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On the upper asymptotic density of (0, 7)-primitive
sequences

by
H. G. MurJgr (Delft)

1. In this paper 4 will denote a subsequénce of the sequence of
positive integers. For a set ¥V we denote by A(V) = A(V, 4) the number
of elements of A NV, Moreover we put

A([1, n])

dA = liminf
i

and d4 = limsup_ﬂi’i])
tor the lower and upper asymptotic density of A; if dd = d4 we write 44
for the agymptolic density of A.

A sequence A = () is ealled primitive if o, 2 0 (mod a;) if ¢ 5% 7.
For & survey of the theory of primitive sequences we refer to [5], chapter V
and [4]. We only state here three well-known results, gee [3], p. 244-245,

TuROREM L. If A is o primitive sequence, then dA < }.

Treorem 2. (Behrend [1].) For every primitive sequence, d4 = 0.

TrroreM 3. (Besicovitch [2].) Corresponding to every &> 0, there
exists a primitive sequence A, depending on e, such that dA > L —s.

Let r be a positive infeger. We will call in thiz paper a sequence
A == (@) (0, r)-primitive if a; £ 0, r (mod ;) if ¢ 4. In the following
sections we give estimations for d4 of (0, r)-primitive sequences, similar
to the Theorems 1 and 3.

2. In this section we study (0, #)-primitive sequences with r odd.

Trogowam 4. Let r be an odd positive integer. If A is a (0, r)-primitive
sequence then dA < }. o :

Proof. Let » be a positive integer and a,, ..., ¢; the elements of
A not exceeding n. Let a; (1< i< t) denote thée greatest odd divisor
of a; and A’ = (a))h.,. Sinee a; = o; implies a, o; or a;le; all numbers a;
are distinct.

We congtruet o one-to-one correspondance between the odd integers
in [1, $»] and the odd integers in (§n--#, n-4r]. To every odd infeger ¢
in [1, 4n] there exigts exactly one integer of the form 2%¢ in (i, n] and
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therefore exactly one odd integer of the form 2%¢-f-7 in (dn-r, n-e]
Put f(¢) = 2%¢+r. I ¢, and ¢, are distinet odd integerﬁ n 1, in] then
fley) = fley) and the relation between ¢ and f(e) is oune-to-one.

We prove that from a pair ¢, f(¢) at mogt one ocenrs in A’ Suppose
ced’ and f(¢) = 2%¢-Lred’. Then ce A’ implies that therve is an element
a;e A with a; = 2% where 0 < b << k. On the other band fleye A" implies,
sinee f(e) > in, that fe)ed, Hewever, f(e) = 2¥¢+r == (mod «;), which
is a contradiction. This proves the theorem.

TreoreM b, Let v be an 0dd positive integer and ¢ o posmrtm real number.
There emists a (0, r)-primitive sequence A such that dA > }--

Proof. According to Theorem 3 there existy a lar*ixniti."m SeQUeNce
Ay = (a;) sueh that dd,> }—2e Then 4 = (20;) is a (0, #)-primitive
sequence satisfying the condition. of the theorem.

2. If 7 is even the situation is more complicated and we have not
succeeded in solving the problem entirely. First we prove a result gimilar
to Theorem 3 and Theorem 5.

TuEoRRM 6. Let v be an even integer and & a positive wa? number, then
there ewists a (0, v)-primitive sequonce A, such that dA > & —e.

