, r)-primitive sequences with r odd. Theorem 4. Let r be an odd positive integer. If A is a (0, r)-primitive sequence then $\overline{d}A \leqslant \frac{1}{4}$.

Proof. Let n be a positive integer and a_1, \ldots, a_t the elements of A not exceeding n. Let a_i' $(1 \le i \le t)$ denote the greatest odd divisor of a_i and $A' = (a_i')_{i=1}^t$. Since $a_i' = a_j'$ implies $a_i|a_j$ or $a_j|a_i$ all numbers a_i' are distinct.

We construct a one-to-one correspondance between the odd integers in $[1, \frac{1}{2}n]$ and the odd integers in $(\frac{1}{2}n+r, n+r]$. To every odd integer e in $[1, \frac{1}{2}n]$ there exists exactly one integer of the form $2^k e$ in $(\frac{1}{2}n, n]$ and

therefore exactly one odd integer of the form $2^k c + r$ in $(\frac{1}{2}n + r, n + r]$. Put $f(c) = 2^k c + r$. If c_1 and c_2 are distinct odd integers in $[1, \frac{1}{2}n]$ then $f(c_1) \neq f(c_2)$ and the relation between c and f(c) is one-to-one.

We prove that from a pair e, f(e) at most one occurs in A'. Suppose $e \in A'$ and $f(e) = 2^k e + r \in A'$. Then $e \in A'$ implies that there is an element $a_i \in A$ with $a_i = 2^k e$ where $0 \le k \le k$. On the other hand $f(e) \in A'$ implies, since $f(e) > \frac{1}{2}n$, that $f(e) \in A$. However, $f(e) = 2^k e + r \equiv r \pmod{a_i}$, which is a contradiction. This proves the theorem.

THEOREM 5. Let r be an odd positive integer and ε a positive real number. There exists a (0, r)-primitive sequence A such that $\overline{d}A > \frac{1}{4} - \varepsilon$.

Proof. According to Theorem 3 there exists a primitive sequence $A_0 = (a_i)$ such that $\bar{d}A_0 > \frac{1}{2} - 2\varepsilon$. Then $A = (2a_i)$ is a (0, r)-primitive sequence satisfying the condition of the theorem.

3. If r is even the situation is more complicated and we have not succeeded in solving the problem entirely. First we prove a result similar to Theorem 3 and Theorem 5.

THEOREM 6. Let r be an even integer and ε a positive real number, then there exists a (0, r)-primitive sequence A, such that $\overline{d}A > \frac{7}{24} - \varepsilon$.

The proof is based on two lemmas.

LEMMA 1. Let r be an even positive integer and T an arbitrary positive integer. There exists a (0, r)-primitive sequence A_T in [T, 3T] such that $A([T, 3T], A_T) > \frac{7}{24} \cdot 3T - 2r$.

Proof. Let A_T consist of the integers in [T, 2T] which are modulo 2r congruent to one of the numbers 0, 1, 2, ..., r-1 and of the integers in (2T, 3T] which are modulo 2r congruent to one of the odd numbers 1, 3, 5, ..., r-1 or modulo 4r to one of the even numbers 3r, 3r+2, ..., 4r-2.

Obviously A_T is a (0, r)-primitive sequence. Moreover

$$A(\llbracket T,2T
right],A_T)\geqslant\left(rac{T}{2r}-1
ight)r$$

and

$$A\left(\left(2T,3T
ight],A_{T}
ight)\geqslant\left(rac{T}{2r}-1
ight)\cdotrac{1}{2}r+\left(rac{T'}{4r}-1
ight)\cdotrac{1}{2}r$$

and Lemma 1 follows.

For a sequence A we denote by B(A) the set consisting of all distinct positive multiples of elements of A. It holds (for a proof see [5], p. 256):

Lemma 2. (Erdös [3].) Let S_T denote the set of integers lying in the interval (T, 2T]. Then

$$\lim_{T\to\infty}dB(S_T)=0.$$

Writing $[T, 3T] = [T, 2T] \cup [\frac{3}{2}T, 3T]$ we see that the same result holds with S_T replaced by the set U_T of all integers lying in [T, 3T].

Proof of Theorem 6. Let $0 < \varepsilon < \frac{1}{4}$ and put $\varepsilon_k = \frac{3}{4}(\frac{1}{2})^{k+1}\varepsilon$ (k = 1, 2, ...). In view of Lemma 2 we may choose an infinite sequence $T_1, T_2, ...$ of positive integers satisfying

$$d_k = dB(U_{T_k}) < \varepsilon_k$$

and

$$T_{k+1} > (3T_k)!$$
.

In $[T_k, 3T_k]$ (k = 1, 2, ...) we take the set of integers A_{T_k} from Lemma 1. Let G_0 be the union of these sets A_{T_k} , then by Lemma 1,

$$A([1,3T_k],G_0) > \frac{7}{24} \cdot 3T_k - 2r$$
.

