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The number of matrix fields over GF(¢)"
by

J. T. B. BEARD, JR., (Arlington, Tex.)

1. Introduction and notation. Let I’ be a field, and let (F), denote
the algebra of all # X » matrices over ¥ under normal matrix addition
and multiplication. If a subring M of (F), is itself a field, we call M a matriz
field. Although it is non-standard, we also refer to M as a subfield of the
ring (F'),,. In [1], [2] we have characterized all subfields of (F), whenever
F is a finite extension of its prime subfield. The primary purpose of this
paper is to determine the number N (g, n) of distinct subfields of (F),
whenever ' = GF(q) is the Galois field of order ¢ = p¢ for some prime p
and positive integer d. In the process we discover further results on the
structure of the set &, of all subfields of (F),, as well as some rather
nice divisibilities between certain integers. We will first obtain N (p, n),
and then generalize the techniques used therein to obtain N (g, ). In
finding N (q, n), we rely heavily on a result of Hodges [5]. Our language
and notation is that of [1] and [2].

Until further notice, we let 7 = GF(p) unless indicated otherwise.
It is easily established that N(p, ») > 0 for all primes p and all integers
# =1, and that every subfield of (F'), has order p™ for some positive
integer m <X n. We remember that if a subfield M of (F), has rank r, then
each non-zero matrix in M has rank r, and » > 0. In computing N(p, n)
we find it convenient to consider the number N(p,n,m,r) of distinct
subfields of (GrF(;p)),l having order »™ and rank 7. Clearly,

(1.1) Np,n) =D Y N(p,n,m,7).

r=lm=1

From our characterization of the subfields of (#),, Theorem 2 and Theo-
rem 3 of [1], we immediately have

* These results are contained in the author’s doctoral dissertation, written under
the direction of Professor Robert M. McConnel, to ‘whom the author wishes to express
his sincere gratitude.
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THEOREM 1. N(p,n,m,r) =0 if and only if mlr.
Hence (1.1) above becomes

n
(1.2) Npym) =3 D N(p,n,m,0).
r=1m|r
2. The number N (p, n, m,n). In order to indicate the proof tech-
nique clearly, we first determine N (p,n,m, n) for arbitrary divisors m
of m, and then consider N (p, n, m, r) for arbitrary divisors m of » where
r < m. Accordingly, we obtain
THEOREM 2. The number of distinct subfields of (GF(p)), having order
" and rank n is given by

r
. 1 1
(2.1) N(p,n,m,n) :_M
m g(m, n/m)
t—1
whenever m|n, where g(s,1) = [] (p* —p) is the number of mom-singular

r=0
matrices of order t over GF(p®).

Proof. Let m be an arbitrary positive divisor of n. Let g(x) be an
arbitrary prime polynomial of degree m in F[z], where F = GF(p).
Let A be an arbitrary root in (F), of g(x). Then the minimal polynomial
h(z) of A over F divides g(x) in F[«x]. Thus &(x) = g(») as g(x) is prime
in F[x], and hence g(x) is the only non-trivial similarity invariant of A.
Hence A is similar over F to the matrix k-sum (O (g(:v))), where n = mk.
Since any matrix in (F), which is similar over F to k-sum (O’ (g(w))) is
a root of g(x), then the number of distinct roots in (F),, of g(x) is precisely
the number of matrices in (¥), which are similar over F to k-sum ¢ (9(=))-
The multiplicative group G of all non-singular matrices in (¥), operates
in the set (F), under conjugation, and it follows by a well-known result
([4], p. 61) that the number of distinct matrices in (¥'), which are similar
over F to k-sum(()‘(g(w))) (and hence the number of distinet roots in
(F), of g(x)) is precisely the index in G of the stabilizer of the matrix
k-sum(O(y(m))). Let C(g(x), k) denote the order of the stabilizer of k-
sum (O’(g(m))); i.e., C(g(x), k) is the number of non-singular matrices
in (¥), which commute with k-sum(C (g(m))). Letting D(g(«), n) denote
the number of distinct roots in (F), of g(x), we have

g(1,n)
C(g(@), k)
We note that the number g(s, t) is well-known, appearing in [5] for exam-
ple. The number C(g(z), k) is a special case of a result of Dickson ([3],
p. 235), and is easily calculated using Bodges’ formulation [5] of this
result. However, we use our own results [1] to calculate ¢ (g(m), k) To
do 8o, we consider (F), as ((F),);, and remember that these are isomorphic

(2.2) D(g(x), n) =
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in a “nice” way. It is well-known that the only matrices in (F),, which
commute with C(g(z)) are precisely the matrices in 8,,(¥)[C(g(»))]. Thus
C(g(w), k) is the number of non-singular matrices of order % over
8,,(F)[C(g(w))| which commute with k-sum(O’(g(m))). Since the matrix
k-sum(()(g(w)) is central in the ring (Sm(F) [C(g(x))])k, then C(g(w), k)
is precisely the number of non-singular matrices contained in

(8 (F)[C(g(@)])s- .