The proof iy based on two lemmag. :

Livma 1. Let v be an even positive indeger and T an arbitrary . positive
snieger. There exisls a (0, r)-primitive sequence Ay dn [I', 31"} sueh that
'A‘([Tﬂ ST]: -AT) - '225.'3.11_2?‘

Proof. Let Ay consist of the integers in [7, 217 which are modulo 2
congruent to ome of the numbers 0,3,2,...,#—1 and of the intogers
in (27, 377 which are moduolo 2+ congruent to one of the odd oumbers
1, 3, By...,7r—1 or modulo 4r o one of the even numbers 3», 3r--3,

y Ay — 2

Obvicusly Ay is a (0, #)-primitive sequence. Morveover

f]]
A{IT, 200, Ag) (”? 1) "

YL T | 1 T :
AT, BTN, Ag) 3 (e )b 1| -1

and

o=
~z

and Lema L follows.
- For a sequence 4 we denote by B{A) the get congisting of all distinet
positive multiples of elements of A. It holds (for o proof see [5], p. 856):
Lanova 3, (Brdds [3]) Let Sy denote the set of integers lying in the
wrterval (T, 377, Then
Hm dB (8y) == 0

oo
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Writing [, 877] = [7, 21’}U[ T,37] we see that the same result
holds with 8y replaced by the set Uz of all integers lying in [7, 37'].
Proof of Theorem 6. Lebt 0 <e<} and put ¢ — 2L (R

=1, 2,...). In view of Lemma 2 we may c}mose an infinite sequence
Tyy I's, ... of positive integers satistying

!:Zk = (ZB( Ifrvk) <z £y
aml

Tpyr > (301

In [T, 3451 (k =1, 2, ...) we take the set of integers A, 1, from Lemma 1.
Leb &y be the union of these sets Ap, , then by Lemma 1,

A([L, 8731, Go) > 5537, — 2

Let @ be the (0, r)-primitive sequence obtained from &, by removing
k-1

from Ay, (k== 1, 2, ...) all those integers which belong to By, = U B(dq)

and to r--B,_;. We observe that B(4yp,) can be represented as the union

of & number of congruence classes to the modulus (37,}1. Thus, since

Tp> (BI)! (1<4 << k1), the set [T}, 3T,] contains at most

2dB(Ap) 2T, < 44,T, < 4e&;T),

meimnbers of B(dy) (L<i<k—1). Hence

. fe—1
A([L, 1], 6) > 53T — 2 — 3 85,1, > L3, — 2r —3eT),.
Z=1
From this inequality Theorem 6 follows,

‘We econtinue by proving two theorems sirnilar to the Theorems 1
and 4.

Trmorem 7. Let r = 2a, where a is an odd positive integer. If A is

a (0, r)-primitive sequence, then dA <.

Proof. Let # be a positive integer. We lel(le the elements of 4
in [i, n] into two classes B = ¥, and ¢ = O,, the sef of even and the
et of odd clements. Leb for a;e B the integer e; denote the greatest odd
divisor of a;, As in the proof of Theorem 4 the elements a; are distinet
andl differ from the elements in 0. Put I = (a;), where a;e B and A’
= Aj = HUO. :

Bimilar to the proof of Theorem 4 we make a one-to-one correspond-
ence hetween the odd integers in [1, in] and the odd integers in (j» -+ a,
A0 - ]y smch thot if v (¢) in [1, in] and ¢ in (3% + e, - 2] are correspond-
ing odd integers. then e = 2¥@O»(c)+a for some integer k(e).

Let ¢ be an odd integer in (}n-a, 4»] and let ¢ belong to B'. We -
will show that then w(e)¢ed’. Since ¢> in, obviously 2¢e<4. Suppose



104 H. G, Meijer

v(e)ed’, then there exists an clement ;e A with o =2"0(c) (0<h
< k(e}-+1) and then
¢ = 2(2%99(0) +a) = 2a (mod ay),

which is 2 confradiction.
CUonsider now two odd mbegelb ¢ and ¢—r in {(dn -+ a, 4m] with cor-
responding o{e) and v(¢—7) In [1, $n]. We will show that at least one
of them does not occur in A'. Buppom that they all belong to A'. Then
ce B or ce 0. If ce B, then »(c)¢A’; contradiction. If, on. the other hand,
e 0, then since 4 is a (0, r)-primitive sequence ¢ —1¢0, therefore ¢—re I,
which implies v(e—7r)¢A’; contradiction.
From this we get
A([L, in], Ay) <

3 1
b 44

(1) lim sup

Tt ¢ is an odd integer in (4n, n] and ceA’, then obviously ced, Therefors
from o pair of odd integers ¢, ¢--r in (ln, %] at most one oceurs in A’
Hence

) A 1

1T PR R A 5_{ [
(2) limsap 5
From (1) and (2) follows Theorem 7.