Let G be the (0, r)-primitive sequence obtained from G_0 by removing from $A_{T_k}(k=1, 2, \ldots)$ all those integers which belong to $B_{k-1} = \bigcup_{i=1}^{k-1} B(A_{T_i})$ and to $r+B_{k-1}$. We observe that $B(A_{T_i})$ can be represented as the union of a number of congruence classes to the modulus $(3T_i)!$. Thus, since $T_k > (3T_i)!$ $(1 \le i \le k-1)$, the set $[T_k, 3T_k]$ contains at most

$$2dB(A_{T_i}) \cdot 2T_k < 4d_i T_k < 4\varepsilon_i T_k$$

members of $B(A_{T_i})$ $(1 \leq i \leq k-1)$. Hence

$$A\left([1\,,\,3T_k]\,,\,G\right) > \tfrac{7}{24}\cdot 3T_k - 2r - \sum_{\ell=1}^{k-1} 8\varepsilon_\ell T_k > \tfrac{7}{24}\cdot 3T_k - 2r - 3\varepsilon T_k.$$

From this inequality Theorem 6 follows.

We continue by proving two theorems similar to the Theorems 1 and 4.

THEOREM 7. Let r=2a, where a is an odd positive integer. If A is a (0,r)-primitive sequence, then $\overline{d}A \leqslant \frac{5}{16}$.

Proof. Let n be a positive integer. We divide the elements of A in [1, n] into two classes $E = E_n$ and $O = O_n$, the set of even and the set of odd elements. Let for $a_i \in E$ the integer a'_i denote the greatest odd divisor of a_i . As in the proof of Theorem 4 the elements a'_i are distinct and differ from the elements in O. Put $E' = (a'_i)$, where $a_i \in E$ and $A' = A'_n = E' \cup O$.

Similar to the proof of Theorem 4 we make a one-to-one correspondence between the odd integers in $[1, \frac{1}{4}n]$ and the odd integers in $(\frac{1}{4}n + a, \frac{1}{2}n + a]$, such that if v(c) in $[1, \frac{1}{4}n]$ and c in $(\frac{1}{4}n + a, \frac{1}{2}n + a]$ are corresponding odd integers then $c = 2^{k(c)}v(c) + a$ for some integer k(c).

Let c be an odd integer in $(\frac{1}{4}n + a, \frac{1}{2}n]$ and let c belong to E'. We will show that then $v(c) \notin A'$. Since $c > \frac{1}{4}n$, obviously $2c \in A$. Suppose

 $v(c) \in A'$, then there exists an element $a_i \in A$ with $a_i = 2^h v(c)$ $(0 \le h \le h(c) + 1)$ and then

$$2c = 2(2^{h(c)}v(c) + a) \equiv 2a \pmod{a_i},$$

which is a contradiction.

Consider now two odd integers c and c-r in $(\frac{1}{4}n+a,\frac{1}{2}n]$ with corresponding v(c) and v(c-r) in $[1,\frac{1}{4}n]$. We will show that at least one of them does not occur in A'. Suppose that they all belong to A'. Then $c \in E'$ or $c \in O$. If $c \in E'$, then $v(c) \notin A'$; contradiction. If, on the other hand, $c \in O$, then since A is a (0, r)-primitive sequence $c-r \notin O$, therefore $c-r \in E'$, which implies $v(c-r) \notin A'$; contradiction.

From this we get

(1)
$$\limsup \frac{A([1, \frac{1}{2}n], A'_n)}{n} \leq \frac{3}{4} \cdot \frac{1}{4}.$$

If c is an odd integer in $(\frac{1}{2}n, n]$ and $c \in A'$, then obviously $c \in A$. Therefore from a pair of odd integers c, c+r in $(\frac{1}{2}n, n]$ at most one occurs in A'. Hence

(2)
$$\limsup \frac{A\left(\left(\frac{1}{2}n, n\right], A_n'\right)}{n} \leqslant \frac{1}{8}.$$

From (1) and (2) follows Theorem 7.

THEOREM 8. Let r = 4b, where b is a positive integer. If A is a (0, r)-primitive sequence, then

$$ar{d}A \leqslant egin{cases} rac{21}{64} & \textit{if b is odd}, \ rac{43}{128} & \textit{if b is even}. \end{cases}$$

Proof. Let n be a positive integer. We define E, O, E' and A' as in the proof of Theorem 7. As above we see that (2) holds.

Consider the interval $(\frac{1}{4}n, \frac{1}{2}n]$. Let c be an odd integer in $(\frac{1}{4}n, \frac{1}{2}n]$, such that $c \in E'$. Then, obviously $2c \in A$. This implies $2c - r \notin A$ and $c - 2b \notin A$. Therefore the odd integer c - 2b does not occur in A'.