By Theorem 2 of [1], S,(F)[C(g(x))| is a field of order p™, so that
Clg(w), k) = g(m, k) = g(m, n/m) and (2.2) becomes

g(1,n)
g(m, njm)’
Notice that the number D(g (), ») is independent of the prime polynomial
g(z) of degree m in F[x]. We now characterize the distinet subfields
of (F), having order p™ and rank n.

LEMMA 3. Let F = GF(p), and let M,, M,e%, have order p™ and
rank n. Then M, # M, if and only. ¢f M,NM, contains no root in (F),
of any prime polynomial of degree m in F[x].

Proof. We prove both directions by contraposition. Let M,, M,e%#,
have order p™ and rank #..Then I,eM, NM,, and since S,(F) is the ring
generated by I,, we have 8,(F)< M,NM,. For the necessity, assume
some prime polynomial g(x)eF [x] of degree m has a root AeM,NM,.
Then A is a root of the prime polynomial g(X)eS,(#)[X] of degree m
and M, = 8,(F)[4] = M,.

To show the sufficiency, assume M, = M,. By Theorem 2 of [1],
M, contains a matrix 4 which is similar over F' to k-sum(C’(g(w))), where
g(x)eF[x] is prime and has degree m. Thus A is a root of g(x), AeM,
= M,nM,, and the lemma is proved.

We have already shown that if g(«) is any prime polynomial of degree
m in F[xz], and A is any root in (F), of g(x), then A is similar over F to
k-sum(O’(g(w))). Hence by Theorem 2 of [1], 8,(F)[4] is a subfield of
(F),, having order p™ and rank =. Since 8,(F) = 8,,(F)[4], then the min-
imal polynomial of A over S, (F) is ¢g(X)e8,(F)[X]. Since S,(F)[A]
is a normal field extension of S,(#), then g(X) has m distinct roots in
S,(F)[A). Hence S,(F)[A] contains precisely m distinct roots in (F),
of g(»). Furthermore, if k() is any prime polynomial of degree m in F[«z],
then 8, (F)[A4] contains precisely m distinct roots of h(x). For if h(x)
is such a polynomial, it has a root B in (F), by (2.3). Then S,(F)[B]
is a field of order p™ and rank n. Thus choosing any isomorphism

p: 8,(F)[B]->8,(F)[4],

we have h(p(B)) - 0,., since g is the identity map on S, (¥). By Lemma 3,
we thus have

(2.3)  D(g(a),n) =
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LEMMA 4. Let F' = GF(p), and let m, n be positive integers. If g(x)
i8 any prime polynomial of degree m in F[x], then m]D(g(w), 'n). Moreover,

1
there are precisely % D(g(w), n) distinct matriz fields in the subset {S, (F)[4]:

Ae(F), is a root of g(x)} of #,.
To see that Lemma 4 holds even if m{n, observe that g(z) has no
roots in (F'), in that case. Continuing, we have a pigeon-hole process

1 ‘
within grasp. Let | = —I,ID(g(w), %). By Lemma 4, there are precisely [

distinct subfields M,, ..., M, of (F'), of the form M; = S,(F)[4,;] where
A; is a root in (F), of g(x); and furthermore, each M; has order p™ and
rank »#. Let M be any subfield of ('), having order »™ and rank ». Then
M contains a root Be(F), of some prime polynomial h(x) of degree m
in F[«]. Since each M; contains m distinct roots of k(x); and since k(x)
has precisely D(g(), n) distinct roots in (¥),; then by Lemma 4, BeM;
for some j,1<j<!. Hence by Lemma 3 M = §,(F)[B] = M;. Thus
N(p,n,m,n) =1 and the theorem is proved.

Excepting ¢(x) = =, D(g(w),n) should be viewed as denoting the
number of distinct roots in (F), of g(x), g(x) prime in F[x], which have
rank n. Notice that if F is an arbitrary field, and if A4 (F), is a root of
a prime polynomial g(x)eF[2], then A has rank # if and only if g(z) # =.
This follows because A is similar over F to k-sum(O’(g(ac))) for some k
dividing », and each diagonal block of k-sum(O(g(m))) is non-singular
since g(«) has a non-zero constant term.