THEOREM 8. Let v = 4b, where b is o posilive integer. lf A s a (0, r)-
primitive sequence, then

21 . .
~ EZ{ Qrf b is Odd,
dA < 43 .

28 if b i evon.

Proof. Let # be a positive integer. We define B, O, B and A" a8
in the proof of Theorem 7. Ag above we see that (2) holds,

Consider the interval (in, 3n]. Lot ¢ be an odd integer in ({n, i),
such that ee B'. Then, obviously 2eed. Thix implies 2¢--rdd and
¢—2b¢A. Therefore the odd integer ¢--2b does not occur in A'

We will show now that from a set of four odd integers ¢-—0b, o~ 4b,
¢—2b, ¢ in ($n, §nl ab least one does not oceuxr in A Buppose that Lhe
four integers are clements from A'. Then ee B or 6 0. 1 ¢e & then
¢—2b¢A’; contradiction. If, on the other hand, ¢e¢ O, then ¢--41b¢ 0,
thus e—4be B and ¢—6b ¢A’; contradiction. Jlence

Alim, '%],A’L 3 1
70 RV

(3) : lim gup

icm
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Tor an estirnation of 4([1, in],
2° b even.

ad 1. Similar to the proof of Theorem 4 we make 2 one-to-one cor-
respondence hetween the odd integers v(e) in [1, 3n] and the odd integers ¢
in (§0-+-b, gn-10], such that ¢ = 2"p(6)+ b for some integer %(o).

Tt ¢ be an odd integer in (3n-+b, In] with ce B'. Then 2¢eA or
deed. Now 2oed implies 2¢—4b¢d and ¢—2b¢.4d, therefore ¢—2bg A",
On the olber hand, 4c< 4 gives v(s)¢4d’, since v(c)e.d’ implies that there
exists an ayed with a; =2"%0(e) (0 <h < %+2) and then

A"} we distinguish two cases: 1° b odd;

= 4{2"V(0) +b) = 4D (mod ay),
which is & contradiction. Hence if ¢ ig 0dd in (3n+D, in] and c< B, then
c—2b¢ A" or v(e)ed'.

Congider the four odd integers ¢— 6b, ¢ —4b, 6—2b, ¢ in (4n+ b, 1n]
with corresponding elements in (1, In]. W:Lth o similar argm:nent as above
we see that at least one of them does not oecur in A’ Therefore

A([L, }n], A0 7 1

4 lim su;
(4) _ p- P 8 e

ad 2. We divide [1, }n] into two parts, [1, n] and (In, 2n]. If ¢ is
an odd integer in (§n, fn] and ce B, then 2ced or 4ced. If 4cc A then,
a5 above, c—bg¢A’. If, on the other hand, 2c¢ed, then 2¢—4b¢d and
¢—2b¢A. Then o—2bed"if and only if 46 — 85 ¢ 4 ; in the last case, however,
¢—3b¢A’. Therefore 2ced implies 6 —2b¢ A" or ¢—3b¢A’. Hence ce B’
implies that at least one of the elements ¢ —b, ¢ —2b and ¢— 3% does not
occar in A’

From this we can prove as above that from the eight odd elements
o—thy, 1 =0,1,2,...,7, in (4n, n] at least one does not occur in 4’
Hence :

(go?, inl, An) 1
5 b e L -
() Imsup — p 8 16
Moreover, trivinlly

AL, w, 4) 1

(6 L gup ————t e NP

If b iy odd the theorem follows from (2), (3) and {(4); if b iz even we get
Theorem & from (2), (3), (5) and (6).
4. For special values of r we can derive upper bounds for 44 which

are lower thaun the values given in Theorem 7 and Theorem 8. We treat
here the case r = 2, for whieh we prove the following result.
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7 1

Trrowed 9. If A is a (0, 2)-primilive sequence, then dA < .