We will show now that from a set of four odd integers c-6b, c-4b, c-2b, c in $(\frac{1}{4}n, \frac{1}{4}n]$ at least one does not occur in A'. Suppose that the four integers are elements from A'. Then $e \in E'$ or $e \in O$. If $e \in E'$ then $e-2b \notin A'$; contradiction. If, on the other hand, $e \in O$, then $e-4b \notin O$, thus $e-4b \in E'$ and $e-6b \notin A'$; contradiction. Hence

(3)
$$\limsup \frac{A\left(\left(\frac{1}{4}n, \frac{1}{2}n\right], A'_{n}\right)}{n} \leqslant \frac{3}{4} \cdot \frac{1}{8}.$$

For an estimation of $A([1, \frac{1}{4}n], A')$ we distinguish two cases: 1° b odd; 2° b even.

ad 1. Similar to the proof of Theorem 4 we make a one-to-one correspondence between the odd integers v(c) in $[1, \frac{1}{3}n]$ and the odd integers c in $(\frac{1}{3}n+b, \frac{1}{4}n+b]$, such that $c=2^{k(c)}v(c)+b$ for some integer k(c).

Let c be an odd integer in $(\frac{1}{3}n+b, \frac{1}{4}n]$ with $c \in E'$. Then $2c \in A$ or $4c \in A$. Now $2c \in A$ implies $2c-4b \notin A$ and $c-2b \notin A$, therefore $c-2b \notin A'$. On the other hand, $4c \in A$ gives $v(c) \notin A'$, since $v(c) \in A'$ implies that there exists an $a_i \in A$ with $a_i = 2^h v(c)$ $(0 \le h \le k+2)$ and then

$$4c \equiv 4(2^{k(c)}v(c)+b) \equiv 4b \pmod{a_i},$$

which is a contradiction. Hence if c is odd in $(\frac{1}{8}n+b,\frac{1}{4}n]$ and $c \in E'$, then $c-2b \notin A'$ or $v(c) \notin A'$.

Consider the four odd integers c-6b, c-4b, c-2b, c in $(\frac{1}{3}n+b, \frac{1}{4}n]$ with corresponding elements in $(1, \frac{1}{3}n]$. With a similar argument as above we see that at least one of them does not occur in A'. Therefore

(4)
$$\limsup \frac{A([1, \frac{1}{4}n], A'_n)}{n} \leqslant \frac{7}{8} \cdot \frac{1}{8}.$$

ad 2. We divide $[1, \frac{1}{4}n]$ into two parts, $[1, \frac{1}{8}n]$ and $(\frac{1}{8}n, \frac{1}{4}n]$. If c is an odd integer in $(\frac{1}{8}n, \frac{1}{4}n]$ and $c \in E'$, then $2c \in A$ or $4c \in A$. If $4c \in A$ then, as above, $c - b \notin A'$. If, on the other hand, $2c \in A$, then $2c - 4b \notin A$ and $c - 2b \notin A$. Then $c - 2b \in A'$ if and only if $4c - 8b \in A$; in the last case, however, $c - 3b \notin A'$. Therefore $2c \in A$ implies $c - 2b \notin A'$ or $c - 3b \notin A'$. Hence $c \in E'$ implies that at least one of the elements c - b, c - 2b and c - 3b does not occur in A'.

From this we can prove as above that from the eight odd elements c-tb, $t=0,1,2,\ldots,7$, in $(\frac{1}{3}n,\frac{1}{4}n]$ at least one does not occur in A'. Hence

(5)
$$\limsup \frac{A\left(\left(\frac{1}{8}n, \frac{1}{4}n\right], A'_n\right)}{n} \leqslant \frac{7}{8} \cdot \frac{1}{16}.$$

Moreover, trivially

(6)
$$\limsup \frac{A([1,\frac{1}{8}n],A'_n)}{n} \leqslant \frac{1}{16}.$$

If b is odd the theorem follows from (2), (3) and (4); if b is even we get Theorem 8 from (2), (3), (5) and (6).

4. For special values of r we can derive upper bounds for $\overline{d}A$ which are lower than the values given in Theorem 7 and Theorem 8. We treat here the case r=2, for which we prove the following result.

THEOREM 9. If A is a (0, 2)-primitive sequence, then $\bar{d}A \leqslant \frac{7}{24} + \frac{1}{144}$.