3. The number N(p,n,m,r). We now'r find N(p,n,m,r), where
1< r<n To do so, we generalize the techniques of the previous section
and keep in mind the results given in Theorem 3 of [1].

THEOREM 5. The number of distinct subfields of (GF(p))n having order
2™ and rank r < n is given by
v 1 (1, n
(3.1) i by by ) = o e LY

m g(1, n—r)g(m,r/m)
; -1
whenever mr, where g(s,t) = ” (p™—p°T) is the number of non-singular

r=0

matrices of order t over GF(p®)..

Proof. Let F = GF(p). Fix », where 1 <7< #, and fix m as any
positive divisor of ». Let g(#) # # be an arbitrary prime polynomial of
degree m in F[z], and let f(x) = xg(x). Let Ae(F), be any root of f(x)
having rank 7, and let 4 have minimal polynomial k(z) over F. Then
h(x) divides f(x) in F[«]. Since A has rank » > 0, then h(x) # @, and as
r <, then h(x) 5 g(x). Hence h(w) = f(w). Let » = mk. Since (z; g())
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=1, then C(f(%)) is similar over F to the matrix diag|C(w), C(g())|
([6], p. 154). Since r < n, we conclude that A is similar over F' to the
matrix

4 = diag|C(2), ..., C(2), C(g(@)), ..., O(g(=)),

where O (z) appears on the diagonal of A’ precisely n —r times, and ¢ (g(w))
appears on the diagonal of A’ precisely %k times. Thus by definition (see
(1)),

A = 1°-sum(7a-sum(0(g(m))); n—r, 0).
Since any matrix in (F), which is similar over F to 4’ is a root of f()
and has rank 7, then the number of roots in (F), of f(x) having rank r
is precisely the number of matrices in (¥, which are similar over F to 4.

" As before, we denote this number by D'(f(w),r) and have

g(1,n)

(3.2) D(wg({b‘): r) = @), byn—1)’

where C(g(w), k,n—r) is the number of non-singular matrices in (F),
which commute with A’. By an argument similar to that used in ob-
taining (2.3), we find that

C(g(w)’ k, '"'_r) =g, n—r)C(g(w), k)
=g, n—r)g(m, k) = g(1,n—r)g(m, r/m).
Thus (3.2) becomes

g(1, n)
g1, mn—7)g(m,r/m)’

(3.3) D(xg(x),r) =

As before, we now characterize the distinet subfields of (F'), having order
p™ and rank 7. We need the following two results.

LEMMA 6. Let F = GF(p). Let M,, M, be subfields of (F), of order p™
and having a common identity I of rank r << n. Then M, # M, if and only
if M,NM, contains no non-zero root in (F), of a polynomial xg(x)eF [x],
where g(x) is any prime polynomial of degree m.

Proof. Let M, and M, be subfields of (F), of order p™ and having
a common identity I of rank » < m. Choose any non-singular matrix
Pe(F), such that PIP~! is the partial identity matrix C, = 1°-sum(Z,;
n—r, 0). Then

1°-sum (S, (¥); n—7r,0) < PM,P"*nPM,P™,

since C, generates the ring 1°-sum (8, (F); n —r, 0). Suppose some non-zero
matrix BeM, N M, is a root of a polynomial xg(x) « F'[x], where degg(z) = m
and g(x) is prime in F[x]. Then PBP 'ePM,P *NPM,P~'. Further-
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more, PBP™! = 1°sum(B’';n—7,0) for some B ¢(F), having rank r,
and B’ is similar over F to k-sum((}' (9(2))) ) where » = mk. Hence B’ has
minimal polynomial g(#) over F and

PM,P~" = 1°-sum(k-sum(8,(F)[B']; n —r ,0)) = PM, P
Conjugating by P!, we have M, = M,.

Conversely, suppose M,= M,= M. Then by Theorem 3 in [1], M is
similar over I to 1°-sum(S,.(¥)[B]; n—7,0), where B= k- hum(()’(g(m)))
for some prime polynomial g(z) # zeF[z] of degree m. It is clear
that the minimal polynomial of the matrix 1° -@um(B n—r 0) over
the field 1%-sum (8,(F); n—r, 0) is then g(X)e1°-sum (S,(F); n—r , 0)[X]
since Be(F),. Hence 1°-sum(B;n—7,0) is a root of wg( ) Thus M
contains a non-zero root of #g(z), and the lemma is proved.

Standard (matrix) algebraic techniques yield

LuEMMA 7. Let F be an arbitrary field, and let M,, M,e%,. Then M,
and M, have distinct identities if amd only if M,NM, = (0,).