2 144

Proot. Let » be a positive integer and let #, 0, B' and A’ be defined
as in the proof of Theorem 7. We will also use the ene-to-one correspond-
ence from the prooi of Theorem 7 between the odd integers w(e) in
[1, in] and the odd integers ¢ in (3n+1, n+-11 We define three subsety
of the set of odd infegers in [1, n]:

1° the set O, of odd integers in (in, §nl,

2° the set (, consisting of the odd integers in (§n--1, 4n-+-1] with
the corresponding odd integers in [1, {n];

3% the set O, congisting of the odd integers in (}m--1, Jn] with the
corresponding odd integers in [ 1, 4] and the seb of odd ntegers in (n, .

ad O,. As in the proof of relation (2) we see that from u pair of odd
integers ¢, ¢--2 in (3w, §»] at most one oceurs in A’. Therefore

: . A (T, _A;,,) _ 1
1R et e
(7) limsup ” T

ad Oy, From the proof of relation (1) it follows that from a pair of
odd integers ¢, 62 in (3n -1, 4n] with corresponding odd integery v{o),
o{e--2) in [1, in] at least one does not oceur in .A’. Hence

Lo A(C, A B L
(8) limsup T S YE

ad Oz We recall that if ¢.i8 an odd integer in (in -1, 4»] und ce O,
then ¢+ 2¢ 0. Therefore we can divide the odd integers in (fn -1, fn]
into sets. {¢, e-+2,..., ¢--2s} with

e,0-F2,...,0-+-2s—-240, o¢-428¢0 and e=1.

(It iz possible that there remain two sets: a first cne consisting of one
single infeger ce O and a last one {o, ..., ¢+2¢} with ¢-+2s8¢ 0. ¥ is eagy
to check, however, that they do not disturb our argunents below.)

Consider o set D which is the union of the following threo soty: a) o geb
of -1 consecutive odd integers {e, ¢--2, ..., 0--2¢} in (in--1, In] with
€y ey 0-p28 2240, 64286 05 b) the set of corvesponding integers {v(e),
ey 0(e28)) In 1, 4wl ) the set of 3835 conseeutive odd, integors

{8¢—2, 3¢, 8¢+2, ..., 30468 ~2, B¢+ 68, 3¢ -+-68-F2} I (§n, 0.

We derive an upper bound for 4A.(D, 4°).

Ife--20 (0 = 0 < 8 —1) ocours in X then, as in the proof of Theovem 7,
v{e+20)¢ A7, Therefore from o paitr e--20,0(¢--20) (0 ol s—1) at
most one aceurs in 4’

Furthermore, since ¢+ 2s¢ O, the odd integers 3¢--6s and 3¢--6s--2
do not oceur in A’ ' : '
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Finally, from two consecutive odd integers in {3¢—2, ..., 8¢+ 65— 2)
al most one occurs in A’

Therefore we get
§-b2-- 4 {88 1) H 3841 i¢ even,
S+L2--4(3s + 1)+ L it 8541 is odd.

Tor s (}df] we write §1-24-F(8s 1) = $(s+1) and for s even we hawve

AD, 41 < l

b2l (Bs b 1Y+ ) = {E -+ ‘“-“—'-“} (s+1)< (j- + x (841)
2 2s-+1) 26 '
This implies
. A{d,, 47) 5 1V 1
9 : lmgup 2222280 7 L 22
& P n \(2 l 6) 94"

From (7), (8) and (9) we geb Theorem 9.
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