Proof. Let n be a positive integer and let E, O, E' and A' be defined as in the proof of Theorem 7. We will also use the one-to-one correspondence from the proof of Theorem 7 between the odd integers v(e) in $[1, \frac{1}{4}n]$ and the odd integers e in $(\frac{1}{4}n+1, \frac{1}{2}n+1]$. We define three subsets of the set of odd integers in [1, n]:

1° the set C_1 of odd integers in $(\frac{1}{2}n, \frac{3}{4}n]$,

2° the set C_2 consisting of the odd integers in $(\frac{1}{3}n+1, \frac{1}{2}n+1]$ with the corresponding odd integers in $[1, \frac{1}{4}n]$;

3° the set C_3 consisting of the odd integers in $(\frac{1}{4}n + 1, \frac{1}{4}n]$ with the corresponding odd integers in $[1, \frac{1}{4}n]$ and the set of odd integers in $(\frac{3}{4}n, n]$.

ad C_1 . As in the proof of relation (2) we see that from a pair of odd integers c, c+2 in $(\frac{1}{2}n,\frac{3}{4}n]$ at most one occurs in A'. Therefore

(7)
$$\limsup \frac{A(C_1, A'_n)}{n} \leqslant \frac{1}{16}.$$

ad C_2 . From the proof of relation (1) it follows that from a pair of odd integers c, c+2 in $(\frac{1}{3}n+1,\frac{1}{2}n]$ with corresponding odd integers v(c), v(c+2) in $[1,\frac{1}{4}n]$ at least one does not occur in A'. Hence

(8)
$$\limsup \frac{A(C_2, A'_n)}{n} \leqslant \frac{3}{4} \cdot \frac{1}{6}.$$

ad C_3 . We recall that if e is an odd integer in $(\frac{1}{4}n+1, \frac{1}{3}n]$ and $e \in O$, then $e+2 \notin O$. Therefore we can divide the odd integers in $(\frac{1}{4}n+1, \frac{1}{3}n]$ into sets $\{e, e+2, \ldots, e+2s\}$ with

$$c, c+2, \ldots, c+2s-2 \notin O$$
, $c+2s \in O$ and $s \geqslant 1$.

(It is possible that there remain two sets: a first one consisting of one single integer $c \in O$ and a last one $\{c, ..., c+2s\}$ with $c+2s \notin O$. It is easy to check, however, that they do not disturb our arguments below.)

Consider a set D which is the union of the following three sets: a) a set of s+1 consecutive odd integers $\{c, c+2, ..., c+2s\}$ in $(\frac{1}{4}n+1, \frac{1}{3}n]$ with $c, ..., c+2s-2 \neq 0, c+2s \in O$; b) the set of corresponding integers $\{v(c), ..., v(c+2s)\}$ in $[1, \frac{1}{4}n]$; c) the set of 3s+3 consecutive odd integers $\{3c-2, 3c, 3c+2, ..., 3c+6s-2, 3c+6s, 3c+6s+2\}$ in $(\frac{3}{4}n, n]$.

We derive an upper bound for A(D, A').

If $c+2\sigma$ $(0 \le \sigma \le s-1)$ occurs in E' then, as in the proof of Theorem 7, $v(c+2\sigma) \notin A'$. Therefore from a pair $c+2\sigma$, $v(c+2\sigma)$ $(0 \le \sigma \le s-1)$ at most one occurs in A'.

Furthermore, since $c+2s \in O$, the odd integers 3c+6s and 3c+6s+2 do not occur in A'.

Finally, from two consecutive odd integers in $\{3e-2, ..., 3e+6s-2\}$ at most one occurs in A'.

Therefore we get

$$A(D, A') \leqslant \begin{cases} s + 2 + \frac{1}{2}(3s + 1) & \text{if } 3s + 1 \text{ is even,} \\ s + 2 + \frac{1}{2}(3s + 1) + \frac{1}{2} & \text{if } 3s + 1 \text{ is odd.} \end{cases}$$

For s odd we write $s+2+\frac{1}{2}(3s+1)=\frac{5}{2}(s+1)$ and for s even we have

$$s+2+\frac{1}{2}(3s+1)+\frac{1}{2}=\left\{\frac{5}{2}+\frac{1}{2(s+1)}\right\}(s+1)\leqslant \left(\frac{5}{2}+\frac{1}{6}\right)(s+1).$$

This implies

(9)
$$\lim \sup \frac{A(C_3, A'_n)}{n} \leqslant \left(\frac{5}{2} + \frac{1}{6}\right) \cdot \frac{1}{24}.$$

From (7), (8) and (9) we get Theorem 9.

References

[1] F. Behrend, On sequences of integers not divisible one by another, J. London Math. Soc. 10 (1935), pp. 42-44.

[2] A. S. Besicovitch, On the density of certain sequences of integers, Math. Ann. 110 (1934), pp. 336-341.

[3] P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), pp. 126-128.

[4] P. Erdös, A. Sárközy and E. Szemerédi, On divisibility properties of sequences of integers, Number Theory (Colloq. János Bolyai Math. Soc., Debrecen, 1968), pp. 35-49, Amsterdam 1970.

[5] H. Halberstam and K. F. Roth, Sequences, vol. I, Oxford 1966.

UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS Dolft, Notherlands

(353)