"From Lemma 3, Lemma 6, and Lemma 7, we immediately have

THEOREM 8. Let F = GF(p). Let M,, M,e%, have order p™ and
rank r. Then M, and M, are distinct if and only if M, M, contains no
non-zero root in (F), of any polynomial x°g(x)eF [x], where g(x) is prime
of degree m, s =0 if r =mn, and s =1 for r < m.

We continue with the proof of Theorem 5. Let f(x) be any polyno-
mial in F[2] having the form f(x) = zg(x), where g() is prime, degg(x)
=m, and g(x)+# . Then f(x) has D(f(m),r) roots A in (F), having
rank r. As argued earlier, 4 is similar over F to the matrix A" — 1°-
sum (k-sum((](g(w)));n—r, 0). Let Pe(F'), be any non-singular matrix
such that PAP™! = A", and let M’ = k-sum (8,,(F)|¢ (9(a))]). Then

" M =P~ (1%-sum(M’'; n—r, 0))P

is a subfield of (F'), having order p™ and rank 7, and A <M. Let A’ = k-
sum(C(g(x))), so that

PMP™! = 1°-sum(M'; n—r, 0)
and

PAP™' =1%sum(4A';n—7,0).
Since 4 is a root of f(x), then A’ is a root in (F), of f(x). Since A’ has
rank 7 > 0, then A’ is not a root of the polynomial . Hence 4’ is a root
in (F), of g(x), since A'eM’' and M’ is a field. As argued in Section 2,
M’ contains precisely m distinct roots in (F), of any prime polynomial

d(»)eF [2] having degree m. Let B'eM' be a root of such a polynomial
d(x) # @, and consider the matrix PBP~'¢(F), as defined by

PBP™!' = 1°sum(B’;n—r, 0).
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If d(«) has constant term a, and if h(z) = @d(=), then
h(PBP~') = PBP'd(PBP™") = diag|0,_,, B'|-diag|al,_,, O,|,

and hence PBP~! is a root in PMP™! of h(x). Thus B is a root in. M of
h(x). Furthermore, B has rank r since B’ necessarily has rank r..Si.nce
the roots in M’ of d(x) are distinct, then M contains precisely m distinet
non-zero roots of h(z) and each of them has rank 7. In particular, if d({z;)
# 2 is any prime polynomial in F[«] having degree m, then any_matrlx
field M %, which contains a root A of xg(z) having rank 7 contains pre-
cisely m distinet roots in (F), of xd(x) which have rank 7. Since any root
Ae(F), of xg(x) having rank r lies in a subfleld M of (F),, then from

D(mg(m ), r) distinet subfields
m

Theorem 8 we find there exist precisely

1
of (I), which contain roots of rank » in (F), of zg (). Let | = WD (g (), 7),

and let M,, ..., M, denote these distinet subfields. Then each M; has
order p™ and 1ank r. Let M be an arbitrary subfield of (F), having order
p™ and rank 7. Then by Theorem 3 in [1], M is similar over F to a matrix
field 1°-sum(M’ ;n—r,0) where M'e#, has rank r. Furthermore, any
matrix B in M is similar over F to a matrix 1°-sum(B’; » —7, 0) where
B’ M’ has rank  if and only if B # 0,,. Let B’ have minimal polynomial
(w) over F. Then d(x) is prime in F[z] since S,(F) < M’, and B.is a root
n (F), of xd(x). Moreover, B has rank 7 if and only if d(w) =+ x. In partic-
ular, we can choose a non-zero matrix B’ e M’ whose minimal polynomial
d(x) over F has degree m. Hence B has rank » and is a root in (I, of
xd(x). Since each M; contains precisely m distinct roots 1p fF) of zd(xz)
having rank 7; and since xzd(x) has exactly D(xg(), 7') distinet roots in
(F), having rank r; then BeM; for some j, 1 <j < I. Thus by Theorem 8§
we have M = M;. Hence N(p,'n m,r) =1 and we are done.
Set g(s, 0) = 1. On combining the results of Theorem 2 and Theo-
rem 5, we have
THEOREM 9. Let F = GF(p). The number of distinct subfields of (F),
having order p™ and rank r is given by

= N g1, n)
@) (P, mym, 1) = g(1, n—7r)g(m, rim)
whenever m|r, where g(s,1t) ]_] ") is the number of mon-singular

matrices of order t over GF(p ") and g(s,0) =1.

4. The number N (p, n) and further results. From Theorem 9 and (1.2)
we have
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THEOREM 10. Let F = GF(p). The number N(p,n) of distinet sub-
fields of (F), is given by

g1, n)
(1) 22 m g(1, n—r)g m, r[m)

r=1 m|r
i—1

where g(s,t) =[] (p* —p°") is the number of mon-singular matrices of
r=0

order t over GF(p°) and g(s, 0) = 1.
In the course of proving Theorem 2 and Theorem 5 we have proved

THEOREM 11. Let F' = GF(p). Then any subfields of (F), having the
same order and rank are similar over F.

Letting v(r) denote as usual the number of positive divisors of 7,
we have

THEOREM 12. Let F = GF(p). The number of similarity classes of

F, s Zn: T(r)

r=1

Composing the results given in Theorem 7 in [1], Theorem 8 in [1],
Theorem 11, and (3.4) of Theorem 9, we obtain the following analog of
the Sylow Theorems.

THEOREM 13. Let F' = GF(p). Then the following are true.

(1) Any subfield of (F), having rank r is contained in a mawimal
subfield of (F), having order p".

(ii) Any mawimal subfields of (F), having the same order are similar
over F. ‘

(iii) The number of (maximal) subfields of (F), of amy given order
divides the order of the multiplicative group of non-singular matrices in (F)y,.

Immediately from (3.4) we obtain two interesting but considerably
weaker results.

THEOREM 14 G’wen any prime p and any integer n > 1 then nlg(1, n),

where g(1, n) [] (p"—p") is the number of mon-singular matrices of
r=0

order n over GF(p).
THEOREM 15. For each prime p and all integers n > 1,

n—1
ul [[ " —p").
r=1

5. Preliminary remarks concerning N (¢, n). In the remainder of the
paper we let F' = GF(q), where ¢ = p% To find N(q,n), we generalize
the techniques of the previous sections. The importance of the set of
“scalar matrices” contained in a given matrix field is seen once again
(see [2]) on comparing N(g,n) to the number N(q, ) of distinct sub-
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fields of (F), which themselves contain either S, (F) or a subfield which
is similar over ¥ to 1°-sum (8,(¥);n—r,0) for some r < n. We obtain
N(q,n) tirst, by a trivial extension of our previous techniques, after
determining the number N(q, n, m, r) of distinct subfields of (¥), which
are counted by N (g, n), have order ¢™, and have rank r. These results
are given in Section 6. In Section 7 we determine the number N (q, %, m, n)
of distinct subfields of (F), having order p™ and rank n. In Section 8
we determine the number N (g, %, m, r) of distinct subfields of (F'), having
order p™ and rank r for r < #. Our formula for N (g, ) will be given in
Section 9 along with additional results. _

We conclude this section by observing that under the weaker hy-
pothesis that F = GF(q), then Theorem 11 and (i) and (ii) of Theorem 13
are false. Regarding Theorem 11, we consider

ExAmpLE 1. Let F = GF(4), with F* = (a), so that ¥ = {0, 1, a, a?}.
Let C,, Cy¢(F), be given by

0100 ai0:0 0
M
O = |oereeeioeenn and O, = 0“00,
00:01 0:0:0 1
00:11 0:0:1 1

and consider M,, M,e%#, where
M, = 8,(GF(2))[C,] and M,=328, (GF(2))[C,].

Then F ~ M, ~ M,, and both M, and M, have rank 4. It is easily veri-
fied that C; is the rational canonical form over F for C?, and that O, is
not similar over F to either C, or C}. Hence M, and M, are not similar
over F.

Regarding parts (i) and (ii) of Theorem 13, we consider

ExAMPLE 2. Let F = GF(4), and let M, = §,(GF(2))[C], where
01
11|
Then M, e#,, and M, has order 4 and rank 2. We show that M, is maximal

in #,, and hence has no extensions in &, of order 16. Any matrix in (F),
which commutes with C has the form

z y
y o+y|

By direct examination, we see that any non-trivial ring extension R of
M, by such a matrix contains a non-zero singular matrix, and hence R
is not a field since R has identity I,. Hence M, is maximal in &,.
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Let M, = {diag|z, 0|: #¢F}. Then M, and M, are isomorphic maxi-
mal subfields of (F'),. They are not similar over F since M, has rank 1.

6. The number N (g, n). Let M be a subfield of (¥), which is counted
by N(q, n). Then M satisfies the hypotheses of Theorem 8 in [2] or Theo-
rem 9 in [2]. It follows easily that M has order ¢™ for some m > 1. Also,
M is similar over F to either

k-sum(Sm(F)[C(f(w))]) or 1°-sum(k-sum(6’m(F)[C(f(:v)j]);'n—r,0)

as M has rank r = % or r < s, for some prime polynomial f(x) of degree
m in F[x] where r — mk. Thus we have defined N (g, n,m,r) appro-
priately, and moreover, the arguments given in Sections 1-3 remain
valid in determining N (g, n). Accordingly, we have the following results.
THEOREM 16. N(q,n,m,r) > 0 if and only if m|r.
THEOREM 17. Let F = GF(q), and let M,, M, %, be counted by N (q, n).
If M, and M, have order g™ and rank r, then M, = M, if and only of M, NM,
contains a mon-zero root im (F), of some polynomial x*g(x)eF [x], where
g(x) is a prime of degree m, s =0 if r =mn, and s =1 if r <.
THEOREM 18. Let F = GF(q), where q = p®. The number of distinct
subfields of (F), which are counted by N (q,n), have order ¢", and rank r,
28 given by
(6.1) Fig, &, i, =— g(d, m)
’ T m g(d,n—r)g(dm,r/m)

t—1
whenever mlr, where g(s,0) =1, and g(s,t) = [] (p*—p*) is the number
- r=0
of mon-singular matrices of order t over GF(p?).

TuEOREM 19. Let F = GF(q), where ¢ — p®. Then

g(d, n)
(6.2) N(g,n) = 22 m g(d, 'n—f) (dm, r|m)’

r=1 m|r

where g(s,0) = 1, and ¢g(s,1) = H (p* - p°") is the number of non-singular
< > r=0
matrices of order t over GF(p®).
7. The number N (g, n, m,n). It is clear that each subfield of (F),
has order p™ for some m > 1, and from our characterization in [2] that
N(q,n,m,r) =0 whenever m > rd. We proceed as indicated by

n

rd
(7.1) N(gymw) =D D N(g,n,m,7),

r=1m=1
and obtain N (g, %, m, #) in this section. We first observe that an arbitrary
polynomial which is prime in F[2] and has degree m < nd need not have
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a root in (F),. For example, let # = GF(4), » = 4, and f() = 2*+2 +1.
Since f(«) clearly has no roots in ¥, then f(x) has no roots in (F),, since
f(x) itself is the only choice of non-trivial similarity invariant for such
a root in (F),. We thus state

DEFINITION. Let F be an arbitrary field. A polynomial f(x)eF[x]
is called n-admissible for F if and only if f(x) has a root in (F),.

The difficulties of determining whether or not a given polynomial
f(x)eGF[q, x] is n-admissible for GF(g) are shown very clearly by Hodges’
work [5]. In essence, a monic polynomial f(x)eGF[q, #] is n-admissible
for GF(q) if and only if the degrees and multiplicities of its prime factors
in GF[q, #] induce at least one special partition of #. For our purposes,
the following synopsis of Hodges’ main result is sufficient.

.Facr 1 (Hodges). Let f = f(«)eGF[q, x] be monic, where q = p¢,
and suppose

-

(7.2) f=rpuph piw
where P;eGF[q, z] is prime of degree d; and h(z 1for1<i<<w, and

P, #~ P; for © s j. For each partition = of n defmed by an equatzon of the
form
h(z) .

n
Ms

(7.3) d; ¥ jk
i=1 j=1
where ky; > 0, let
h(z) (@)
(7.4) [k +2ukm D Fus

v=u+1l
and let

(7.5) Zd by(7

Then the number of distunct roots in (GF(q)), of f is given by

w (i)

(1.6) B(f,n) =g(d,m) D¢ P[] 9(did, k)™,
E i=1 j=1

where the summation is over all partitions m of n defined by (7.3); the ky
are mon-negative integers defined by (7.3); b;(n) is defined by (7.4); a(m)
is defined by (7.5); and

-
|
-

g9(s,1) = [ [ (p*—p")

r=0

1l

18 the number of mon-singular matrices of order t over GF(p°).
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Thus a polynomial f(z)eGF[q, #] is n-admissible for GF(q) if and
only if E(f,n) = 0. We are able to obtain

THEOREM 20. Let I = GF(q), where q = p®, and let N(q,n,m,n)
be the number of distinct subfields of (I'), having order p™ and rank n. Then
N(g,n,m,n) =0 if and only if F,[x] contains no prime polynomial of
degree m which is n-admissible for IF. Otherwise,

1
(7.7) N(g,n,m,n) =

m

E(g,n),

where g(x) is any arbitrary polynomial of degree m over I', which is prime
in F,[x] and which is n-admissible for F, and E(g,n) is given by (7.6).

Proof. We proceed as indicated by Section 2, except relative to
Theorem 6 in [2]. As in the proof of the latter ([2], p. 480) for 4 and
h(x), we note that (F), is an algebraic algebra over F,,.

It is clear that (7.7) holds for m = 1. Accordingly, let m > 1, and let
g(x)eF,[x] be any polynomial of degree m which is prime in F,[z]and
is m-admissible for F. Then ¢(x) # ®. Let Ae(F), be an arbitrary root
of ¢g(x). Then the minimal polynomial &(x) of A over F, divides ¢(x)
in F,, and hence h(x) = g(«). Since g(x) # @ is prime in F,[«], then
¢(2) has a non-zero constant term. Since the similarity invariants of A
each divide g(#) in F [«], then each similarity invariant of 4 has a non-zero
constant term. Hence A4 has rank n. Let

C = dia'glo(fl(x))r cery O(fk(x))[

be the rational canonical form for 4 over I'. Then as argued above, g(x)
is the minimal polynomial over F, of C ( fi(z)) for 1< i< k. Hence
8, (F,)[C] is a subfield of (F), having order p™ and rank n, and 8, (¥,)[4]
is also. As before, let D(g(m), n) denote the number of distinet roots in
(F), of g(x) which have rank #. Since in this case each root in (F), of
g(2) has rank n, then D(g(), n) is given by (7.6) as derived in Fact 1.
A minor change in the proof of Lemma 3 yields

LEMMA 21. Let F = GF(q), where ¢ = p?. If M, and M, are subfields
of (F), having order p™ and rank n, then M, = M, if and only if M, NI,
contains a non-zero root in (F), of some prime polynomial in F,[x] having
degree m.

We have already shown that each root A e(F), of g(«) lies in a subfield
M = 8,(F,)[A] of (F), having order p™ and rank n. Since M is a normal
extension of 8, (F,), then M contains m distinct roots in (¥), of g(®).

1
Hence by Lemma 21, m|D(g(w), n), and letting I = W.D(g(m), n), then
there are precisely ! distinct subfields M, ..., M; of (F), of the form
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M; = 8,(F,)[4;] where A, is a root in (F), of g(x). Let h(x) be any poly-
nomial of degree m over F,, which is prime in F,[#] and which is n-admis-
sible for F. Let B be any root in (¥), of h(x). Then S,(F,)[B] is a sub-
field of (F'), having order p™ and rank . Bence for any i, 1 < i <1, choose
any isomorphism ¢: 8,(F,)[B]—-M;. Then h(p(B)) = 0,, and hence
each M; contains m distinet roots in (I7),, of h(z). Now, let M be an arbi-
trary subfield of (¥'), having order p™ and rank #. Then as argued in proving
Theorem 6 in [2], M = 8,(F,)[B] where Be(F), has minimal polynomial
h(x) over Fj, for some prime polynomial & (x)<F),[«] of degree m. Hence M
contains a root in (F), of g(x), and M = M; for some j,1<j<1I. The
initial claim of the theorem is now obvious, and we are done.

8. The number N (¢, %, m, 7). Our technique for finding N (q, n, m, )
where 1 < r < # parallels that of Section 3, except for slight modifications
as indicated by Theorem 6 in [2]. Accordingly, we fix », where 1 < r < #.
Let m be any fixed positive integer such that there exists a prime polyno-
mial g(x) # @ of degree m which is prime in F,,[«] and which is r-admissible
for F. Let f(x) = ag(x). Then f(x) is n-admissible for F and has roots
in (F), having rank ». Let A ("), be any root of f(x) having rank r, and
let A have minimal polynomial A(x) over F,. Then h(x) divides f(x) in
F,[«x]. Since » > 0, then k(x) # x, and since » < n, then h(x) # g(2).
Thus A(z) = f(2). Let s(x) be the minimal polynomial of 4 over F. Then
s(x)|f(®) in F[x]. Since x1t¢g(x), then we can factor s(z) as s(x) = wty(x)
or s(x) =t,(x) where t(x)eF[2] satisfies (z,t.(2)) = 1. If s(z) = t;(2),
then the rational canonical form for 4 over I' is non-singular, which con-
tradiets 4 having rank » < n. Thus s(z) = at;(2). Hence A is similar
over F' to a matrix of the form

(8.1) A" = diag|C(), ..., C(x), O(ty(2)), ..., C(t(2))|
— 1°-sun’1(diug‘[0(tl(:v)), ooy C(te(@)]5 0 —7, 0),

where each C(t,—(x)) has minimal polynomial g(2) over F, and is non-
singular. Let

C = diag|C(t,(@)), ..., C (t(w))|.

Then € has rank 7», and S,(F,)[C] is a subfield of (F), having order p™
and rank r. Thus on conjugating 1°-sum(8,(¥,)[C]; n —7, 0) by an appro-
priate matrix, we obtain a subfield of (F'), which contains A, has order
p™, and has rank 7. Again, let D(xg(x),r) denote the number of distinct
roots in (I'), of xg(x) which have rank 7. Since the rank of a root 4 e(F),
of wg(x) is determined by the multiplicity of the elementary divisor x
of A, then I)(mg(w), 7) can be computed using Hodges’ result as given
in Fact 1. Indeed, the argument which establishes that A is similar over F
to.the matrix A’ as given in (8.1) leads to a proof of



328 J. T. B. Beard, jr.

THEOREM 22. Lel f = f(#)eGF[q,x] have factorization (7.2), where
P = . Then the number of distinct roots in (GF(q) ))n Of f(®) which have
rank r is given by (7.6), where the summation is over all partitions = of n
obtained by taking k,, =n—r and k; a non-negative integer for i > 1 in
(7.3); by(m) is defined by (7.4); and a(n) is defined by (7.5).

We continue, and characterize the distinct subfields of (F), having
order p™ and rank r. Appealing to Theorem 6 in [2] rather than Theo-
rem 3 in [1], only slight modifications in the proof of Lemma 6 yield

LuMmA 23. Let F = GF(q), where ¢ = p* Let M,, M, be subfields
of (F), of order p™ and having a common identity of rank r < n. Then M,
= M, if and only if M, M, contains a non-zero root in (F), of some poly-
nomial xg(x)eFy,[x], where g(x) +# a is prime in F,[x] and has degree m.

From Lemma 21, Lemma 23, and Lemma 7, we obtain the following
generalization of Theorem 8. ;

THEOREM 24. Let I' = GF(q), where q¢ = p®. Let M,, M,eF, have
order p™ and rawk r. Then M, and M, are distinct if and only if M, M,
contains no non-zero root in (F), of a polynomial afg(x)eF[x], where
g(x) # x has degree m and is prime in F,[x]; s =0 if r =n; and s =1
for r < m.

We have accumulated the following facts. For any fixed », 1 < r < n;
and for any m such that there exists a polynomial g(x) # « of degree m
over F), which is prime in F,[x] and is r-admissible for F'; then each root
A e(F), of zg(x) having rank r lies in a subfield M of (F), having order p™
and rank r. A similar argument to those given earlier establishes that if
h(x) # « is any polynomial of degree m which is prime in F,[«] and which
is r-admissible for F, then each such subfield M of (F'), contains precisely m
distinet roots of wh(x) having rank r; and if M’ is an arbitrary subfield
of (¥), having order p™ and rank , then M’ contains a root of zg(«) having
rank r. Hence by Theorem 24 and Theorem 22 we have

THEOREM 25. Let F = GF(q), where ¢ = p° and let N(q, n, m, r)
be the number of distinct subfields of (F'), having order p™ and rank r < n.
Them N(q,n,m,7r) =0 if and only if no prime pglynomial g(z) # = of
degree m in F,[x] is r-admissible for F. Otherwise,

w i)

(8.2) N(g,n,m,r) =——g(d » Zq“‘(”)n”g(dd k)Y,

Jor any prime polynomial g(x)eF,[x] of degree m which is r-admissible
Jor F; where xg(x) has factorization (6.5) with P*» — z; the summation
s over all partitions n of n obtained by taking ky, = n—r in (7.3) and ky
a non-negative integer for ¢ > 1; by(w) is defined by (7.4); a(xn) is defined
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t—1
by (7.5); and g(s,t) [ p°) is the number of non-singular matrices

of order t over GF E (p®).
9. The number N (g, %) and further results. In summary, we have
THEOREM 26. Let F = GF(q), where ¢ = p?. Then

n rd

Nig,m) = > Y N(g,n,m,7),
r=1 m=1

where N (q, %, m,r) is given by (7.7) if r = n, and by (8.2) if r < n.
From (6.1) we obtain the following generalizations of Theorem 14
and Theorem 15.
THEOREM 27. Giwn any prime p and any integers n, d > 1, then n|g(d, n)

n—
where g(d, n) ]]

p¥) is the number of monm-singular matrices of
order n over GF(p ).
THEOREM 28. Given any prime p and any integers d > 1 and n > 1,

then
n—1
nl [ ] "™ —

r=1
As an easily argued consequence of Lemma 7, we conclude with

THEOREM 29. Let F be an arbitrary field, and let M,, M,e%,. Then
M, nM,eZF, if and only if M, M, #* (0,).
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